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Abstract: Antarctica is one of the most inhospitable continents on the planet, with lichens and mosses
being the most common terrestrial organisms in ice-free areas. Antarctica is represented by only two
species of Angiosperms, Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth)
Bartl. (Caryophyllaceae). In this study, we characterized fungi isolated from the fresh leaves of this
grass species. The fungi were isolated from four individual plants from Half Moon Island (246 leaf
fragments investigated), and seven from King George Island-Keller Peninsula (with 111 leaf fragments
investigated) Antarctica. Neoascochyta paspali, Septoriella elongata, Pyrenophora cf. chaetomioides and
Alternaria sp. were associated with the plant and identified through analysis of the sequences of the
internal transcribed spacer region (ITS) of the rDNA and nuclear ribosomal large subunit rRNA gene
(LSU) as well as through macro and micro-morphological characteristics. The isolates showed higher
growth rate ranging from 10 to 20 ◦C. An interesting result was that the aforementioned fungi are
already recognized as both plant pathogens and endophytic fungi. The results demonstrate that D.
antarctica is an interesting fungal source. Those species might provide important information about
the relationship on the endemic Antarctic biota.

Keywords: endophitic fungi Phylogeny; biodiversity; antarctic ecology; molecular biology; ITS; nLSU

1. Introduction

The Antarctic region plays a key role in the balance of atmospheric and climatic
dynamics [1]. However, the Antarctic continent is considered one of the most inhospitable
ecosystems, being the coldest, windiest, and driest, with a high incidence of radiation, all
of which restrict the development of many life forms [2].

The Antarctic terrestrial diversity is predominantly composed of lichens and bryophytes
(mosses and liverworts) species and includes only two species of native vascular plants:
Deschampsia antarctica Desv. (the Antarctic hair-grass—Poaceae) and Colobanthus quitensis
(Kunth) Bartl. (Caryophyllaceae) [3,4]. Deschampsia antarctica is a pioneer species that
colonises exposed environments after retraction of the glaciers. It can grow over dead
mosses or directly on live moss carpets [5–7].

Several studies to date have demonstrated the ability of this Antarctic hairgrass to
survive extreme conditions or the mechanisms involved in this resistance [8–10]. However,
few studies have investigated its interaction with the associated fungi. Plant pathogens
within the Antarctic region as well known and are mostly identified in lichens and mosses,
more so than in angiosperms [4]. For other substrates, fungi have been reported from soil,
woody components, rocks and macroalgae [11].

For D. antarctica, associated fungi have been reported in some studies, indicating a wide
range of mycorrhizae [12] as well as endophytes, parasites, and predatory fungi [13–16].

The fungi associated with Antarctica plants typically include yeasts and filamentous
fungi consisting of species from Chytridiomycota, zygomycetous fungi, Glomeromycota,
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Basidiomycota, and Ascomycota [17]. Ascomycota represents the major group of endo-
phytic fungi isolated to date [18]. The association can be endophytic, such as with pathogens
or decomposers [19,20].

In this study, were evaluated the growth of four endophitic fungi associated with
D. antarctica, collected in the Antarctic summer of 2014 and 2016 from Half Moon and
King George Islands. The isolated fungi were identified by molecular taxonomy and by
macro- and micro-morphological characterization and represented the genus Pyrenophora,
Phaeosphaeria, Neoascochyta, and Alternaria. In addition, mycelial growth was assessed at
four different temperatures and in different culture media.

2. Materials and Methods
2.1. Study Area

The South Shetlands Archipelago is in the Maritime Antarctic, lying in the Northwest
of the Antarctic Peninsula. It is composed of 8 large islands and many other smaller ones.
The small Half Moon Island is located at 62◦36′ S; 59◦53′ W and King George Island at
62◦01′21′ ′ S, 58◦15′05′ ′ W [21], where specimens of D. antarctica were collected.

2.2. Plant Material and Isolation of the Fungi

Fresh D. antarctica leaves were collected from plants growing under natural conditions
in Half Moon Island during the antarctic summer of 2014, and from King George Island
(Keller Peninsula) during the antarctic Summer of 2016. The plant material was stored in
sterile plastic bags, frozen, and transported to Brazil. The leaves were sterilized by succes-
sive immersion in 70% ethanol (1 min) and 2% sodium hypochlorite (3 min), followed by a
sterile distilled water rinse (2 min) [14]. The fragments were then plated on Petri dishes con-
taining Potato Dextrose Agar (PDA, Merck® KGaA, Darmstadt, Germany) supplemented
with chloramphenicol (100 µg mL−1). The plates were incubated up to 60 days at 20 ◦C, and
individual colonies were transferred to PDA, and stored at 20 ◦C. The long-term preserva-
tion of mycelial material was performed using the Castellani and Mineral Oil methods [22].
The fungi were isolated from four individual plants in Half Moon Island (246 leaf fragments
investigated), and seven from King George Island-Keller Peninsula (with 111 leaf fragments
investigated)—Antarctica. The fungal isolates used in this study were deposited in the
Bruno Edgar Irgang Herbarium (HBEI—https://sites.unipampa.edu.br/brherbariohbei/
(accessed on 21 March 2018)) of the Universidade Federal do Pampa-São Gabriel (UNI-
PAMPA, São Gabriel, Brazil).

2.3. Morphology

Fungal macroscopic parameters (colony color, texture, reverse color, border type) and
colony diameters were observed in three different media. Colors follow the specification
proposed by the OACC [23]. All isolates were inoculated in the following media: PDA,
Sabouraud Agar (Merck® KGaA, Darmstadt, Germany), and Grass Extract Dextrose Agar
(GE). The Grass Extract Dextrose Agar was obtained by grinding 100 g of fresh leaves of
Deschampsia antarctica into 400 mL of distilled water. Then the extract was filtered, 20 mL
of its content was added to 100 mL of culture medium, with 10 g of dextrose and 12 g of agar
added (quantities for one liter). The final volume was sterilized at 121 ◦C for 20 min and
poured into sterile Petri dishes [24]. All media were incubated at 5, 10, 20, and 23.5 ± 1 ◦C.
The morphological and microscopic characteristics were evaluated from 15–30 days. Media
under the same conditions were used to determine the microscopic characters (hyphae,
conidiophores, chlamydospores and conidia), and measures were obtained by determining
the length/width of individual characters. All analyses are made under slides in light
microscopy under 100× oil immersion objective and imaging was performed on a Zeiss
Axio Imager A2 (Carl Zeiss, Oberkochen, Germany) equipped with Axiocam MRc system
(Carl Zeiss, Oberkochen, Germany).

https://sites.unipampa.edu.br/brherbariohbei/
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2.4. Molecular Analysis

Genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Hilden, Ger-
many), according to the manufacturer’s instructions. The internal transcribed spacer (ITS)
region was amplified with universal primers for ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [25]. For ribosomal large subunit (nLSU)
analysis, rDNA primers for NL1 (5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL4
(5′-GGTCCGTGTTTCAAGACGG-3′) were used [25,26]. The PCR procedure for ITS was
as follows: initial denaturation at 95 ◦C for 3 min, followed by 35 cycles at 94 ◦C for 40 s,
54 ◦C for 45 s, and 72 ◦C for 1 min, followed by a final extension at 72 ◦C for 10 min. In
addition, the PCR procedure for nLSU was as follows: initial denaturation at 95 ◦C for
5 min, followed by 30 cycles at 95 ◦C for 45 s, 57 ◦C for 45 s and 72 ◦C for 1 min, with a final
extension at 72 ◦C for 10 min. The PCR products were purified using the Wizard® Plus SV
Miniprep DNA Purification System (Promega, Madison, WI, USA), and sequenced using a
ABI-Prism 3500 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA) with the same
primers. The sequences obtained were adjusted using Bioedit software v. 7.0.5.3 [27], and
a consensus sequence was obtained using Lasergene SeqMan software (DNASTAR/Inc.,
Madison, WI, USA). Representative consensus sequences were deposited into GenBank
under the accession numbers: nLSU—MF628023, MF628257, MF628108, MF629819 and
ITS—MF629817, MF629818.

Molecular Identification Analysis

To identify species by rDNA sequencing based on ITS and nLSU, the consensus
sequences were aligned with sequences from related species retrieved from the NCBI
GenBank database using BLAST [28]. The closest matched sequences with query cover
and maximum identity ≥ 96% and ≥90% for ITS and LSU sequences, respectively, with
an e-value ≥ 0, were included in the phylogenetic analyses. The dataset was used as the
outgroup Preussia minima (Auersw.) Arx for ITS (MW090811.1) and nLSU (AY510392.1).
Sequences were aligned with ClustalW as implemented in MEGA v. 6.06 [29]. Prior to
phylogenetic analyses, ambiguous sequences at the start and end were trimmed to optimize
the alignment. Bayesian inference (BI) was employed to perform phylogenetic analyses of
the two aligned datasets. Bayesian analyses were conducted on the aligned data set using
BEAST v. 1.8.3 software [30]. The Hasegawa-Kishino-Yano model of equal base frequencies
was used for ITS and the Tamura-Nei model for nLSU dataset. In order to identify the
posterior probability tree a 10 million Markov Chains Monte Carlo (MCMC) was run,
and trees were sampled every 1000 generations. Tracer v1.6 [31] was used to evaluate
the effective population size (ESS > 100), and TreeAnnotator v1.8.3 (from the BEAST
package) [30] was used to condense the information from the trees sampled by MCMC. The
fungal classification followed Onofri et al. [2], MycoBank (https://www.mycobank.org
(accessed on 25 April 2018)) and the Index Fungorum (http://www.indexfungorum.org
(accessed on 25 April 2018)).

2.5. Growth Experiments

Mycelia disks of 4 mm diameter for the four isolates studied were re-cultured in the
same culture media from previous experiment. The plates were incubated at 5, 10, 20, and
23.5 ± 1 ◦C in the dark. Plates containing the mycelium for each of the species in each
culture medium and temperature tested were performed in triplicate [32].

https://www.mycobank.org
http://www.indexfungorum.org
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Radial mycelial growth was measured using a digital caliper from the back of the plate
in four-line directions at 45◦ to each other in the 2 sectors (0, 45, 90, 135, 180, 225, 270, 315◦)
at 24-h intervals for each measurement. This was the first reading performed after the 4th
day of incubation. The mean length was calculated for each treatment and isolated fungus
obtained from the leaves of D. antarctica. The last growth measure was performed when
the first isolate reached the border of one of the Petri dishes. This occurred thirteen days
after the first length measurement. For the UNIPAMPA 006 isolate, it was not possible to
perform statistical tests, since no growth was observed at 5, 10, and 23.5 ◦C, possibly due to
the methodology used for measurement.

The experiment was conducted in a completely randomized manner. The data were
analyzed by analysis of variance (ANOVA) [33], and the means were compared using
the Tukey test (p < 0.05) of probability, assuming that the data are normal. Verification of
the normality of the data was performed as proposed by Shapiro-Wilks [34–36]. When
the data were not normal, they were transformed using the Tukey’s Ladder of Powers
transformation method [37]. All statistical analyses were performed in the R computational
environment (R Core Team 2017) with RStudio software [38].

3. Results

Four distinct fungi were isolated directly from the leaf fragments of four individual
plants in Half Moon Island (246 leaves investigated), and seven from King George Island-
Keller Peninsula (111 leaves investigated). The leaves of D. antarctica revealed four fungi
morphospecies, as some thus isolated from both sample sites demonstrated the same
morphology. These isolates were labelled as follows: UNIPAMPA 004, UNIPAMPA 005,
UNIPAMPA 006 for Half Moon Island, and UNIPAMPA 007 for King George Island.

3.1. Macro- and Micro-Morphological Analyses

After detection of the preliminary genetic and morphological characteristics, we
identified the fungus UNIPAMPA 004 as belonging to the genus Pyrenophora, UNIPAMPA
005 to the genus Phaeosphaeria, UNIPAMPA 006 to the genus Neoascochyta, and UNIPAMPA
007 to the Alternaria sp. For the Alternaria isolate, we preferred not to continue with the
other analyses, as it was impossible to identify the species of the genus to which our isolate
belongs correctly. This species continues to be studied and will be the target of further
research in development in our group. However, we still left this OTU in the phylogenetic
trees to contribute to the positioning of the other species studied. The macro- and micro-
morphological characteristics of the other isolated fungi were evaluated on three media as
described below.

3.1.1. Pyrenophora cf. chaetomioides (UNIPAMPA 004)

The colonies grew at all temperatures, were cottony, and had white (oac909) or orange
(oac649) edges, with a grey centre [(oac906) to (oac761) or (oac739-oac746/oac764-oac765),
reverse darker -oac761)] (Figure 1). Hyphae transformed into chlamydospores (Figure 2k).
Chlamydospores were terminal at 10.5–22.2 × 3.8–10.9 µm in size or catenulate and larger
(15–29 × 9–24.5 µm in size) at 10 ◦C (Figure 2b–i). The pigment was evident at higher
temperatures and dissolved in 5% potassium hydroxide (KOH) (Figure 2a,j).

Examined material: ANTARCTICA, South Shetland Archipelago, Half Moon Island,
Austral Summer of 2014, A. B. Pereira (UNIPAMPA 004).
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Figure 1. Pyrenophora cf. chaetomioides colony morphology on three media (Potato Dextrose Agar—
PDA, Sabouraud Agar—SAB, Grass Extract Dextrose Agar—GE) and growth at different temperatures
(5 ◦C, 10 ◦C, 20 ◦C and 23.5 ◦C).
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Figure 2. Optical micrographs images of Pyrenophora cf. chaetomioides (a) Hyphae pigmented (under 
in KOH preparation); (b) Chlamydospores main shape at 5 °C in PDA; (c) Chlamydospores terminal 
at 5 °C in SAB; (d) Chlamydospores catenulate and larger at 10 °C in SAB; (e) Chlamydospores at 
10 °C in GE; (f) Chlamydospores catenulate at the terminal hyphae at 20 °C in GE; (g) Branched 
terminal hyphae found close to chlamydospores. (h,i) Globose chlamydospores at 23.5 °C in SAB; 
(j) Pigment in hyphae in PDA; (k) Hyphae turning into chlamydospores at 23.5 °C in SAB. 

3.1.2. Septoriella elongata (UNIPAMPA 005) 
Septoriella elongata demonstrated colonies with borders presenting a hyaline margin 

(oac857) of up to 1 cm large that was plain and complete, with a white center (oac909) 
surrounded by yellow (oac853) or grey (oac908) mycelium. The reverse had colors from 
oac908 to oac763-oac637 or oac794-oac763 and all growing colonies are cottony (Figure 3). 
There were also hyphae hyaline to melleous of 4–11 µm in diameter, with sinuose walls 
in the terminal (Figure 4d). There were also conidiophores and conidia at terminal 
branches, with immature long ellipsoid to cylindrical conidia like those of Stagonospora sp. 
(Figure 4a–c). A net-like hyphae resembling a nematode capture loop was found alone at 
10 °C in GE (Figure 4e). 

Figure 2. Optical micrographs images of Pyrenophora cf. chaetomioides (a) Hyphae pigmented (under
in KOH preparation); (b) Chlamydospores main shape at 5 ◦C in PDA; (c) Chlamydospores terminal
at 5 ◦C in SAB; (d) Chlamydospores catenulate and larger at 10 ◦C in SAB; (e) Chlamydospores at
10 ◦C in GE; (f) Chlamydospores catenulate at the terminal hyphae at 20 ◦C in GE; (g) Branched
terminal hyphae found close to chlamydospores. (h,i) Globose chlamydospores at 23.5 ◦C in SAB;
(j) Pigment in hyphae in PDA; (k) Hyphae turning into chlamydospores at 23.5 ◦C in SAB.

3.1.2. Septoriella elongata (UNIPAMPA 005)

Septoriella elongata demonstrated colonies with borders presenting a hyaline margin
(oac857) of up to 1 cm large that was plain and complete, with a white center (oac909) sur-
rounded by yellow (oac853) or grey (oac908) mycelium. The reverse had colors from oac908
to oac763-oac637 or oac794-oac763 and all growing colonies are cottony (Figure 3). There
were also hyphae hyaline to melleous of 4–11 µm in diameter, with sinuose walls in the
terminal (Figure 4d). There were also conidiophores and conidia at terminal branches, with
immature long ellipsoid to cylindrical conidia like those of Stagonospora sp. (Figure 4a–c).
A net-like hyphae resembling a nematode capture loop was found alone at 10 ◦C in GE
(Figure 4e).
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GE; (d) Sinuose hyphae at 5 °C in PDA; (e) Net-like structure similar to nematode capture hook. 

Figure 3. Septoriella elongata colony morphology on three media (Potato Dextrose Agar-PDA,
Sabouraud Agar-SAB, Grass Extract Dextrose Agar-GE) and growth at diferent temperatures (5 ◦C,
10 ◦C, 20 ◦C and 23.5 ◦C).
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GE; (d) Sinuose hyphae at 5 ◦C in PDA; (e) Net-like structure similar to nematode capture hook.
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Examined material: ANTARCTICA, South Shetland Archipelago, Half Moon Island,
Austral Summer of 2014, A. B. Pereira (UNIPAMPA 005).

3.1.3. Neoascochyta paspali (UNIPAMPA 006)

Growth was observed only at 20 ◦C in PDA and SAB culture media. Colonies generat-
ing cottony whitish tufts were formed through radially disposed hyphae, with gray and
white (oac866/oac903) and reverse (oac908). There were also hyphae of 2–8 µm in diameter.
Tufts were also identified in the mycelium in PDA (Figure 5a). The oldest mycelium had a
higher proportion of pigmented hyphae (Figure 5d) and rare chlamydospores, which were
6–15 × 5.5–8 µm in size (Figure 5b,c).
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Examined material: ANTARCTICA, South Shetland Archipelago, Half Moon Island,
Austral Summer of 2014, A. B. Pereira (UNIPAMPA 006).

3.1.4. Alternaria sp. (UNIPAMPA 007)

Alternaria sp. demonstrated colonies that were white to slightly pink in color (oac550)
or beige (oac859-oac866), but the reverse was densely pigmented from oac756-oac796 to
oac792. They were also plane to undulate and cottony (Figure 6). Primordia of coni-
diophores and conidia were formed at 5 ◦C in SAB culture medium, with intercalary
chlamydospores at 8–8.5× 4–5 µm at 5 ◦C in SAB (Figure 7a–c). Microsclerotium (Figure 7f)
developed in PDA. There were also several round to ellipsoid perithecia formed only at
5 and 10 ◦C in PDA (Figure 7d). They had hyaline transversely multisepted ascospores that
were 28–42.5 × 16.5–20.5 µm, with strangled septa that were immature (Figure 7e,i), with
asci at 10 ◦C in PDA (Figure 7j). The GE culture medium facilitated the development of
chlamydospores at all temperatures with 9.8–25 × 9–14 µm (Figure 7k–n). Similarly, this
proportioned the development of immature conidia with two to three transverse septa that
were 24 × 12 µm in size at 20 ◦C in GE (Figure 7o). Chlamydospores eventually formed
dense clusters, probably microsclerotia or perithecia at 23.5 ◦C in GE (Figure 7p), and few
conidia with transverse and one oblique septa with 31.5 × 7.8 µm (Figure 7q,r) were also
observed at 23.5 ◦C in GE.

Examined material: ANTARCTICA, South Shetland Archipelago, Half Moon Island,
Austral Summer of 2014, A. B. Pereira (UNIPAMPA 007).
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20 ◦C and 23.5 ◦C).
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Figure 7. Optical micrographs of Alternaria sp. (a,b) Primordia of conidiophores and conidia at 5 ◦C in
SAB; (c) Intercalarly chlamydospores at 5 ◦C in SAB; (d) Perithecia at 10 ◦C in PDA; (e–i) Ascospores
in PDA; (j) Asci in PDA; (k–n) Gigant chamydospores in GE; (o) Immature conidia at 20 ◦C in GE;
(p) Clamidospores forming microsclerotia or perithecia at 23.5 ◦C in GE; (q,r) Conidia at 23.5 ◦C
in GE.

3.2. Phylogenetic Analysis

To clarify the taxonomic position of the species, we performed a phylogenetic study
based on the sequences of the ITS and nLSU regions. The sequences obtained from fungal
cultures resulted in BLASTn hits for endophytic and pathogenic fungi. The isolates were
considered as belonging to the Pyrenophora, Phaeosphaeria, Neoascochyta and Alternaria genus
after a comparison of their nucleotide sequences revealed an identity above 90% for ITS
regions of rDNA and nLSU.

Detailed phylogenetic analysis of the ITS region of the UNIPAMPA 006 and UNI-
PAMPA 005 sequences with the nearest taxa obtained from GenBank showed that UNI-
PAMPA 006 forms a distinct cluster close to species Neoascochyta paspali (NR135970) and
Phoma paspali (KT309957), this last one being a basionym for N. paspali. In addition, the
ITS sequence of UNIPAMPA 005 was grouped with the Septoriella elongata (KM491546 as
Phaeospheria elongata) species.

The fungal isolates of UNIPAMPA 004 and UNIPAMPA 007 were not included in
the ITS phylogenetic analysis because the sequence presented low quality and a smaller
size than another homologous find in Genbank. Moreover, in the initial Blast survey,
these sequences showed an e-value > 0 in the BLASTn query, which could have generated
conflicts during the alignment with other sequences of fungi.
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The total number of sequences of the ITS rDNA region compared to sequences associ-
ated with Antarctic grass leaf fungi was 31. Based on our results, the Bayesian Inference
(Figure 8) tree in this dataset with two distinct clusters is supported (A and B). Cluster A
(Figure 8) is comprised of 16 endophytic/pathogenic fungi sequences. Within this cluster
were grouped sequences of fungi principally reported as endophytic. Of these taxa, all
are identified as belonging to the Phaeosphaeria genus. These species were close to the
UNIPAMPA 005 isolate. Septoriella elongata (KM491546) was collected from dead wood
in Italy [39,40]. The analysis of this clade is supported by a posterior probability of 0.99,
indicating that our species is Septoriella elongata.
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Figure 8. Phylogenetic tree showing the relationship among Deschampsia antarctica associated fungi
and other fungal species. The tree was constructed based on the rDNA sequence (ITS1-5.8S-ITS2)
fragment by using the Bayesian Evolutionary Analysis Sampling Trees. Scale bar reflect estimated
number of 1.0 changes per site. The robustness of each node is represented by the posterior probability
value obtained after 10,000,000 Monte Carlo Markov chains (MCMC). Sequences of type species (*).
The tree was rooted using Preussia minima as outgroup due to being outside the clade of interest.

The species that comprised cluster B (Figure 8) included 14 species of fungi that corre-
sponded to endophytes and pathogens. These species were close to the UNIPAMPA 006
isolate and the phytopathogenic fungi Neoascochyta paspali (NR135970). In addition, most of
the taxa are continuously present in the environment as saprobic soil organisms [41], Neoas-
cochyta europaea (KT389510), and Neoascochyta graminicola (KT389518) fungus associated
with plants and soil [42]. This clade was heavily supported (PP = 0.99).

Isolated UNIPAMPA 006 was inferred together with a fungus identified as Neoascochyta
paspali. The genus Neoascochyta is ubiquitous and species-rich, with species occurring on a
diverse range of substrates, including soil, air, plants, animals, and humans. The posterior
probability supports that the isolated belongs to the Neoacochyta paspali species complex.

A total of 47 sequences from the LSU region were compared to the sequences obtained
in this study (UNIPAMPA 004, UNIPAMPA 005, UNIPAMPA 006 and UNIPAMPA 007).
The sequences were the result of the BLASTn search. The trees generated by BI analysis
based on the nLSU dataset were similar in topology with the ITS region. The phylogenetic
tree inferred clearly showed the formation of four large clusters (A, B, C and D) (Figure 9).
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Figure 9. Phylogenetic tree showing the relationship among Deschampsia antarctica-associated fungi
and other fungal species. The tree was constructed based on the nLSU region fragment by using
the Bayesian Evolutionary Analysis Sampling Trees. Scale bar reflects the estimated number of
1.0 changes per site. The robustness of each node is represented by the posterior probability value
obtained after 10,000,000 Monte Carlo Markov chains (MCMC). Sequences of type species (*). The
tree was rooted using Preussia minima as outgroup due to being outside the clade of interest.

The first cluster (Figure 8A) included 11 species that are mostly comprised of pathogens.
Our samples groups with sequences close to Septoriella elongata (KM491548) [43]. This clade
was heavily supported (PP = 0.99) (Figure 9). These data corroborate the analysis carried
out for the ITS region. Cluster B comprises 11 species that corresponded to pathogens
and endophytes of Poaceae. The isolated UNIPAMPA 006 was grouped with sequences
of the Neoascochyta paspali (GU238124), which belongs to relevant phytopathogenic fungi,
including a series of pathogens with quarantine status [44] (Figure 8). Although most taxa
are continuously present in the environment as saprobic soil organisms, many species
switch to a pathogenic lifestyle when a suitable host is encountered [41]. This clade was
heavily supported (PP = 0.99). These data corroborate the analysis carried out for the
ITS region. Another 13 species were grouped at cluster C. These species were close to
the UNIPAMPA 007 isolate. The sequence of the isolated fungus is related to Alternaria
chlamydospora (KC584264) which is known as a severe plant pathogen that cause significant
losses on a wide range of crops [45] and Alternaria oregonensis (KC584292). This clade was
hardly supported (PP = 0.48). The genetic distances obtained do not allow us to ascribe
our samples to any of the analyzed species of Alternaria mentioned above, suggesting
that further analysis of a new species is necessary to the establish a taxonomically valid
description for this isolate. The last cluster (Figure 9, group D) included 12 species of
fungi classified as endophytes and pathogens (Figure 9). Our isolate grouped closer to
Pyrenophora chaetomioides (JN940075) which was isolated mainly from the Poaceae species.
This finding has posterior probability support (0.63). It is insufficient to consider our sample
as belonging to this species, so we treated it as Pyrenophora cf. chaetomioides because we
do not have sufficient morphological and molecular evidence for decisive identification.
For this reason of the indefinite taxa, no result or discussion of this isolate is presented
here. Complementary molecular analyses are being performed, such as whole genomic
sequencing, and marks on the effect of temperature on this isolate will be presented in due
course when the authors are confident of the taxonomic determination of this isolate.
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3.3. Effect of Temperature on Growth

Of the four isolates selected for the present study, only Neoascochyta paspali did not
respond to in vitro growth assays. The samples for this isolate did not develop enough
biomass for the measurements, so we decided to exclude it from the analyzes so as not to
harm the rest of the tests. For the other isolates, the results are described below:

3.3.1. Pyrenophora cf. chaetomioides

The mean radial growth of Pyrenophora cf. chaetomioides in SAB medium at 5 ◦C was
the lowest among the three media tested (mean = 0.165 mm). The other two media showed
a higher growth in this same temperature, with averages of 0.905 mm and 0.537 mm for
PDA and GE, respectively. The statistical test indicated a significant difference between
these averages at this temperature. Furthermore, GE was identified as the better culture
medium for the faster growing of this isolate at 20 ◦C, since it showed an average growth
of 2.361 mm. At 23.5 ◦C, the fungus presented a lower growth in the three media (mean
PDA = 0.419 mm, mean SAB = 0.281 mm, and mean GE = 0.703 mm), indicating that this
species is more sensitive at this temperature (Figure 10). The isolate with the selected
culture medium (GE), at all temperatures tested, demonstrated significant differences
between temperatures (Table 1). The temperature with the highest mycelial growth was
20 ◦C; considering this criterion, its mean differed statistically from other temperatures.
However, the other three temperatures showed no significant differences (Table 1) in their
average growth for the GE medium.
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Figure 10. Boxplot of mycelial growth of the isolate Pyrenophora cf. chaetomioides for the four
temperatures studied. Boxplots with the same letter (lowercase), at the same temperature, do not
differ statistically from each other by the Tukey test at 5% confidence. A = PDA, B = SAB and C = GE.
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Table 1. Radial mycelial growth for fungi isolated from Deschampsia antarctica leaves in PDA medium
for Alternaria sp. and Phaeosphaeria sp, and in GE medium for Pyrenophora sp. *.

Treatments Septoriella elongata Pyrenophora cf.
chaetomioides

5 ◦C 1.111 c 0.537 c

10 ◦C 2.295 a 0.989 b

20 ◦C 1.642 b 2.361 a

23.5 ◦C - 0.704 bc

* Different letters in the columns differ from each other values of significance levels in the Tukey test (α = 0.05).

3.3.2. Septoriella elongata

In the in vitro experiment, at a temperature of 23.5 ◦C, no growth was identified for
the Septoriella elongata isolate. No significant differences were detected in the average
growth of the colonies of the isolate (Figure 11) between the different culture media at
temperatures 5 and 10 ◦C. The isolate at 20 ◦C showed significant differences between the
media used, and the PDA medium demonstrated the highest growth. Samples of the isolate
in PDA medium showed the highest mycelial growth at 10 ◦C, but statistically there were
no significant differences between the lowest temperatures tested in the present study. The
analysis of the ideal culture medium (PDA) for this species between different temperatures
resulted in a significant difference (Table 1). The temperature for the selected medium with
the highest growth was 10 ◦C (mean = 2.295 mm), followed by 20 ◦C (mean = 1.642 mm),
and the lowest growth was observed at 5 ◦C (mean = 1.111 mm).
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Figure 11. Boxplot of mycelial growth of the isolate Septoriella elongata for the four temperatures
studied. Boxplots with the same letter (lowercase), at the same temperature, do not differ statistically
from each other by the Tukey test at 5% confidence. A = PDA, B = SAB and C = GE.

3.3.3. Alternaria sp.

After 13 days of evaluation of the radial mycelial growth, and from the analysis of
the Tukey test and ANOVA at a 5% confidence level, it was observed that the mycelial
growth did not differ when this isolate was kept at 5 ◦C in all culture media studied (PDA,
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SAB, and GE). However, for the other temperatures (10, 20 and 23.5 ◦C), significant growth
differences were observed between the three culture media (Figure 12). At 20 ◦C, the
isolates of Alternaria sp. presented the highest growth (mean = 1432 mm), followed by
a temperature of 23.5 ◦C (mean = 1.325 mm) and 10 ◦C (mean = 0.823 mm), all in the
middle of the PDA culture (Figure 12). Therefore, this medium was considered the best for
determining the ideal growth temperature of this fungus isolate. At lower temperatures,
the isolate maintained its growth with the formation of reproductive structures, indicating
that it is a psychrophilic fungus (Figure 7a–j). From the individual analysis of the PDA
culture medium, considering the four temperatures studied, there were no significant
differences between temperatures of 20 and 23.5 ◦C (Table 1).
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4. Discussion

The major group of fungal endophytes in plants is represented by species of Ascomy-
cota, which was confirmed in this study. The genera found are also widely distributed [46].

Previous studies have revealed a diversity of endophytic fungal communities associ-
ated with plants living in tropical, temperate, and boreal ecosystems, and their frequency
seems to decrease in cold regions [47]. Saikkonenet al. [48] demonstrated a low incidence
of endophytes from Deschampsia flexuosa (L.) Trin. and Deschampsia cespitosa (L.) P. Beauv. in
the cold regions of Finland. Rosa et al. [14] isolated 18 fungi as endophytes from 273 leaf
fragments of the Antarctic hairgrass resulting in 18 species. Our results also point to a
small diversity of fungi associated with the D. antarctica leaf (four). However, our sampling
effort was limited to two single islands in the Maritime Antarctic. This may reflect low
isolated diversity since endophytic fungi can be restricted by geography but not by host [49].
Another possibility is that species diversity may vary with environmental factors at sample
sites, but further investigation is required to confirm this.

One of the fungal genera reported in D. antarctica leaves is Phaeosphaeria, which is
known as a pathogen that causes leaf spots on grasses and some other monocots. Den-
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nis [50] was the first to report species of this genus from areas near Antarctica (South
Georgia –sub-Antarctic Island). Some species are very specialized while others have a
large host spectrum [51]. Phaeosphaeria is distributed over all South, Central, and North
America as well as Africa and Asia [52,53]. The most related species to the Phaeosphaeria
isolate identified in this study are Phaeospharia elongata (Septoriella elongata), associated with
terrestrial or near freshwater grasses [43]. Some species from this genus were replaced with
other genera recently [54], for this reason we prefer to use Septoriella elongata in the present
study. Putzke and Pereira [4] described Phaeosphaeria deschampsii in Antarctica as a new
species, showing that this genus is also formed by several unknown species in the area and
associated with Antarctic hair-grass.

Phaeosphaeria/Septoriella are parasites found in many grass cultures. The species are
usually very specialized and can cause deadly diseases. Some species have a wide range of
hosts, mostly among Poaceae and other monocots (Cyperaceae, Juncaceae, etc.), as well
as Lycopodium and Equisetum [55]. The anamorph often belongs to species of the genus
Stagonospora. These fungi normally grow in leaves or floral parts of Poaceae [56]. Our
isolate Septoriella elongata is an anamorph of Stagonospora characterized by its solitary and
hyaline cylindric conidia, and plane margins in PDA. The aerial mycelia are scarce, with a
cream color at the beginning that turns pallid to olivaceous gray and then whitish with a
dark reverse [57,58], such as the UNIPAMPA 005 isolate.

The genus Phaeosphaeria is known to present pathogenic and endophytic plant species.
In addition, this genus presents a generalized distribution in grain crop areas [59,60].
According to Jankowiaket al. [61], species belonging to the genus Phaeosphaeria were isolated
from root fragments and cotyledons of Abies alba and incubated at temperatures of 22–25 ◦C.
Cervelattiet et al. [62] reported that the optimum temperature for Phaeosphaeria maydis
ranges from 12 to 22 ◦C. The UNIPAMPA 005 isolate presented characteristics similar to
those observed in the previous study, growing at temperatures of 5, 10, and 20 ◦C, with the
highest growth in 10 ◦C of all the media used (BDA, SAB and GE).

The anamorphic genus Phoma includes many important pathogenic fungi [59].
Aveskamp et al. [45] isolated Phoma paspali (Neoascochyta paspali) from the Paspalum notatum
grass. Approximately 50% of Phoma species, redescribed by Boerema [63], were recognized
as relevant phytopathogens. The morphologic characteristics of this fungus in PDA include
regular margins with hyaline and white mycelia and colonies presenting hyaline to white
radial spherical tufts that were densely clustered at the top, and later changed color to
gray [64]. These results agree with our study. Unicellular dark brown to olivaceous terminal
chlamydospores in aerial erect hyphae were described in Boerema et al. [63], which also
correlates with the isolated UNIPAMPA 006 identified in this study. Phylogenetic and
morphological analyses demonstrated that our isolate was Neoascochyta paspali, with a
posterior probability of 0.99.

The genus Neoascochyta is one of the largest fungal genera, with more than 3000 species
described. Species belonging to the genus Neoascochyta are often encountered as plant
pathogens (mostly causing leaf spots) and as endophytes that utilize various hosts (includ-
ing corn, citrus, and sorghum) [65]. The species most related to the UNIPAMPA 006 isolate
is Neoascochyta paspali (=Phoma paspali). This species has not previously been reported in
Antarctica and is considered an indigenous pathogen of grasses in Australia, New Zealand,
and Europe [41]. Zhang and Yao [66] detected 31 known fungal species, most of which were
originally reported in other habitats as endophytes in the leaves and stems of Arctic plants.
Phoma herbarum, for example, was a widespread saprotroph and pathogen of plants, and
has been found in diverse environments including Antarctica [67]. These results indicate
the presence of specific psychrophilic and psychrotrophic fungi in various habitats of cold
ecosystems. Furthermore, the wide distribution of these fungi suggests that they may be
capable of long-distance dispersal.

Pyrenophora ssp. are another plant pathogen described as graminicolous, causing
leaf spots in agronomically-important plants [68]. Pyrenophora antarctica was detected on
Kerguelen Island (sub-Antarctic) on Festuca antarctica grass [60]. The UNIPAMPA 004 isolate
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is related to Pyrenophora chaetomioides, a specialized pathogen infecting various species of
oats (Avena spp.) and some grasses [69]. Onofri et al. [2] reported no species of this genus
to Antarctica as this was the first reference to the area.

The genus Pyrenophora is responsible for helminthosporiose leaf blight in wheat and
barley, which causes a disease with great economic importance. These fungi can survive as
mycelium in seed endosperms including during water stress, thus colonizing the radicular
system since it is activated during seed germination [70]. As described by Farias et al. [67]
and Benslimane et al. [71], this genus presents a significant range in conidia dimensions,
including being formed directly from chlamydospores. The UNIPAMPA 004 isolated
presented only rectangular to globose chlamydospores, terminal or intercalary, which
makes microscopical identification impossible since no conidia was observed.

According to Ruisi et al. [17], geographic isolation, combined with environmental
stress, make Antarctica an ideal location to research new species of endemic fungi. Endo-
phytic fungi in relatively extreme environments as well as phylogenetically distinct plant
strains are promising sources for discovering undescribed species, which is important in
understanding fungal diversity [47].

The use of macro- and microscopic characters of anamorphic cultures usually does not
offer enough information for taxonomic identification [72,73]. The UNIPAMPA 007 isolate
exhibits morphological characteristics very close to those in anamorphic stage. The mor-
phology that agrees with the teleomorph are the hyaline spores of the genus Pleospora [74,75].
This isolate presented characteristics close to those described by Grum-Grzhimaylo et al. [76],
such as the development of narrow conidia and terminal or intercalary chlamydospores.

Studies using plant extracts as culture medium have been carried out with the objective
of verifying the development of morphological structures. The genus Pyrenophora is mainly
characterized as plant pathogens, particularly of Poaceae. Borba et al. [24] demonstrated
that the temperature for a better mycelial development for this genus in culture medium
supplemented with grass extract is around 25 ± 1 ◦C. Our study showed that in the GE
culture medium UNIPAMPA 004 grew better, and shows the highest mycelial growth in
temperatures of 20 ◦C. Linhares et al. [77] demonstrated that 22 ◦C was the best incubation
temperature for pathogens of the genus Pyrenophora. Khouri et al. [78] evaluated the effect
of grass extracts in Ascomycota growth and concluded that Cynodon dactylon (Poaceae) and
Digitaria decumbens (Poaceae) grass promoted better fungal growth. GE was supplemented
with D. antarctica leaves, demonstrating greater mycelial growth at temperatures of 20 and
23.5 ◦C compared to other media. In addition, preference for plant species may be related
to the nutritional requirement of the fungus [77,78]. According to Reis [79] species of this
genus can be inoculated in PDA culture medium or supplemented with plant extracts, as
these can provide carbon and sugar for their development [80].

The results of growth tests at different temperatures suggest that the fungi associ-
ated with Deschampsia antarctica in the Half Moon and King George Islands can grow at
temperatures of 10 and 20 ◦C. Tosi et al. [81] demonstrated that most of the fungi isolated
from mosses in Victoria Land could grow at temperatures ≤5 ◦C but exhibited optimum
growth between 10 and 24 ◦C. Most endophytic fungi isolated from Antarctic mosses are
also psychrotrophic and psychrophilic [32]. In addition, fungi may exhibit morphological
adaptations, an example being the predominance of non-sporogenous mycelia at low tem-
peratures. These physiological and morphological mechanisms were reported for fungi
present in Antarctica as well in other environments [17].

Based on the observations of Newsham et al. [82], future warming in Antarctica will
lead to increases in fungal populations, and this could have negative consequences on plant
productivity, in the case of these endophytic fungi spread in warmer environments finding
non-responsive plants. These data agree with our study, considering that the Pyrenophora
cf. chaetomioides isolate showed higher mycelial growth at 20 ◦C, and Septoriella elongata at
10 ◦C.



Life 2022, 12, 1501 18 of 21

5. Conclusions

The Antarctic continent has unique environmental conditions that allow the isola-
tion and identification of endemic and new species of fungi. Applying molecular and
morphological approaches to the fungi isolated from Deschampsia antarctica we identified
endophytic/pathogenic fungi Septoriella elongata, Pyrenophora cf. chaetomioides Alternaria sp.
and Neoascochyta paspali relating those species to cold environment and classifying them
as psychrophilic organisms. The study of such a group of species is very interesting since
they could elucidate issues related to environmental changes and those associated with
communities of antarctic plants.
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