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Liver hemangioma is one of the most common benign 
liver lesions. It is frequently diagnosed as an incidental 
finding on imaging, as most patients are asymptomatic. 
Hemangiomas are thought to be congenital in origin, non-
neoplastic. Histologically, hemangioma is a mesenchymal 
lesion consisting of blood-filled vascular cavities of different 
sizes, surrounded by a simple layer of flat endothelial cells, 
supported by fibrous connective tissue. The cavernous 
hemangioma is the most common histological subtype and 
corresponds to the classic description of the hemangioma 
in imaging. Cavernous hemangioma consists of large 
vascular spaces with a central cavernous zone, and not very 
extensive connective tissue. Capillary hemangioma presents 
smaller vascular spaces and more extensive connective 
tissue. Capillary hemangioma is also known as fast-flow 
hemangioma and accounts for 16% of all hemangiomas. 
Due to its being a vascular lesion, liver hemangioma has 
been typically shown to be associated with very high 
blood volume and blood flow (1-9). Dynamic computed 
tomography (CT) studies consistently demonstrate liver 
hemangioma has much higher values of blood volume 
and blood flow compared with liver tissue or liver solid 
tumors (Table 1) (1-7).

On magnet ic  resonance  imaging  (MRI) ,  l i ver 
hemangioma presents very high intensity signal on T2-
weighted images, a low intensity signal on T1-weighted 

images and a high value of the apparent diffusion coefficient 
(ADC) (10). The mean T2 relaxation time of liver 
hemangioma has been reported to be 100 ms (0.35 T) (11), 
153.9 ms (3.0 T) (12), 166.5 ms (13), or 178 ms (1.5 T) (14). 
The mean ADC of liver hemangioma has been reported 
to be 1.69×10−3 mm2/s (1.5 T, b=50, 600 s/mm2) (15), 
1.87×10−3 mm2/s (3.0 T, b=0, 500 s/mm2) (16), 1.94× 
10−3 mm2/s (3.0 T, b=0, 800 s/mm2) (17), and 2.04×10−3 mm2/s 
(3.0 T, b=0, 500 s/mm2) (18). Recently, Wáng et al. (19-21) 
proposed that in vivo ADC measure is strongly associated 
with T2 relaxation time. Wáng et al. (20) divided T2 time 
into short T2 time band (<60 ms), intermediate T2 time 
band (60–80 ms), and long T2 time band (>80 ms, all  
3 T values). For the short T2 time band, there is a negative 
correlation between T2 time and ADC. For the long T2 
time band, there is a positive correlation between T2 time 
and ADC. Considering that a number of studies have shown 
that liver cyst has a longer T2 than liver hemangioma 
(12,22) and thus liver hemangioma will have a shorter T2 
than the gallbladder, the position of liver hemangioma 
on the T2-ADC curve is shown in Figure 1. It appears 
that the measured ADC for hemangioma is higher than 
the ADC predicted from T2 if hemangioma were a solid/
cellular tumor. This reflects the liquid nature of the 
hemangioma. In a gadolinium-enhanced dynamic MRI 
study, Nam et al. (23) reported that ADC values were 
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Figure 1 Relationship between T2 and ADC at 3 T. The graph is initially from Wáng et al. (20,21). Data sources for spleen, parotid gland 
tumors, and prostate see Wáng and Ma (20). Data sources for muscle, cartilage, liver, and intervertebral disc see Wáng et al. (21). Hemangioma 
is assumed to have a T2 of 153 ms and an ADC of 1.9×10−3 mm2/s. Dotted arrow denotes susceptibility T2* black-out, which is observed with 
structures having a very short intrinsic T2 signal due to very short T2*. In this graph, dotted arrow is for illustration only, and does not reflect 
true quantitative values for susceptibility T2* black-out. ADC, apparent diffusion coefficient.

Table 1 A comparison of blood volume and blood flow of liver hemangioma compared with liver tissue and liver solid tumors

Authors Parameters measured 

Boas et al. (1) Perfusion CT HAC (mL/mL %): cirrhotic liver, −13±7; HCC, 10±11; hemangioma: 64±23

Boas et al. (1) Perfusion CT PVC (mL/mL %): cirrhotic liver, 31±14; HCC, 23±17; hemangioma: 33±29 

Gadupudi et al. (2) Perfusion CT blood volume (mL/100 g): liver, 13.1; hemangioma, 26.8

Gadupudi et al. (2) Perfusion CT blood flow (mL/100 g/min): liver, 215.7; hemangioma, 765.9

Gadupudi et al. (2) Perfusion CT blood volume (mL/100 g): liver, 15.1; HCC: 19.3

Gadupudi et al. (2) Perfusion CT blood flow (mL/100 g/min): liver, 132.2; HCC, 462.2

Singh et al. (3) Perfusion CT blood volume (mL/100 g): liver, 26.9±9.5; HCC, 34.5±12.2; hemangioma, 42.9±16.8 

Singh et al. (3) Perfusion CT blood flow (mL/100 g/min): liver, 168.4±44.9; HCC, 345.9±69.5; hemangioma, 554.6±211 

Li et al. (4) CT total perfusion volume (mL/100 mL/min): liver, 79.1±34.7; hemangioma, 132.7±132.7

Guo and Yu (5) CT blood flow: liver, 39.8±18.7; hemangioma, 106.2±19.3

Zhang et al. (6) PET blood-pool imaging (SUV): liver, 3.69±0.53; hemangioma, 6.83±1.38

Boas et al. (1) used the concept of HAC and PVC. HAC indicates similarity of a lesion’s enhancement curve to the aortic enhancement 
curve, and PVC indicates similarity of a lesion’s enhancement curve to the portal venous enhancement curve. An enhancement curve that 
has the same shape as the aortic enhancement curve, but only half the amount of enhancement, is considered to have 50% HAC. The 
HAC and PVC are equal to hepatic artery and portal vein blood volumes, in a simple perfusion model that assumes rapid blood flow and 
no vascular permeability to contrast. Blood volumes or coefficients are expressed in units of blood volume in a voxel (mL) divided by total 
volume of the voxel (mL) or as a percentage. Zhang et al. (6) used an albumin-binding PET radiotracer blood pool agent to measure SUV 
of hemangioma. Higher SUV is associated with larger perfusion volume. CT, computed tomography; HAC, hepatic artery coefficient; HCC, 
hepatocellular carcinoma; PVC, portal vein blood supply coefficient; PET, positron emission tomography; SUV, standardized uptake value.
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Figure 2 Literature results of IVIM measured PF of Hem, relative to liver tissue, HCC or liver Mets. Results are expressed as mean ± standard 
deviation, except that the median result of Zhang et al. is expressed. For the data of (A-F), liver, HCC or metastatic tumor PF is higher than 
hemangioma PF, whereas for the data of (I-L), PF of liver, HCC or metastatic tumors is lower than hemangioma PF. Data (G,H) reported similar 
PF for HCC and hemangioma. Data are from Kim et al. (17), Watanabe et al. (24), Choi et al. (25), Ai et al. (26), Penner et al. (27), Mürtz et al. 
[2019]. (28), Mürtz et al. [2018] (29), Zhang et al. (30), Saito et al. (31), Zhu et al. (32), Yamada et al. (33), and Doblas et al. (34). Data of Zhang  
et al. were approximated from the graphs in the reference. Penner et al. and Mürtz et al. used an abbreviated IVIM protocol with three b-values. PF, 
perfusion fraction; HCC, hepatocellular carcinoma; Hem, hemangioma; Mets, metastatic tumors; IVIM, intravoxel incoherent motion.

higher in the rapidly contrast enhancing hemangiomas 
than in the intermediately or the slowly contrast enhancing 
hemangiomas. Higher ADCs of rapidly enhancing 
hemangiomas will be related to richer intralesional vascular 
perfusion. 

Intravoxel incoherent motion (IVIM) theory in MRI 
was proposed to account for the effect of vessel/capillary 
perfusion on the aggregate diffusion weighted magnetic 
resonance signal. The fast component of diffusion is related 
to micro-perfusion, whereas the slow component is linked 
to molecular diffusion. The standard IVIM modeling is 
based on Eq. [1]: 

( ) ( ) ( ) ( ) ( )slow fastb 0SI SI 1 PF exp D PF exp Db b= − × − × + × − ×
  
[1]

where SI(b) and SI(0) denote the signal intensity of images 
acquired with the b-factor value of b and b=0 s/mm2, 
respectively. Three parameters can be computed. Dslow (or D) 
is the diffusion coefficient representing the slow molecular 
diffusion (unaffected by perfusion). The perfusion fraction 

(PF, or f) represents the fraction of the compartment 
related to (micro)circulation, which can be understood as 
the proportional ‘incoherently flowing fluid’ (i.e., blood) 
volume. Dfast (or D*) is the perfusion-related diffusion 
coefficient representing speed. IVIM has been applied to 
evaluate the perfusion component of liver hemangioma, 
and the literature results of the liver hemangioma IVIM 
perfusion compartment are shown in Figures 2,3 (17,24-34). 
The data in Figures 2,3 are based on a PubMed systematic 
literature search for all English research articles which 
reports IVIM results of liver hemangioma, as well as liver 
tissue or a liver solid tumor [hepatocellular carcinoma 
(HCC) or liver metastasis] for comparison. 

While IVIM data fitting can be unstable and the 
outcomes depend on many factors such as image quality, 
b-value number and distribution, the fitting method, the 
threshold b-value, etc. (35), 6 out of 12 studies showed 
lower hemangioma PF than its comparator (being PF of 
liver tissue or a solid liver tumor), two studies reported 
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Figure 3 Literature results of IVIM measured Dfast of Hem, relative to liver tissue, HCC or liver Mets. Results are expressed as mean ± standard 
deviation, except that the median result of Zhang et al. is expressed. For the data of (A-C), liver or HCC Dfast is higher than hemangioma Dfast, 
whereas for the data of (F-J), Dfast of liver, HCC or metastatic tumor is lower than hemangioma Dfast. Data (D,E) report similar Dfast for 
HCC and hemangioma. Data are from Kim et al. (17), Watanabe et al. (24), Choi et al. (25), Ai et al. (26), Mürtz et al. [2019] (28), Mürtz 
et al. [2018] (29), Zhang et al. (30), Saito et al. (31), Zhu et al. (32), and Doblas et al. (34). Data of Zhang et al. were approximated from the 
graphs in the reference. Penner et al. and Mürtz et al. used an abbreviated IVIM protocol with three b-values.

very similar PF for hemangioma and HCC, while 4 out 
of 12 studies showed higher hemangioma PF than its 
comparator’s PF. Notably, with the four studies which 
showed higher hemangioma PF, the magnitudes of 
difference were smaller than what we would expect from 
Table 1. This means, if we estimate PF based on the results 
from other imaging studies such as CT perfusion, then 
we would expect hemangioma PF in Figure 2 will be 
higher to a much greater degree than the PF of liver or 
a solid tumor. For the results of Saito et al. (31), note 
that while HCCs are mostly hypervascular to the liver 
tissue, depending on their origin liver metastatic tumors 
can be both hypervascular or hypovascular relative to the 
background liver tissue (36,37). 

Literature analysis in Figure 3 shows that 3 out of 
10 studies showed lower hemangioma Dfast than its 
comparator’s PF, while 5 out of 10 studies showed higher 
hemangioma Dfast. Two studies reported very similar Dfast for 
hemangioma and HCC. The data fitting of Dfast is known 
to be much more unstable than that of PF (35,38). To our 

knowledge, blood flow speed in the hemangioma has 
not been measured with a physiological method. Note 
that perfusion CT blood flow, referring to the volume 
flow rate of blood through the vasculature (expressed 
as mL/100 g/min), is not a pure flow speed parameter. 
Perfusion CT mean transit time (MTT), which is the 
average time for blood to traverse between the arterial 
inflow and the venous outflow (measured in seconds), has 
been measured shorter for HCC relative to background liver 
parenchyma (39,40). Singh et al. (3) reported comparable 
MTTs for the periphery of HCC and for the periphery of 
hemangioma. However, conceptually MTT may also be 
affected by travel distance, and flow speed may be slower 
in the central part of a hemangioma. Though radioisotope 
imaging has consistently measured a high blood volume 
for hemangioma, the filling speed of radioisotope agents in 
the hemangioma is often delayed (7-9). The microbubble 
ultrasound blood pool agent (SonoVue) results of Haendl  
et al. (41) might have suggested that liver hemangioma has a 
longer MTT than that of liver metastatic tumors. Schwarz 
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et al. (42) used SonoVue to measure signal rising time and 
reported the value of 9.3±3.8 seconds for malignant tumors 
and 23.4±16.2 seconds for hemangioma. Rising time will be 
related to the flow speed and the contrast agent distribution 
volume. How IVIM derived Dfast correlate to blood flow 
speed in the physiological sense remains unknown. 

HCC is visually associated with ‘early wash-in and quick 
wash out’ on standard tri-phase contrast-enhanced CT, and 
perfusion CT studies show much shorter MTT for HCC 
[Singh et al. (3): 6.8±2.8 seconds for HCC periphery and 
11.4±4.2 seconds for background liver; Sahani et al. (39): 
8.1±3.1 seconds for HCC and 14.9±2.3 for background liver]. 
This is partially related to that HCC receives most of its 
blood supply from branches of the hepatic artery. Therefore, 
HCC should be commonly associated with a much higher 
Dfast relative to adjacent liver tissue. However, literature 
reported mixed HCC IVIM Dfast results. Mürtz et al. (28), 
Mürtz et al. (29), Woo et al. (43), Hectors et al. (44) and Shan 
et al. (45) reported lower HCC Dfast relative to adjacent liver 
tissue. Zhu et al. (32) and Kakite et al. (46) reported higher 
HCC Dfast relative to adjacent liver tissue.

It has been noted that PF for HCC is also underestimated 
with standard IVIM imaging, and we described that the 
underestimation of measured PF for HCC is at least 
partially caused by the elongation of T2 of HCC relative to 
the liver (47). The same will apply to the case of hemangioma, 
the much higher T2 of hemangioma (say, 154 ms) relative to 
the liver (say, 42 ms) can contribute to the underestimation 
of measured hemangioma PF by standard IVIM imaging. 
The analysis in this letter further adds to the uncertainties 
on how IVIM measure results can correlate to other 
physiological measures (35,48-50). 

In real practice, there are a small percentage of ‘‘variants’’ 
and ‘‘atypias’’ of hemangioma (51). For example, in rare 
cases, hemangioma may degenerate with extensive fibrosis, 
and these are called thrombosed or hyalinised hemangioma 
or sclerosed hemangioma (52). The discussion in the letter 
mainly concerns typical hemangiomas. 
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