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Abstract: Protein intake in early life influences metabolism, weight gain, and later obesity risk.
As such, a better understanding of the effects of protein intake on the postprandial metabolism
and its dynamics over time may elucidate underlying mechanisms. In a randomized crossover
study, we observed fasted adults who consumed two isocaloric toddler milk formulas concentrated
as meals of 480 kcal with 67 g of carbohydrates 30 g (HP) or 7 g (LP) protein, and 10 g or 20 g
fat, respectively. Anthropometry and body plethysmography were assessed, and blood samples
collected at baseline and over five hours. Time-specific concentrations, areas under concentration
curves (AUC), and maximum values of metabolites were compared by paired t-tests to examine
the effects of protein content of toddler milks on postprandial plasma concentrations of insulin,
glucose, branched-chain amino acids (BCAA), urea and triglycerides. Twenty-seven men and women
aged 26.7 ± 5.0 years (BMI: 22.2 ± 2.5 kg/m2) (mean ± SD) participated. BCAA AUC, and Cmax
values were significantly higher with HP than LP (144,765 ± 21,221 vs. 97,089 ± 14,650 µmol·min/L,
p < 0.001; 656 ± 120 vs. 407 ± 66 µmol/L, p < 0.001), as were insulin AUC and Cmax values
(6674 ± 3013 vs. 5600 ± 2423 µmol·min/L, p = 0.005; 71 ± 37 vs. 55 ± 28 µmol/L, p = 0.001). Higher
glucose, urea, and triglyceride concentrations occurred in the late postprandial phase (≥180 min)
with HP. In conclusion, we noted that higher milk protein intake induces increased postprandial
BCAA concentrations for at least 5 h and led to higher initial insulin secretion. Gluconeogenesis
due to an influx of amino acids and their degradation after HP meal might explain the late effects of
protein intake on glucose and insulin.

Keywords: toddler milk; milk protein; diet; branched-chain amino acids; insulin; glucose; triglyc-
erides; urea; postprandial phase; the early protein hypothesis

1. Introduction

The early protein hypothesis suggests that a higher protein supply fed to infants with
conventional infant formula, as compared with breastmilk, induces an increased early
weight gain and an increased risk of obesity in later life [1–4]. A large double-masked,
randomized trial, the European Childhood Obesity Project (CHOP), provided evidence
that higher milk protein intake in the first year of life markedly increased body mass index
(BMI), body fatness, and the prevalence of obesity at ages 2 and 6 years [5–7]. Due to
the lower supply of protein in human milk as compared to cow’s milk and conventional
formula, infants fed conventional formula receive higher quantities of protein than breast-
fed infants [8]. Milk protein, predominantly composed of casein and whey, is high in
branched-chain amino acids (BCAAs), which can induce an increased secretion of insulin
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and insulin-like-growth factor I (IGF-1) [9]. Together with BCAAs, insulin and IGF-1
activate the mammalian target of rapamycin signaling pathway, particularly the mam-
malian target of the rapamycin complex 1 (mTORC1), critical for adipogenesis and the
maintenance of fat tissue [9,10].

Observational studies have suggested that the effect of protein intake on weight and
BMI is not restricted to infancy but can also be seen during toddlerhood—although the
available evidence is limited [11]. The ongoing Toddler Milk Intervention Study (TOMI)
(clinicaltrial.gov: NCT02907502, accessed on 30 August 2021) was initiated to study the
effects of two isocaloric toddler milk formulas with higher and lower concentrations of
protein, with an adaptation of fat content to maintain equal caloric density, consumed by
young children between 12 and 24 months of age. As sequential blood sampling is not
feasible in young children, the TOMI study cannot provide insight into the short-term
postprandial effects of the differing milks that could contribute to the effects of protein
intake on growth.

Therefore, in the present study, we attempt to explore potential mechanisms by
analyzing the acute effects of the two TOMI milk formulas as test meals on postprandial
metabolism in healthy, young adults. We hypothesize that the consumption of a higher
protein test meal will be followed by larger postprandial increases in plasma concentrations
of insulin and BCAA, as compared to the lower protein formula.

2. Materials and Methods
2.1. Subjects

Participants were invited for the study from May to September 2019 at the Dr. von
Hauner Children’s Hospital, LMU University Hospital, Munich, Germany. A CONSORT
(Consolidated Standards of Reporting Trials) diagram of the progress from recruitment
through to the completion of the study is included in the Figure 1. Healthy, unmedicated
volunteers could participate in the study if they were between 18 to 40 years old, had a BMI
between 18 and 25 kg/m2, and had no known metabolic, cardiovascular, or other disorders,
including lactose intolerance. Upon pre-screening, two appointments were made for each
intervention, separated by 5–10 days (with a mean of 6.7 days). Of 51 screen subjects, we
could include 27 subjects (Figure 1).

Prior to the first intervention, the participants completed an informed consent form,
as well as a health and well-being questionnaire. Data on fitness and activity level, country
of origin, education, and occupation were collected through questionnaires. Upon com-
pletion, anthropometric measurements were performed, including height, weight, and
waist circumference. BMI was then calculated, and body composition was determined
using air displacement plethysmography (BOD POD©, COSMED, Fridolfing, Germany) to
assess body fat content and percentage of body fat. A venous, indwelling catheter (Safety-
Multifly® Sarstedt) was inserted into the participants’ forearm to collect blood samples.

2.2. Test Meals and Interventions

The participants consumed two isocaloric toddler milk formulas with alternating
higher and lower protein, and fat content as a standardized test meal. Both formulas
were originally designed for the ‘Toddler Milk Intervention Study- TOMI’ (clinicaltrial.gov:
NCT02907502, accessed on 30 August 2021), produced and provided by Nestec, Ltd., Vevey,
Switzerland, now renamed to Société des Produits Nestlé S.A., Vevey, Switzerland. In order
to maintain double-blinding, the milk formula was pre-packaged by the manufacturer in
individual-dosed cans labeled with A or B. Each milk powder was dissolved in 500 mL of
water at a temperature of 40 ◦C prior to consumption. The utilized quantity of milk formula
in the present study was chosen to be approximately equal to the caloric content of a single
adult meal and corresponds to double the concentration used for the preparation of the
milk formula for children participating in the TOMI study. Thus, the higher protein, lower
fat (HP) test meal contained 2010 KJ/480 kcal energy, 30 g protein, 67 g carbohydrates and
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10 g fat per 500 mL. The lower protein, higher fat (LP) test meal contained 2010 KJ/480 kcal
energy, 7 g protein, 67 g carbohydrates and 20 g fat per 500 mL.
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Figure 1. A CONSORT (Consolidated Standards of Reporting Trials) diagram depicting the process of recruitment, selec-
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(n = 1) did not perform intervention B during period 2 of allocation and thus was excluded in the analysis of intervention B. 
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Figure 1. A CONSORT (Consolidated Standards of Reporting Trials) diagram depicting the process of recruitment, selection,
randomization and analysis of participants. Due to an unforeseen adverse event (lactose intolerance), one participant (n = 1)
did not perform intervention B during period 2 of allocation and thus was excluded in the analysis of intervention B.

A randomization list and the transfer of the planned assignments to sealed and
consecutively numbered envelopes was prepared by a person not involved in the conduct
and lab analysis of the study. The list was produced using a randomly permuted sequence
of A and B with a block length of 2 or 4 and a consecutive ID number. Group A was allocated
the product sequence AB and the group B the product sequence BA. Product allocation
after informed consent was performed by opening the respective sealed envelope with the
id containing the product code for the first and second appointment. At each appointment,
participants arrived after an overnight fast of at least 12 h to the study site. Fasted blood
samples were taken (time = 0 min), followed by anthropometric measurements, which
were only performed during the first appointment. The pre-packaged milk formulas A and
B were chosen for each trial appointment, according to the allocation. After insertion of
the venous catheter the formulas were consumed within a 5-min time period, while sitting
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at a table. Initially, only 450 mL of water was mixed with the test milk formula. Upon
consumption of the 450 mL, an additional 50 mL of water was mixed with the leftover milk
at 40 ◦C, in order to ensure that all formula was consumed. Trial periods for all subjects
began at 8:00 a.m., and the time of meal intake for all subjects did not differ more than
one hour.

Timing for blood samples began once the full test meal was consumed, and venous
blood samples were taken at 15, 30, 60, 90, 120, 180, 240, and 300 min postprandial. With
the exception of the first samples of the first subject, all blood samples were taken within a
minute of each time interval. At each of the time points, including the basal fasted blood
samples, serum and EDTA blood samples were taken (using S-Monovette®, Sarstedt) to
measure glucose, insulin, BCAA, triglycerides, and urea. In the fasted blood samples
additionally full blood count, CRP, ALAT, and ASAT were determined to evaluate the
overall health status of the subjects. The same arm was used for the venous catheter at
each of the two interventions.

During the test period, subjects were asked for any complaints or adverse events.
Throughout the entire trial, subjects only carried out simple tasks and refrained from any
significant physical activity, with no excessive or strenuous physical activity. The subjects
did not drink or eat anything during the first 120 min of the sample collection period, after
which they were allowed to drink water. All test subjects requested to drink water after
120 min of the observation period.

The procedure for the second trial was identical to the first, except that anthropometric
measurements were not taken, and the subjects consumed the second milk formula (either
A or B, respectively). The subjects were encouraged not to alter their normal routines
between study tests and were asked to report any major change of their lifestyle (diet,
physical activity, or alcohol consumption) between the tests, though none were reported.

2.3. Laboratory Measurements

Alanine Aminotransferase (ALTPM: ACN 8681, Roche/Hiatchi cobas c 701/702), As-
partate Aminotransferase (ASTPM: ACN 8680, Roche/Hiatchi cobas c 701/702), C-Reactive
Protein (AU 5800, Beckman Coulter, Brea, CA, USA), and a full blood count (Fluorescence,
XE 5000 or XN 9000, Sysmex) and flow cytometry (Coulter LH 750, Beckman Coulter)
were determined from the fasted serum and EDTA samples, respectively, and glucose
(enzymatic UV assay, AU 5800, Beckman Coulter), insulin (Elektro Chemical Luminescence
Immuno Assay, Cobas 8000e702, ROCHE Diagnostics, Basel, Switzerland), urea (Kinetic
UV assay, AU 5800, Beckman Coulter), and triglycerides (enzymatic colour assay, Cobas
8000 c701, ROCHE) for all collected time points by the Institute of Laboratory Medicine at
the University Hospital, LMU Munich. For BCAA (valine, leucine and isoleucine) determi-
nation EDTA samples were centrifuged (10 min, 1500× g, 4 ◦C) and plasma was stored at
−80 ◦C. After collection of all the samples, plasma was analyzed via HPLC-ESI-MS/MS
on an API-2000 Triple-Quadrupole-MS instrument from Sciex (Concord, ON, Canada),
as previously described in Harder et al. with slight modifications to make the method
more robust and reproducible [12]. For sample preparation, 50 µL plasma samples were
directly pipetted and mixed into the methanolic internal standard solution in order to
obtain a fluffy homogenous protein precipitate. All other steps were performed according
to Harder et.al. In addition, the calibration curve ranged from 10 µM to 1000 µM (10, 25,
50, 100, 200, 500, 750 and 1000 µM) with double calibrant injections at 50 and 200 µM to
stabilize the calibration curve. For each wellplate batch analysis, two calibration curves
were analyzed at the start and at the end of sample analysis. Note that only calibration
curves with a correlation coefficient of at least 0.9990 were employed for quantification
using the MultiQuant 3.0 software from Sciex. In addition, six equidistant quality control
(QC) samples (pool of all samples) and 2 × 2 amino acid control plasma samples (CP1 and
CP2 from Recipe) were co-analyzed with the plasma samples to ensure highest possible
accuracy and precision of all quantitative results.
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2.4. Sample Size, Statistics and Data Analysis

Area Under the Time Concentration Curves (AUC) were using trapezoidal functions
for insulin, which was the primary outcome measure, as well as secondary outcomes
measures including postprandial glucose, triglycerides, urea, and BCAAs. Total BCAA was
calculated as the sum of valine, leucine, and isoleucine. Further exploratory measures, such
as fasted baseline concentrations, concentration maximums (Cmax), and time of maximum
concentration (Tmax) were also calculated and assessed.

Based on studies by Hirsch et al. [13] and Nilsson et al. [14], we assumed a stan-
dard deviation (SD) of 5.1 µmol·min/L in insulin AUC and a plausible difference of the
AUCs between HP and LP milk formulas of 3.7 µmol·min/L. Using an error level of
5% and a statistical power of 80% in a one-sided test, a required sample size of 25 subjects
was determined.

Comparisons between the primary and secondary outcomes, as well as exploratory
outcome measures between the two milk formulas were performed with paired t-tests
or Wilcoxon rank test when considered appropriate. For additional explorative analysis,
linear regression with cluster options (by subject) was used to test for the effects of other
factors, such as BMI, gender and age on glucose, insulin, triglycerides, urea and BCAA.
Statistical significance was assumed at maximum error probability of 0.05. All statistical
analyses were performed with the software SPSS v26 (IBM, Armonk, NY, USA), and Stata
15.1 (StataCorp, College Station, TX, USA).

3. Results
3.1. Participants

Twenty-seven subjects (15 females, 56%, 12 males, 44%) participated, as shown in
Table 1.

Table 1. Baseline characteristics of study subjects (n = 27).

Baseline Variable Mean ± SD

Age (years) 26.4 ± 5.0
Weight (kg) 68.3 ± 12.4
Height (cm) 173.9 ± 10.2

BMI (kg/m2) 22.2 ± 2.5
Waist circumference (cm) 80.7 ± 7.0

One subject dropped out after the first test meal (higher protein meal) due to reported
symptoms of food intolerance. The subject denied having been aware of any lactose or
food intolerance. Thus, 26 subjects were available for the main outcome analysis and
27 and 26 subjects for any HP and LP, respectively, summary statistics. No other adverse
effects occurred during the entire trial. CRP and liver enzymes were all within reference
ranges, and all subjects were deemed healthy. All participants had or were undergoing an
education at university level, with the majority (81%) being students. Most participants
(81%) were of European descent, while 3 participants were of Asian descent (11%), and
1 participant each was of African and Indian descent, respectively.

Body plethysmography showed a body fat percentage of 25.4 ± 1.4% (mean ± SD)
in females and 15.7 ± 1.4% in males. Most participants reported to be physically active
2–3 times per week (38.5%), followed by participants who exercised more than 6 times per
week (30.8%), 4–5 times per week (19.2%), and less than once per week (11.5%).

3.2. Blood Glucose, Insulin, Urea, and Triglyceride Responses

Fasted baseline concentrations, Cmax, Tmax, as well as AUC values for glucose,
insulin, urea, and triglycerides are shown in Table 2. Mean and individual concentration
curves for glucose and insulin responses over time are displayed in Figure 2, together with
the mean difference between the HP and LP test meals for individual metabolic responses
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with a 95% confidence interval (CI). A comparison of baseline, fasted values revealed no
significant differences prior to consumption of the study milks.

Table 2. Fasted baseline concentrations (mg/dL; µU/mL), maximum concentration (Cmax), mean
time at maximum concentration (Tmax; minutes) and AUC values (mean ± SD; µmol·min/L) for
glucose, urea, triglycerides and insulin after intake of higher and lower protein test milks for the
27 subjects.

Metabolite Higher Protein Lower Protein p-Value *

Glucose (mg/dL)
Baseline 86 ± 6 86 ± 9 0.929
Cmax 119 ± 19 119 ± 18 0.866
Tmax 37 ± 29 45 ± 38 0.251
AUC 27,301 ± 1868 26,826 ± 2165 0.132

Insulin (µU/mL)
Baseline 8 ± 4 9 ± 5 0.202
Cmax 71 ± 37 55 ± 28 <0.001
Tmax 24 ± 11 27 ± 10 0.247
AUC 6674 ± 3013 5600 ± 2423 0.005

Urea (mg/dL)
Baseline 25 ± 9 27 ± 8 0.287
Cmax 28 ± 8 27 ± 8 0.512
Tmax 235 ± 90 23 ± 27 <0.001
AUC 7873 ± 2459 7259 ± 2254 0.110

Triglycerides (mg/dL)
Baseline 85 ± 46 80 ± 49 0.458
Cmax 110 ± 50 110 ± 53 0.961
Tmax 246 ± 96 201 ± 111 0.132
AUC 27,945 ± 14338 26,619 ± 12,862 0.455

* p value from paired t test and Wilcoxon rank test for Tmax.
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The postprandial curves for glucose and insulin show initial steep increases, with
peak concentrations reached until approximately 30 min. Subsequently, the concentration
curves sharply declined until 60 min, and then more gradually for the final three hours
of the observation period. In comparison to the LP meal, glucose was somewhat higher
directly after HP meals, then lower and again higher from 120 min onwards, while insulin
peaked early and was always higher after HP meals. Concentration maximums and
AUC for insulin were significantly higher for the HP compared to the LP milk meals
(Table 2). These concentrations showed approximately 18% higher AUC values, and a 30%
higher concentration maximum for the HP compared to the LP milk meals. Significant
differences between mean postprandial insulin concentrations for the HP compared to the
LP milk were seen at 15 min and the two last observation time points (Figure 2): at 15 min
(61 ± 34 vs. 38 ± 20 µU/mL, p < 0.001), 240 min (8 ± 4 vs. 6 ± 4 µU/mL, p = 0.015) and
300 min (7 ± 3 vs. 5 ± 3 µU/mL, p < 0.001), respectively.

The time points of concentration maximums (Tmax) for insulin and glucose var-
ied widely between subjects, but without significant influence by the test meals. The
maximum glucose concentrations after both test milks were similar, and there were no
significant differences in AUC values for glucose. However, significantly higher mean glu-
cose concentrations after HP versus the LP test meals were observed at 180 min (85 ± 7 vs.
81 ± 10 mg/dL, p < 0.05), 240 min (83 ± 6 vs. 80 ± 7 mg/dL, p = 0.003), and 300 min
(85 ± 6 vs. 83 ± 6 mg/dL, p = 0.036).

The concentration curves for urea and triglycerides showed gradual changes over
the trial period for both the HP and the LP milk formulas. For urea, mean postprandial
concentrations increased steadily until the end of the study (300 min) for HP, while the mean
postprandial concentrations after consumption of LP showed a gradual decreasing trend.
Significantly higher values after HP than LP were observed for the last two measurements
at 240 min (27 ± 8 vs. 23 ± 7 mg/dL, p = 0.001) and 300 min (27 ± 7 vs. 23 ± 7 mg/dL,
p = 0.001). The mean concentration curves for triglycerides for both HP and LP milk meals
were characterized by similar, gradual developments until the end of the observation period
with a significant difference in mean concentrations observed at 300 min (106 ± 48 vs.
92 ± 37 mg/dL, p = 0.041).

3.3. Postprandial Plasma Branched-Chain Amino Acids

Fasted baseline concentrations, Cmax, Tmax, and AUC values for BCAAs are shown
in Table 3. BCAA concentrations over time by test meal and the difference between test
milk meals is depicted in Figure 3.

Both plasma BCAA AUCs and their concentration maximums were significantly
higher after the intake of HP compared to LP; HP curves were characterized by steep initial
increases directly after milk consumption. Significantly greater BCAA concentrations at
all postprandial points were observed after HP. Approximately 37%, 83% and 87% higher
concentration maximums were observed for the BCAAs valine, leucine and isoleucine,
respectively. BCAAs showed a 49% higher AUC and 61% higher concentration maximums
after HP compared to LP.

The time between milk intake and Cmax was highly variable (Table 3). In the HP
group, approximately one third of all participants did not reach concentration maximums
until at least two hours postprandially. In the LP group, all subjects reached a concentration
maximum within 60 min, though the majority of participants (24 subjects) reached BCAA
concentration maximums by 30 min.

Tmax in the HP group was reached significantly later for BCAAs than for insulin
(p= 0.001), and there was no association of BCAAs with glucose or insulin maximum
concentrations. Maximum concentrations and AUCs of BCAAs were not associated with
maximum concentrations or AUC values of insulin.
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Table 3. Fasted baseline concentrations (µmol/L), maximum concentration (Cmax), mean time at
maximum concentration (Tmax; minutes) and AUC values (mean ± SD; µmol·min/L) for total
BCAAs, valine, leucine, and isoleucine for the higher protein and lower protein study milks for
27 subjects.

Amino Acid Higher Protein Lower Protein p-Value *

Total BCAA
Baseline 349 ± 71 362 ± 74 0.229
Cmax 656 ± 120 407 ± 66 <0.001
Tmax 101 ± 106 34 ± 57 0.024
AUC 144,765 ± 21,221 97,089 ± 14,650 <0.001

Valine
Baseline 174 ± 37 183 ± 38 0.204
Cmax 284 ± 63 207 ± 39 <0.001
Tmax 118 ± 112 43 ± 60 0.009
AUC 67,465 ± 11,871 50,385 ± 7944 <0.001

Leucine
Baseline 114 ± 26 115 ± 25 0.828
Cmax 242 ± 40 133 ± 21 <0.001
Tmax 77 ± 96 35 ± 59 0.136
AUC 49,611 ± 7220 30,419 ± 4970 <0.001

Isoleucine
Baseline 61 ± 15 64 ± 21 0.391
Cmax 141 ± 30 75 ± 18 <0.001
Tmax 64 ± 87 35 ± 59 0.277
AUC 27,689 ± 4632 16,285 ± 3314 <0.001

* p value from paired t test and Wilcoxon rank test for Tmax.
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3.4. Effects of Age, Gender and Anthropometry on Metabolic Response

Age, gender, and anthropometrics (weight, BMI and fat mass) of participants were
examined in relation to the AUCs of insulin, glucose, BCAAs and urea. BMI, weight, and
age, but not fat mass correlated negatively and significantly with AUC insulin values
(rBMI = −0.47, rweight = −0.44, rage = −0.36; all p ≤ 0.009). In a linear regression model,
including BMI, age, gender and the study product (HP vs. LP), 1 kg/m2 in BMI reduced
the AUC insulin value by 472.5 µmol·min/L—corresponding to a 7–8% change in the AUC,
and 1 year of age reduced the AUC insulin by 191.5 µmol·min/L.

There were no other significant differences, except for gender and urea, where men dis-
played significantly higher concentrations throughout the entire study for both test meals.

4. Discussion

Our results clearly show the marked impact of milk protein intake on postprandial
insulin and glucose serum concentrations. The consumption of HP led to increases in
insulin secretion, initially accelerating glucose clearance, with a consecutive decrease in
insulin concentrations until the end of the study. As the carbohydrate load for formulas
was identical, the preliminary rise in insulin can be attributed to the insulinotropic aspects
of milk proteins [15,16]. However, towards the end of the trial, insulin, glucose, and urea
showed significant concentration differences after HP versus LP. This appears to reflect a
dual-metabolic mechanism, intrinsically linked to the observed BCAA concentrations that
remained elevated after HP for the entirety of the trial. The excess supply of postprandial
BCAAs, and potentially other amino acids, could thus contribute to increased weight
gain in infants fed a higher protein formula [5,6]. This can strongly influence the risk for
negative health outcomes, as observational studies have convincingly shown that early
weight gain is associated with higher body mass index (BMI) and other indicators of obesity
in later life [17,18].

Pediatric studies examining the role of higher milk protein intake on infants and
children have predominantly focused on growth effects and in part to other long-term
outcomes such as obesity risk. In the Childhood Obesity Project (CHOP), infants were
randomly assigned formulas with higher and lower protein content that were consumed
until twelve months of life. Fasted blood samples taken at six months indicated that infants
who consumed the higher protein formula had decreased serum glucose, and increased con-
centrations of BCAAs, while even lower BCAA concentrations were observed in a breastfed
reference group [19,20]. These results support the early protein hypothesis, suggesting
that increased protein supply in early life elevates concentrations of insulinogenic amino
acids, and thereby increases growth mediator release, such as insulin and IGF-1 [5,21].
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Other pediatric studies similarly determined that infants fed higher protein formula had
significantly higher concentrations of plasma amino acids and serum urea than breast-fed
infants [22–24], while infants fed lower protein showed serum urea and plasma amino
acids concentrations similar to breastfed infants [25,26].

Although studies in adults have focused on protein intake in the acute postprandial
phase, there are consistencies in the data that support our hypotheses. Panahi et al.
showed that postprandial glycemia and insulinemia are closely linked to meal composition,
presenting lower insulin responses per kcal fat than protein [27]. We observed similar
results, with significant differences in Cmax for insulin after HP than LP that an adaptation
of higher and lower fat content to maintain equal caloric density. Our results were further
consistent with those of Nilsson et al. [28], as we observed significant differences in AUCs
and Cmax for BCAAs after HP compared to LP. Most recently, Shahkhalili et al. observed
the effects of three different infant formula meals with varying types and amounts of milk
protein and similar carbohydrate and fat contents on 29 adults. Their results showed
that the increased intake of partially hydrolyzed whey resulted in an increase of insulin
concentrations, as well as a higher glucose response [29]. To our knowledge, this is the
only other study that compared the effects of infant milk formulas in adults, though their
sampling stopped at 180 min postprandial, and it remains unclear whether the greater
insulin response by the higher protein load applies only to hydrolyzed whey protein or
also applies for intact protein.

Milk protein composition, primarily composed of whey and casein, is particularly
relevant regarding metabolic responses. Whey protein is rapidly digested, triggering
specific gastric incretins, such as glucagon-like peptide (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) [15,30]. Whey is also high in leucine, assumed to be a
crucial dietary component in adipogenesis due to mTORC1 signaling [28,31–34], while
casein has been described to enhance IGF-1 serum levels [14,35]. In our present study, we
did not analyze IGF-1 levels, as previous data suggested that the acute postprandial effects
of IGF-1 are minimal compared to those of insulin [36,37].

We noted significant differences in mean concentration of insulin, glucose and urea
after HP compared to LP after 240 min. Krezowski et al. [38] showed that a protein-
stimulated insulin response in healthy adults did not necessarily parallel the rise in amino
acids, suggesting other hormonal or metabolic mechanisms in the insulin release observed
after two hours postprandial. As we also found no association of Cmax or AUCs of BCAAs
with those of glucose or insulin, and Tmax for BCAAs was significantly later than for
insulin, amino acids appear to have continuously cumulated after the initial insulin peak.
We thus postulate that an increased supply of BCAAs, and potentially other amino acids,
leads to increased amino acid degradation, triggering glucogenesis, and subsequently
insulin stimulation. These results were further substantiated by significant differences in
mean urea concentrations between HP and LP also observed at 240 and 300 min, suggesting
an increase in degradation products as a result of increased amino acid breakdown [39].
However, as of the BCAAs, only valine is purely glucogenic, we speculate whether interplay
from other glucogenic amino acids took place, which requires further examination.

It is unclear to which extent these acute metabolic effects observed in young, healthy
adults can be extrapolated to children. While multiple observational studies have shown
that early protein intake is associated with higher BMI in early childhood reflecting assumed
early metabolic programming of adiposity [2,40–43], other research in juveniles suggests
that higher protein intake in pre-teen and teen years may increase lean mass and is thereby
associated with pubertal growth rather than adiposity programming [44,45]. We observed
that lower body mass in adults resulted in decreased postprandial insulin. We also noted a
negative correlation between insulin and increasing age.

Strengths and Limitations

The limitations of our study include lack of a control for gastric emptying, and no
measure of other endocrine factors that may have interacted with or influenced the pre- and
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postprandial phases. Further, we focused on the interplay of BCAAs in the postprandial
metabolism, while other amino acids, particularly glucogenic, may have also played a
role. Although our study included a modest sample size, we found clear group differences
despite intra- and inter-individual variability in blood metabolite concentrations.

The strengths of our study include the relatively long observation period of five-hours,
the double-blind randomized design, and strictly controlled study conditions. Participants
consumed a standard milk meal and completed no major physical activity for the duration
of the observation period; therefore, we can exclude the confounding effects of exercise
on the postprandial response. In an attempt to avoid any alterations in blood values, the
venous catheter was always inserted into the same arm and anthropometric measurements
were standardized based on the previously enacted TOMI study protocol.

5. Conclusions

In conclusion, our results show that a high milk protein supply affects acute post-
prandial BCAA and insulin concentrations in healthy adults. The initial rise in insulin is
likely due to the ingestion of glucose combined with BCAAs, while effects observed after
two-hours are likely related to amino acid degradation and subsequent gluconeogenesis,
due to the cumulative increase in circulating BCAAs supply over time. Though these
outcomes cannot be directly compared to postprandial metabolic effects in young children,
they can contribute to better understanding the mechanisms behind high milk protein
supply on metabolism and growth in early life.
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