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Snake Venom: Any Clue for Antibiotics and CAM?
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Lately several naturally occurring peptides presenting antimicrobial activity have been described in the
literature. However, snake venoms, which are an enormous source of peptides, have not been fully
explored for searching such molecules. The aim of this work is to review the basis of antimicrobial
mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore,
it includes (i) a description of the constituents of the snake venoms involved in their main biological
effects during the envenomation process; (ii) examples of snake venom molecules of commercial use;
(iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to
antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics
and complementary and alternative medicine (CAM).
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Introduction

Snake venoms contain a large number of biologically active
proteins and peptides that are usually similar in structure but
not identical to that of prey physiological systems. These
molecules are produced by specialized glands, which are evo-
lutionarily related to salivary glands, and are toxic to the prey
(1). Interestingly, more than 100 million years ago, snakes
evolved from lizards and since then, they independently
evolved their own venom apparatus in ophidian evolution, at
the base of the Colubroidea radiation (1-3).

In an effort to show snake venoms as a promising source for
antibiotics, this work briefly discusses the known biological
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activities of snake venoms, using snake venom molecules from
the Viperidae family as examples, and concepts about anti-
biotics such as their mechanism and resistance. We also highlight
the data about the antibacterial activity of some snake venoms
described in the literature to date.

Snake Venom and its Constituents

All the known advanced snake species are venomous. Most of
these snakes are found in the superfamily Colubroidea that
also includes the families Elapidae (incl. Hydrophiidae;
Cobras, Kraits, Coral Snakes, Sea Snakes) and Viperidae
(Vipers and Pit Vipers) (3). Their venoms are a wide mixture of
proteins and peptides (90-95%), also including amino acids,
nucleotides, free lipids, carbohydrates and metallic elements
bound to proteins (5%) (2-5).

Snake venom protein constituents may present different
biological activities that affect physiological processes such as
neurotransmission, the complement system and homeostasis
(6-8) (Fig. 1). These venoms can act in more than one system
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Figure 1. The biological effects of some snake venoms during the envenomation process.

at the same time and they may present antigenic effects (8§—10).
Viperidae family venom molecules are good examples, such as
in homeostasis, where they act as pro- and anticoagulant
factors, and also as inducers and inhibitors of platelet aggrega-
tion (8,10-12).

Due to their diversity, the proteins from the Viperidae family
members are classified (11) in the following categories: serine
proteases, metalloproteinases, phospholipases A, (PLA,),
C-type lectins and disintegrins. Only the initial three groups
display enzymatic activity (4,11).

Among the Viperidae serine proteases are (i) thrombin-like
enzymes that convert fibrinogen into fibrin (13—-15), such as

batroxobin in Bothrops atrox (16), crotalase and gyroxin in
Crotalus durissus terrificus (15,17), and LMTL in Lachesis
muta venoms (18); (ii) factor X or factor V activators such
as that described in Bothrops jararaca and B.atrox venoms
(19,20); (iii) prothrombin activators present in bothropic ven-
oms (21); and (iv) platelet activators such as that found in
B.atrox and B.jararaca venoms (22,23) (Fig. 1).

Snake venom metalloproteinases are zinc-dependent
enzymes that induce hemorrhaging by directly affecting capil-
lary blood vessels and their interaction with endothelial cells
(24). They cleave basement membranes, leading to blood
extravasion that occurs through gaps formed in endothelial



cells. Therefore, these metalloproteinases present a hemorrhagic
effect such as BaH1 and BaP1 from the venom of the snake
Bothrops asper (25). This ability also induces myonecrosis and
plays a vital role in the significant local inflammatory response
of the envenomation (21,24,26) (Fig. 1).

Phospholipases A, (PLA,s) are enzymes that cleave
phopholipids at the A, position, and >150 have been identified
in several snake venoms (27,28). They are described as respon-
sible for some of the envenomation symptoms, which involve
not only the hemostatic system, with an anticoagulant and
an antiplatelet profile (29-32), but also inflammatory and
myotoxic effects (33,34) (Fig. 1). Local inflammation and pain
are important features of Viperidae and Elapidae snakebite
envenomations that are rich in myotoxic nociceptive events
induced by PLA, (27,34,35). Interestingly, the elapid and viper
PLA, toxins belong to different groups (“pancreatic-type”-
group I and “synovial-type”-group II, respectively). They rep-
resent independent use of PLA, as toxins and are thus not
homologous to each other as result from separate recruitment
events. The snake presynaptic neurotoxins can also present
PLA, activity, which leads to the release of acetylcholine fol-
lowed by impairment of synaptic functions. These neurotoxins
are spread through several families of Colubroidea superfamily
(8,36,37). B-bungarotoxin is a basic protein from Bungarus
multicintus that partially paralyzed mouse hemi-diaphragm
nerve—muscle preparations also due to the PLA,-mediated
destruction of membrane phospholipids in motor nerve termi-
nals (38) (Fig. 1).

The C-type lectin family from Viperidae is one of the most
fully characterized lectin groups described in the literature
(39,40). These calcium-dependent proteins are divided into
two groups (I and II), those with a complete (I) or an incom-
plete (II) carbohydrate recognition domain (CRD) (39,41).
The first group is involved in cell recognition such as adhesion,
endocytosis and pathogen neutralization usually by using the
CRD (42,43). Meanwhile, while conserving most of the pri-
mary structure, the incomplete CRD protein group displays
different biological activities (40). These molecules are not
able to bind carbohydrates but, by using different mechanisms,
they induce or inhibit different steps of the same physiological
system or even of different systems (39,40,44). These mole-
cules can be found in several venoms such as botrocetin, a
platelet-agglutinating protein (45), and bothrojaracin, a throm-
bin inhibitor, in B.jararaca venom (46,47); and convulxin,
a pro-aggregating protein that binds to platelet GPVI receptor,
in C.durissus terrificus venom (44,48,49) (Fig. 1).

Snake venoms also contain several peptides. They may vary
from presenting neurotoxic (8,50,51) cardiotoxic (52,53) or
even an inhibitory platelet profile (3,4,6,26,54,55). They also
may present cytotoxic effects characterized by the cytolysins
that present a cationic site flanked by a hydrophobic surface
(56). In the group of peptides with inhibitory platelet activity,
the disintegrins, also known as RGD peptides (molecules con-
taining the Arg—Gly—Asp sequence), are integrin antagonists
(Fig. 1). They act as potent inhibitors of platelet aggregation
by binding specifically to integrins present on cell membranes
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of not only platelets (44,55,57) but also metastatic cells
(54,58) (Fig. 1).

Finally, it is possible to observe the presence of other protein
compounds with an enzymatic profile in snake venoms. Those
include cysteine-rich secretory proteins, which inhibit smooth
muscle contraction and cyclic nucleotide-gated ion channels
(59) (Fig. 1). There are also phosphomonoesterases, phospho-
diesterases, arginine esterases, hyaluronidases, L-aminooxidases,
5" and NAD nucleotidases, and acetylcholinesterases in snake
venoms (3,4,60,61). Interestingly, the concentration and distri-
bution of all snake venom proteins and peptides vary from
individual to individual, species to species, genus to genus and
family to family, probably due to their features, feeding and
environmental conditions (12,47,62-64).

Snake Venom Molecules of Commercial use

At the end of the last millennium, the development of thera-
peutic drugs made a significant improvement to the under-
standing of the mechanisms of action and structure—function
relationship of important biological molecules (40,65,66). The
broad spectrum of snake venom activities, including their
biochemical, toxicological, physiological and pharmacological
profiles, results from the action of their constituents.
Therefore, snake venom are of biological interest as a potential
source of active compounds. These molecules could act as (or
be used as a prototype for) (i) therapeutic agents (67,68); (ii)
research tools for use in the diagnosis of several diseases
(68-70); and/or (iii) in basic research for understanding
physiological and pathological processes (70-73). One of the
most successful examples of using snake venom as a source
for searching for drug prototypes also involved venom from
the Viperidae family. In the 1960s, Ferreira, a PhD student
at the time, and co-workers found a peptide presenting
an angiotensin-converting enzyme inhibitory activity in
B.jararaca venom. This molecule was named nonapeptide
bradykinin potentiator (BPP9a) and was able to decrease arte-
rial pressure using this mechanism (75,76). Based on BPP9a,
several drugs were developed and protected by patents, now
used by the international industry systems. These drugs, sym-
bolized by captopril, represent a world market of billions of
dollars annually. BPP9a is a good example where the use of a
natural prototype found in a biological source can generate a
medicine for worldwide use. In fact, there are many peptides
from several natural sources, other than snake venom,
described as potential prototypes for drug development. One
of them is hirudin, a thrombin inhibitor from Hirudo
medicinalis saliva, studied for its potential as an antithrombotic
molecule (77-79).

Antimicrobial Peptides Versus Enzymes

Clearly snake venom peptides have the potential for practical
and therapeutic use. However, enzymes and proteins are also
very important as some of them are described as laboratory
diagnosis reagents. Russel viper venom (RVV) X and V
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enzymes and ecarin from Echis carinatus venom are proteins
used for factors X and V, and prothrombin determination in
blood, respectively (19,20). Due to their characteristics, RVV
enzymes have been used for the improvement of the detection
of von Willebrand disease (6,15). Similarly, snake venom
thrombin-like enzymes (SVTLEs) are very useful for blood
measurements of several parameters of heparin-treated
patients since they are not affected by heparin in the same way
as thrombin, a key enzyme of the coagulation cascade (80).
SVTLEs and snake venom proteases presenting fibrinolytic
activity acting on coagulation contributed to the study of the
treatment of vascular thrombosis. Included in this group are
batroxobin (Defibrinase R), from B.atrox venom, and ancrod
(Arvin R), from Calloselasma rhodostoma venom, currently
used for controlled depletion of fibrinogen (80-82). They act
as selective antithrombotic agents on deep vein thrombosis
peripheral arterial diseases and on vascular surgery (69,80,82).

In the last decade, several snake venom compounds were
used as important tools for the understanding of human physi-
ological systems (83,84). Due to their similarity to physiolog-
ical molecules, studies on myoblast fusion and fertilization,
and matrix metalloproteinase (ADAMs)—cell interactions have
been performed using the homologous snake venom metallo-
proteinases and peptide neurotoxins in order to characterize
human cancers and small lung carcinoma. These studies
are good examples of the use of snake venom molecules in
basic research (25,26,70,83,84).

Antibiotics? What are they?

Antibiotics are a heterogeneous group of molecules produced
by several organisms, including bacteria and fungi, presenting
an antibacterial profile (85,86). At the present time, synthetic
antimicrobials, known as chemotherapics, display different
mechanisms of action and a broad antibacterial spectrum. The
antimicrobials are produced by the international pharmaceutical
industry and used worldwide. In fact, the control of the delete-
rious effects of microorganisms was significantly increased by
the introduction of the sulfonamides (chemotherapics) and of
penicillin (antibiotic) in 1936 and 1941, respectively (85-87).
These drugs were crucial for the reduction of the incidence of
several bacterial infections such as meningitis, endocarditis,
pneumonia and gonorrhoea (85,86).

The main effects of antibiotics are: (i) inducing the death of
the agent (bactericidal effect); and/or (ii) inhibition of bacter-
ial growth (bacteriostatic effect). Their targets are the essential
biosynthetic process or routes of these microorganisms
(85,87). Among them, the inhibition of the synthesis of cell
membrane, nucleotides and peptide bonds interferes directly
with survival, chromosome replication and protein synthesis,
respectively, of the bacteria (Fig. 2). They can also act by
increasing cell permeability, or inhibiting through binding to
ribosomes, which prevents nucleotide polymerization (85,87).

The main characteristic of antimicrobials (synthetic or
natural) is their selective toxicity. This feature is based on the
presence of the target only or mainly on the infectious agents,

which allows their systemic administration without deleterious
effects to the host cells (85,87).

Interestingly, antibiotics are usually produced by water- or
soil-dwelling bacteria, where the absence or low concentrations
of supplies turns the competition into an important issue for
survival (88). The production of an antibiotic at the bacterial
stationary phase probably reproduces the bacteria’s behavior at
a low nutrition environment, where these molecules are neces-
sary for eliminating competitors and guarantee ‘food supplies’
(89). On the other hand, microorganisms that grow without
food restriction, such as those of the intestinal flora (enter-
obacterias) or of an animal’s oral cavity, generally produce
bacteriocins, which are proteins presenting an antibacterial
profile (90,91). These proteins are very different from anti-
biotics, clearly obvious by their chemical structure or
non-metabolic characteristics, but mostly because they are
produced during the exponential phase of Gram-positive and
Gram-negative, pathogenic or non-pathogenic bacteria (e.g.
Escherichia, Acetobacter, Actinobacillus, Bacillus, Clostridium,
Lactobacillus, Streptococcus and Staphylococcus) (90,91).
Colicin is a bacteriocin produced by E.coli against other
homologous species. Similar to other bacteriocins, colicin’s
main effect is bactericidal (92). The inhibitory mechanism
of these proteins is not fully characterized, but for colicin
three steps are already confirmed: (i) binding of colicin to the
receptor; (ii) its transport through the cell membrane; finally
(iii) death of the agent (90-92).

The use of bacteriocins as therapeutic tools is very restricted
since they can be destroyed due to their protein structure, and/
or induce an immune response by the patient treated because of
their antigenic profile (90,91). These proteins are mainly useful
when present in food produced by using microorganisms such
as yoghurt. In this specific case, these microorganisms, such as
Lactobacillus, produce bacteriocins, which restrict the cell
growth of other potential contaminants (93).

Still Searching for Antibiotics? What for?

Although extremely effective, antibiotics are able to induce
resistance in bacteria. For >50 years, bacterial resistance has
been the main factor responsible for the increase of morbidity,
mortality and health care costs of bacterial infections (94).
This bacterial defense mechanism is widely present in bacteria
(e.g. Pseudomonas, Klebsiella, Enterobacter, Acinetobacter,
Salmonella, Staphylococcus, Enterococcus and Streptococcus)
and became a world health problem worsened by develop-
ments in human, animal and plant transportation (94-96).
The airlines facilitated the rapid dissemination of resistant
microorganisms through different countries and, as a conse-
quence, the monitoring of those agents by the government
became more and more difficult (94-96).

According to genetic studies, resistant bacteria are always
present in a small number in any bacterial colony. This num-
ber of bacteria can increase by selective pressure induced by
the presence of the drug used (94-96). The most common
causes for the appearance of multiresistant bacteria are the
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Figure 2. Schematic representation of the emergence of resistant bacteria.

inadequate or excessive use of antibiotics. In some countries,
prescriptions are still determined empirically without previous
identification of the pathogenic agents (94-96). In addition,
inappropriate use such as (i) not following the intake
schedule; (ii) giving up the treatment; (iii) the low quality of
the medicines; (iv) self-medication; and (v) incorrect drug
storage can lead to a selective pressure, which contributes to
the selection of these multiresistant microorganisms. Other
problems also include the amount of antimicrobials used in
agribusiness and agriculture for protecting animal and plant
growth. Environmental changes, and the increase of agro

Tetracycline

Rifampicin

products and animal migration, contribute to the spreading of
multiresistant agents (94-96).

The microorganisms can be resistant to antibiotics through
an intrinsic resistance, which is determined by the original cell
genes and is displayed by all individuals of the species (97).
A good example is Lactobacillus that, similarly to mammalian
cells, synthesizes tetrahydrofolate from p-aminobenzoic acid.
Therefore, this microorganism is resistant to sulfas such as the
mammal’s cells (98).

The microorganisms can also become resistant through
acquired resistance, which is represented by specific mutations
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on antibiotic targets acquired by plasmidial or transposon
genes (94-97,99) (Fig. 2). This event leads to a new generation
of insensitive cells. There are four known acquired resistance
mechanisms.

Production of Enzymes or Isoenzymes

Enzymes and isoenzymes are usually produced by micro-
organisms as instruments for protection against antibiotics. A
classical model is observed for streptomycin-resistant bacteria,
which synthesize enzymes that phosphorylate, adenylate or
acetylate hydroxyl or amino groups of amino glycosides,
acquiring this ability through plasmids (94-96). The use of
B-lactamases by resistant Gram-positive or Gram-negative
bacteria in order to cleave the (3-lactamic ring of penicillin.
This cleavage leads to the formation of the penicillinoic acid
that is devoid of antimicrobial activity. Using (3-lactamases,
these microorganisms are resistant not only penicillin to, but
also to cephalosporin (100,101) (Fig. 2).

Because of this, the literature describes effort to synthesize
new penicillin-like drugs by adding different chemical groups
to the original penicillin, to modify the affinity between these
drugs and this enzyme. However, these modifications also
decrease absorption of these molecules and also induce a
compensation system where the microorganisms increase
the synthesis of the enzyme (1-2% of total proteins), which
guarantees the resistance level (101).

Chloramphenicol acetyltransferase is another important
enzyme directly involved in acquired resistance. This protein
is able to inactivate chloramphenicol through the addition of
an acetyl group from acetyl coenzyme-A, and its presence can
be intrinsic or induced (102).

The synthesis of isoenzymes is also an induced resistant sys-
tem. In sulfonamide resistance, the isoenzyme dihydropteroate
synthase, acquired by plasmid genes, presents the same affinity
for the substrate (p-aminobenzoate) but a 10 000 times lower K
for the drug compared with the original enzyme (103).

Target Mutation

This acquired resistance is characterized by a specific mutation
on the antibiotic target, which will result in drug-insensitive
bacteria. In the case of streptomycin-resistant bacteria, mutation
of the S12 protein prevents binding of the bacterial ribosome
to this drug (104). Similarly, rifampicin-resistant bacteria pres-
ent a mutation on the DNA polymerase (3-subunit, which is
sufficient to make this microorganism insensitive to rifampicin
treatment (105-107) (Fig. 2).

Changes in Membrane Permeability

This acquired resistance can result from: (i) changes to the
antibiotic structure, which make its passage difficult through
bacterial permease, or to the cell membrane constitution, such as
changing lipopolysaccharides; (ii) permease mutations, which
decrease amino acid and antibiotic transport; and (iii) the efflux
process that pumps the drug out of the cell (106—109) (Fig. 2).

Increase of Metabolic Molecules

Resistance can be acquired through an increase of a metabolic
molecule when the drug’s mechanism is in direct competition
with this molecule (competitive antagonism), e.g. by increasing
p-aminobenzoate production, sulfur-resistant bacteria are able
to avoid antibiotic effects (110,111).

Are Snake Venoms Totally Unexplored
Sources for Antibiotics? Not Really

More than 700 antimicrobial peptides have already been iden-
tified in all living species (112,113,114), including bacteria
(86), fungi (115), amphibians (116), fish (117), insects (118)
and mammals (119,120). These molecules are 5 kDa peptides
with a high level of basic and hydrophobic amino acids. They
present a broad antimicrobial spectrum against bacteria, fungi
or parasites, by acting through insertion into the cell mem-
brane or binding to receptors. These molecules are promising
for development of antibiotics, especially for treatment of
multiresistant microorganisms (112,113).

In the case of snake venoms, despite heavy snake oral and
fang contamination with a wide variety of potentially patho-
genic bacteria, envenomation is a process associated with a
low incidence of bacterial infection (120,121). Therefore, this
feature could indicate the presence of antibacterial molecules
in the snake venoms that would protect the snakes during feed-
ing. Some of the first reports about antibacterial activity in
snake venoms were in 1948, and in 1968, involving Elapidae
and Viperidae venoms (122,123). Viperidae were described as
having antimicrobials against the Sarcina species, while in the
Elapidae family, a lytic factor or cytotoxin composed of a
basic, low molecular weight protein was found in Naja sp. and
H.haemachatus. They were able to disrupt Staphylococcus
aureus and E.coli phospholipid membranes respectively
(122,123). Not only peptides but also enzymes were involved
in the antimicrobial activity of snake venoms as described by
Skarnes in 1970 (124). Crotalus adamanteus L-aminooxidase
affects Gram-positive bacteria, while those from Agkistrodon
halys pallas, Bothrops alternatus and Trimerusurus jerdoni
have an inhibitory activity against E.coli, and S.aureus,
Pseudomonas aeruginosa and Bacillus megaterium, respec-
tively (124-127). Interestingly, LAOI1, an L-aminooxidase
from Pseudechis autralis, was 70 times more effective than
tetracycline against Aeromonas (128).

Several antimicrobial studies involving many snake venoms
have already been described in the literature. For example,
Stocker and Traynor in 1986 wrote about the inhibitory effects
of Naja naja soutratrix, Vipera russelli and C.adamanteus in
E.coli (129); in 1991 Stiles described the antibacterial proper-
ties of 30 different snake venom where the Asian and African
snakes (Naja sp.), Australian elapids (Notechis scutatus
scutatus and Pseudechis australis) and North American snakes
(Crotalus sp.) presented the highest activity and Talan and
co-workers using Crotalid venoms against Gram-negative and
Gram-positive bacteria (128). Recently, Blaylock studied



Kwazulu Natal snake venoms in South Africa and showed that
the eight venoms tested presented antibacterial activities.
Adders showed most activity against aerobes, while cobras
showed no distinct activity against aerobes or anaerobes (130).
In this study, snake venoms from Causus rhombeatus, Bitis
gabonica, Bitis arietans, Dendroaspis polylepsis, Dendroaspis
augusticeps, Naja melanoleuca, Naja annulifera and Naja
mossambica were detected presenting antibacterial activity
against S.aureus, E.coli, Paeruginosa, Bacterioides fragilis,
Bacterioides intermedius, Clostridium sordellii and Clostridium
perfringes (130). More recently, Xie and co-workers described
peptides from Naja atra venom that act against multiresistant
Mycobacterium tuberculosis in vitro (131).

Is There a Chance?

Currently certain bacterial infections are multidrug resistant.
However, this worldwide problem may decrease if some
attitudes can be adopted in a global perspective. Among them,
the most important is still a reduction of the inappropriate
and/or excessive use of antibiotics (132,133).

Despite reaching future positive statistics on antibiotic use,
new antimicrobials will always be necessary to fight against
multidrug-resistant microorganisms (132,133). Therefore, these
drugs will be very important, particularly for treatment of the
elderly, children and immune compromised patients (134—136).
Thus, investment in antibiotic research and in finding new
sources of new drugs or prototypes is of major interest to CAM.

This minireview does not intend to cover all data about
snake venoms or antibiotics. Its main objective is to reinforce
that both proteins and peptides from snake venoms can be
good candidates for testing in antibiotic screening assays using
multiresistant microorganisms. Compared with other snake
venom biological activities, the antibacterial profile of these
natural sources has not been fully investigated despite the
positive results found to date. Although snake venom peptides
and proteins have a direct therapeutic use limited by their anti-
genic and ‘digestible’ structure, their usefulness as prototypes
has clear potential. These molecules could also be of interest
for the food industry, since they can be easily degraded by the
human digestive system and therefore could be useful to
protect against contamination by food microorganism.
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