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Hepatocellular carcinoma (HCC) is the seventh most common malignancy and the second most common cause of cancer-related
deaths. Tumor mutational load, genomic instability, and tumor-infiltrating lymphocytes were associated with DNA damage
response and repair gene changes. The goal of this study is to estimate the chances of patients with HCC surviving their
disease by constructing a DNA damage repair- (DDR-) related gene profile. The International Cancer Genome Consortium
(ICGC) and The Cancer Genome Atlas (TCGA) provided us with the mRNA expression matrix as well as clinical information
relevant to HCC patients. Using Cox regression and LASSO analysis, DEGs strongly related to general survival were discovered
in the differentially expressed gene (DEG) study. In order to assess the model’s accuracy, Kaplan-Meier (KM) and receiver
operating characteristic (ROC) were used. In order to compute the immune cell infiltration score and immune associated
pathway activity, a single-sample gene set enrichment analysis was performed. A three-gene signature (CDC20, TTK, and
CENPA) was created using stability selection and LASSO COX regression. In comparison to the low-risk group, the prognosis
for the high-risk group was surprisingly poor. In the ICGC datasets, the predictive characteristic was confirmed. A receiver
operating characteristic (ROC) curve was calculated for each cohort. The risk mark for HCC patients is a reliable predictor
according to multivariate Cox regression analysis. According to ssGSEA, this signature was highly correlated with the
immunological state of HCC patients. There was a significant correlation between the expression levels of prognostic genes and
cancer cells’ susceptibility to antitumor therapies. Overall, a distinct gene profile associated with DDR was identified, and this
pattern may be able to predict HCC patients’ long-term survival, immune milieu, and chemotherapeutic response.

1. Introduction

Hepatocellular carcinoma (HCC) remains one of the most
aggressive solid malignancies throughout the world, and
fatty liver, alcoholic liver, and hepatitis B and C infections
are the three most significant risk factors for HCC [1, 2].
The incidence of HCC is highest in underdeveloped
nations, but chronic hepatitis C virus infection, which
causes liver cirrhosis, is also increasing in wealthy nations
[3, 4]. Researchers have been investigating the molecular
pathways underlying the pathogenesis of hepatocellular
carcinoma for several decades [5]. Gene mutations, epige-
netic changes, and dysregulation of coding or noncoding

genes were found to influence HCC growth [6, 7].
Although we have made great progresses in integrating
treatment plans for HCC and our understanding of its epi-
demiology, etiology, biology, diagnostics, and therapy, the
long-term prognosis of HCC patients remains unfavorable
[8, 9]. Metastatic illness, in which tumor cells invade
nearby tissues and organs and spread cancer throughout
the body, is responsible for the vast majority of cancer-
related deaths. Therefore, identifying molecular markers
for early diagnosis, survival prediction, and recurrence
monitoring of HCC is very important. In this way, patient
categorization can be improved, and medical intervention
can be more effective.
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All biological activities result in DNA damage because
DNA damage repair keeps the genome stable and intact
[10]. Several chronic illnesses, including cancer, are charac-
terized by genomic instability. The integrity of DNA is of
utmost importance in this respect, as it may prevent geno-
mic instability [11]. In spite of the relatively low frequency
of DNA damage, it should be repaired as soon as possible
to demonstrate the accurate transmission of genetic infor-
mation [12, 13]. Inability of the DDR to repair the following
endogenous and external insults would lead to (1) a future
malignant transformation, (2) the emergence of cancer,
and (3) further deterioration of the DNA repair system
[14]. The DDR mechanism can be modified during tumor
formation or during therapy-induced tumor evolution to
provide tumor clones with new growth abilities when they
have lost genomic integrity and are outgrowing their original
hosts [15, 16]. Cancer cells may also be more resistant to
chemotherapy if DDR genes are expressed differently. Ovar-

ian and prostate cancers may benefit from therapeutic tar-
geting of DDR-related genes [17, 18]. Numerous studies
have shown that the numerous DDR gene polymorphisms
together affect the chance of developing HCC [19, 20]. In
the wake of immunotherapy, researchers are placing a
renewed emphasis on DDR pathways, the modifications of
which are associated with hereditary traits, such as elevated
TMB, caused by the accumulation of certain uncorrected
DNA damage [21, 22]. DDR-related genes are linked to a
poor prognosis for HCC, but the evidence is limited.

Clinical data and the expressing pattern of mRNAs of
HCC patients were obtained from a publicly accessible data-
set. A predictive signature of differentially expressed genes
associated with DDR was then created in TCGA cohorts,
and its stability and dependability were tested in the ICGC
cohorts. Moreover, we examined the relationship between
immune infiltrates and the expressions of prognostic genes.
Furthermore, we examined the relationships between
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Figure 1: A list of possible DDR-related genes identified in the TCGA cohort. DEGs between nearby normal specimens and HCC specimens
are calculated using a Venn diagram (a). (b) Expression of nine genes that overlap between neighboring normal tissues and HCC tissues. (c)
Forest plots showing the associations between OS and the expression of 9 overlapping genes. (d) Correlation network of candidate genes.
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prognostic genes’ expressions and characteristics of cancer
that make it resistant to chemotherapy. New treatment plans
for HCC patients can be created based on our discoveries.

2. Materials and Methods

2.1. The Acquisition and Processing of Data. 374 HCC sam-
ples and 50 nontumor samples were presented on the UCSC
Xena website (https://xenabrowser.net/). The raw gene
microarray expression data of International Cancer Genome
Consortium (ICGC-LIRI-JP) and associated clinical infor-
mation were downloaded from ICGC. Furthermore, we
eliminated datasets without clinical data. An average value
was assigned to genes with two or more probe matches,
while probes with two or more matches were disqualified.

2.2. Identification of Variation in the Expression of DDR
Genes in HCC. Our statistical analysis and data visualization
were performed using the R programming language. A dif-
ferentially expressed gene from the DDR gene sets was also
analyzed using the limma program at a significance thresh-
old of p less than 0.05 and a fourfold change. “Pheatmap”
was used to display the heatmap graphic.

2.3. Identification of Survival-Related DDR Genes in HCC. A
single-variate Cox analysis was used to identify survival-
related DDR genes, and the Benjamini and Hochberg cor-
rection was applied to alter the p value. A p < 0:05 was con-
sidered statistically significant.

2.4. Creation and Validation of the DD-Related Prognostic
Signature for HCC. In order to reduce the dimensionality
of intersecting genes, we used a LASSO regression analysis.
DDR score-related predictive risk signatures were then opti-
mized by including both forward and backward compo-
nents. According to various fitting results, we also obtained
the minimal AIC value. In the end, three gene construction
models were achieved: CDC20, TTK, and CENPA. There

are three components to the risk score: ð0:0496 × CDC20Þ
+ ð0:244 × TTKÞ + ð0:245 × CENPAÞ. Each patient’s risk
score was calculated by the use of above algorithm. The per-
formance of the prognostic risk model was evaluated
between the training cohort and validation cohort by divid-
ing patients into low- and high-risk groups based on median
and ideal cut-off points. A survival study was conducted
using the Kaplan-Meier method. It was determined whether
the risk mark was accurate by using a ROC curve. The
survival-ROC R package was utilized to assess the t-ROC
prediction capability. We also assessed the relevance of each
parameter to overall survival (OS) using Cox proportional
hazard regression.

2.5. Microenvironmental and Immune Analysis of Tumors.
We examined the amount of stromal and immune cell infil-
tration in various tumor tissues according to the stromal
score and immune score. Spearman correlations were used
to investigate the relationship between the risk score and
those scores.

2.6. Chemotherapy Sensitivity Analysis. NCI-60, which con-
tains 60 distinct cancer cell lines from 9 different cancer
types, can be accessed through the CellMiner interface
(https://discover.nci.nih.gov/cellminer). A Pearson correla-
tion analysis was performed to determine whether the criti-
cal genes were related to medication sensitivity. A
correlation analysis was done on 263 FDA-approved and
clinically trialed medications to determine their therapeutic
impact.

2.7. Statistical Analysis. Analysis and installation of the R
packages mentioned above were performed using the R soft-
ware version 3.6.3 (The R Foundation for Statistical Com-
puting, 2020). There are two sides to every statistical test.
Statistical significance was defined as a p value less than
0.05. The chi-square test or Fisher exact test was used for
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Figure 2: Gene signatures associated with DDR were identified in TCGA datasets using LASSO regression analysis. (a) Choosing the
optimal LASSO model parameter (lambda). (b) LASSO coefficient profiles of the nine prognostic DDR genes.
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categorical variables, and the t-test or Wilcoxon rank-sum
test was used for continuous variables. Kaplan-Meier analy-
sis was also performed to determine OS. Log-rank tests were
used to compare survival rates between subgroups. With R’s
“survival” package, we conducted univariate and multivari-
ate Cox proportional hazard analyses. Hazard ratios (HR),
95% confidence intervals, and p values were calculated.

3. Results

3.1. Identification of Prognostic DDR-Related DEGs in HCC.
TCGA datasets were used to screen dysregulated DDR-
related DEGs between HCC cases and nontumor specimens.
A total of ten DDR-related genes were differentially
expressed between nontumorous tissues and tumorous tis-
sues. Using a univariate Cox analysis (Figure 1(a)), a link
was found between OS and 9 of them. A heatmap was used
to show the expression pattern of the nine prognostic DDR-

related DEGs (Figure 1(b)). As a prognostic marker, 9 DDR-
related genes were kept (Figure 1(c)), and the overall risk
ratio for each gene was calculated. As shown in
Figure 1(d), these genes are related. In addition, we per-
formed GO assays and found that the 151 survival-related
DDR-related genes were mainly associated with regulation
of cell cycle phase transition, nuclear division, chromosomal
region, nuclear chromosome, ATPase activity, and damaged
DNA binding (Figure S1A). Moreover, the results of KEGG
assays confirmed that the 151 survival-related DDR-related
genes were mainly associated with cell cycle, PI3K-AKT
pathway, DNA replication, p53 signaling pathway, and
platinum drug resistance (Figure S1B).

3.2. Development of a Prognostic Gene Signature Based on
DDR-Related Genes. Three DDR-related gene signatures
were screened using LASSO and Cox regression analyses in
order to predict OS in HCC patients from TCGA datasets:
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Figure 3: The performance of DDR-related gene signature in TCGA and ICGC datasets. Based on Kaplan-Meier analysis of the (a) TCGA
and (c) ICGC datasets, patients with lower risk ratings had greater overall survival than those with higher risk scores. ROC curves were used
to assess the prognostic signature’s accuracy in the (b) TCGA and (d) ICGC datasets.
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expression of CDC20 (∗0.0496), TTK (∗0.244), and CENPA
(∗0.245) (Figures 2(a) and 2(b)). Patients were divided
equally into low-risk and high-risk groups. Patients with
low-risk marks had a greater survival rate than those with
high-risk marks (p < 0:01, Figure 3(a)). According to time-
dependent ROC analysis, the predictive precision of the
DDR-related gene signature was 0.746 at 1 year, 0.712 at 2
years, and 0.670 at 3 years (Figure 3(b)). To examine the sta-
bility of the model built from the TCGA cohort, we divided
the patients in the ICGC cohort into high-risk or low-risk
groups based on the median value from the TCGA cohort.
According to Figure 3(c), patients with a high-risk score
had a shorter OS, similar to the results reported in the
TCGA cohort. AUCs for the 8-gene signature were 0.768,
0.776, and 0.789 at 1, 2, and 3 years (Figure 3(d)). In univar-
iate Cox analysis of TCGA cohorts, OS and risk markers
showed a strong correlation (Figure 4(a)). After controlling
for additional confounding variables, the risk score
remained an independent predictor of OS (Figure 4(b)). A
similar effect was also observed in the ICGC group
(Figures 4(c) and 4(d)).

3.3. Risk Score for the Prognostic Model and Clinical
Characteristics. The relationship between risk mark and clin-
ical features of HCC patients in the TCGA cohort revealed
no relationship between age and sex (Figures 5(a) and
5(b)). In contrast, HCC specimens with advanced grade
and clinical stage had a greater risk mark (Figures 5(c) and

5(d)). A similar outcome was found in the ICGC cohort as
well (Figures 5(e)–5(g)).

3.4. Immunity and Tumor Microenvironment Analysis. To
better understand the relationship between risk marks and
immunological state, we measured enrichment scores of var-
ious immune cell subpopulations, functions, and pathways.
High-risk groups had significantly more components of the
antigen presentation pathway in the TCGA cohort, such as
aDCs, macrophages, Tfh, Th1 cells, and MHC class I.
(Figures 6(a) and 6(b)). Figures 6(c) and 6(d) show that
the high-risk group had significantly more DCs, iDCs, mac-
rophages, and Th2 cells in ICGC datasets. The immune infil-
tration types C1 (wound healing), C2 (IFN-g dominant), C3
(inflammatory), C4 (lymphocyte deficient), C5 (immunolog-
ically silent), and C6 (tumor-inhibiting) have been identified
in malignancies (TGF-β dominant). The HCC C6 immune
subtype can be classified only in one patient sample, and
the C5 immune subtype cannot be classified in any patient
sample. Therefore, the immunological subtypes C5 and C6
were omitted. A correlation was discovered between the
two risk scores for HCC and immune infiltration, according
to the TCGA-HCC data. A strong correlation was found
between high-risk marks and C1 and a strong correlation
between low-risk marks and C3 (Figure 6(e)).

3.5. The Expression of Prognostic Genes and Chemotherapy
Response in Cancer Cells. Gene expression levels and
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Figure 4: The OS by Cox regression model’s univariate and multivariate evaluations. Datasets (a, b) from the TCGA. Datasets (c, d) from
the ICGC.
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medication sensitivity were examined in NCI-60 cell lines to
identify prognostic genes. Several genes were found to corre-
late with chemotherapy treatment sensitivity (Figure 7). For

example, the enhanced expression of CENPA was related to
increased treatment resistance to nelarabine, asparaginase,
dexamethasone decadron, cladribine, and hydroxyurea. In
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Figure 5: The risk score in different groups divided by clinical factors. TCGA cohort (a–d) and ICGC cohort (e, f): (a) age; (b) gender; (c)
grade; (d) clinical stage; (e–g) age, gender, and clinical stage.
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Figure 6: Continued.
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cancer cells, increased TTK expression was linked to
increased resistance to nelarabine, mithramycin, and actino-
mycin D, 6-thioguanine. CDC20 expression was also associ-
ated with higher treatment resistance to denileukin diftitox
Ontak, 6-thioguanine, paclitaxel, vinorelbine, irofulven,
and celecoxib.

4. Discussions

Cirrhosis is the leading cause of death in the liver, and HCC
is on the rise [23]. A multidisciplinary approach is required
to treat HCC, including hepatologists, surgeons, radiologists,
pathologists, and oncologists [24, 25]. Researchers have
studied the pathophysiology and epidemiology of HCC for
several years. The prognosis for HCC remains dismal,
despite substantial advances in surgical and medicinal treat-
ments. This illness develops because early-stage detection
methods are lacking [26, 27]. As well as being a very diverse
illness, median survival times vary greatly between individ-
uals of comparable TNM stages. In order to tailor preven-
tion and treatment for HCC, it will be crucial to find a
powerful prognostic marker that can dynamically reflect
the biological progression of the disease [28, 29]. The DDR
process affects treatment response and tumor development
in patients with HCC. To predict the prognosis of HCC, Li
et al. developed a seven-gene signature linked to DNA repair
[30]. In order to create a prediction model, genes involved in
DDR should be analyzed for their expression patterns.

By analyzing the expression profiles of DDR-related
genes in the TCGA database, this study examined the asso-
ciation between DDR-related genes and the prognosis of
HCC patients. DDR-related genes were not observed to be
differentially expressed between HCC specimens and nontu-
mor specimens at first. Based on the univariate Cox regres-
sion analysis, nine DDR-related genes were associated with
OS. We also developed the OS-related prediction model, a

standalone prognostic indicator for HCC patients, using
multivariate Cox regression to identify the three DDR-
related genes (CDC20, TTK, and CENPA). As high-
throughput sequencing technology and bioinformatics have
advanced rapidly, many signals have been developed for pre-
dicting prognosis in HCC patients. In contrast to our inves-
tigations, these investigations lacked independent validation
using external datasets. Additionally, they ignored conven-
tional clinical measures in favor of genetic biomarkers. The
study shows promise for therapeutic applications by inte-
grating clinical indicators with the autophagy-related signa-
ture to predict survival in HCC patients.

There is evidence that CDC20, TTK, and CENPA were
expressed and active in several types of cancer. Zhao et al.
demonstrated that knocking down CDC20 improved radia-
tion treatment of growth retardation in HepG2 after radia-
tion activated P53. HCC cells may undergo DNA damage,
DNA repair loss, G2/M arrest, and apoptosis when CDC20
is downregulated and radiation is applied [31]. According
to Yang et al., CDC20 expression in HCC and HCC cell lines
is associated with poor prognosis. Cell proliferation, migra-
tion, and invasion of HCC were inhibited by silencing
CDC20. Furthermore, silencing CDC20 increased E-
cadherin expression while decreasing N-cadherin, vimentin,
and Ki-67 expression [32]. A total of 77.63 percent (118/152)
of HCC tissues overexpressed TTK, according to Liu et al.
[33]. TTK expression and portal vein tumor thrombus pres-
ence showed a positive correlation. In HCC, TTK’s pro-
moter was demethylated, increasing its expression. Tests
in vitro found that TTK improved anchorage-independent
proliferation, cell migration, and anchorage independence.
Based on the results of the following study, TTK activated
the Akt/mTOR pathway in a p53-dependent manner. In sev-
eral studies, TTK has also been shown to be predictive of
HCC. A prior study found that tumor tissues exhibited a
marked increase in CENPA mRNA compared to
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Figure 6: A correlation between the tumor microenvironment and risk markers. The characteristics of 16 immune cells (a, c) and 13
immune-related activities (b, d) were illustrated in boxplots. (e) Comparison of risk scores across several subtypes of immune infiltration.
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neighboring tissues. In HCC patients, increased CENPA
mRNA was associated with elevated alpha-fetoprotein,
advanced TNM stage, larger tumor size, advanced AJCC
stage, and advanced pathology grade. CENPA, however,
was not examined in earlier research. There have been few
studies on the roles of CDC20, TTK, and CENPA. This
study validated earlier findings that CDC20, TTK, and
CENPA are upregulated in HCC. CDC20, TTK, and CENPA
prognostic models showed remarkable capability in predict-
ing clinical prognoses for patients with HCC.

According to new research, immune cells in the TME
play an important role in cancer development [34]. Among
the innate immune cells that can promote or support tumor
growth are macrophages, neutrophils, dendritic cells, innate
lymphoid cells, myeloid-derived suppressor cells, and natu-
ral killer cells [35, 36]. In the TME, cancer cells showed iron
ion aggregation during active proliferation. Controlling fer-
roptosis, therefore, may effectively eliminate tumor cells in
terms of iron homeostasis. Besides monitoring tumors and
tumor immunity, ferroptosis also has an important immu-
nological function. By combining an examination of distinct
immune infiltration densities in the tumor core and the
invasive margin, it has been shown that the prognosis of
BC patients with poor clinicopathological criteria may be
accurately predicted [37, 38]. According to a previous study,
the prognosis for patients with HCC is related to the pattern

of infiltrating immune cells in TME, and macrophage-
associated cytokines may be used to predict PD-L1 levels
in these patients [39]. Immune score models based on
immune cell infiltration can also predict the prognosis and
efficacy of chemotherapy treatment for HCC patients [40,
41]. A study of the prognostic value of the immune infiltra-
tion alteration is therefore worthwhile and practical. This
study demonstrated that high levels of aDCs, macrophages,
Tfh, Th1 cells, and MHC class I were detected in the high-
risk group, indicating disruption of immune regulation.
Due to this, it may be logical to believe that the antitumor
immunity of the high-risk group is weakening, which may
explain its poor prognosis.

The drug sensitivity of various anticancer medicines was
determined in the treatment of patients with HCC [42, 43].
Data from NCI-60 cell lines showed that higher expression
of several prognostic genes was associated with enhanced
drug resistance to numerous FDA-approved chemothera-
peutic medicines, including denileukin diftitox Ontak, pacli-
taxel, vinorelbine, and irofulven [44]. Few medicines were
also more sensitive to drugs due to a range of prognostic
genes. CENPA expression was associated with higher drug
resistance to nelarabine, asparaginase, dexamethasone Deca-
dron, cladribine, and hydroxyurea in cancer cells. In order to
overcome drug resistance, chemotherapeutic drugs must be
tested according to the molecular subtypes of patients.
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Figure 7: The scatter plot showed the relationship between prognostic gene expression and medication sensitivity.
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A range of studies were applied to construct prognostic
signatures and numerous verifications using bioinformatics
tools and statistical approaches, but there were still some
limitations. The samples were provided by a single database,
so they may be unrepresentative. Besides, no in vitro or
in vivo experiments were conducted. Our future study will
focus on the shortcomings listed above.

5. Conclusions

A DDR-related signature has been identified as an indepen-
dent predictor of HCC. A comprehensive analysis of the sig-
nature’s role in the immune landscape and therapies was
conducted. Informing the treatment of HCC with this hall-
mark could be powerful and promising.
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