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Abstract: PET ofβ-Amyloid plaques (Aβ) using [18F]florbetaben ([18F]FBB) and [18F]fluorodeoxyglucose
([18F]FDG) increasingly aid clinicians in early diagnosis of dementia, including Alzheimer’s disease
(AD), frontotemporal disease, dementia with Lewy bodies, and vascular dementia. The aim of this
retrospective analysis was to evaluate clinical relevance of [18F]FBB, [18F]FDG PET and complimen-
tary CSF measurements in patients with suspected dementia. In this study, 40 patients with clinically
suspected or history of dementia underwent (1) measurement of Aβ peptides, total tau, and p-tau
protein levels in the cerebrospinal fluid (CSF) compared with healthy controls (HC); (2) clinical and
neuropsychological assessment, which included Consortium to Establish a Registry for Alzheimer’s
Disease neuropsychological assessment battery (CERAD-NAB); (3) [18F]FBB and [18F]FDG PET
imaging within an average of 3 weeks. The subjects were within 15 days stratified using PET, CSF
measurements as HC, mild cognitive impaired (MCI) and dementia including Alzheimer´s dis-
ease. The predictive dementia-related cognitive decline values were supporting the measurements.
PET images were evaluated visually and quantitatively using standard uptake value ratios (SUVR).
Twenty-one (52.5%) subjects were amyloid-positive (Aβ+), with a median neocortical SUVR of 1.80
for AD versus 1.20 relative to the respective 19 (47.5 %) amyloid-negative (Aβ-) subjects. Moreover,
the [18F]FDG and [18F]FBB confirmed within a sub-group of 10 patients a good complimentary role
by correlation between amyloid pathology and brain glucose metabolism in 8 out of 10 subjects.
The results suggest the clinical relevance for [18F]FBB combined with [18F]FDG PET retention and
CFS measurements serving the management of our patients with dementia. Therefore, [18F]FBB
combined with [18F]FDG PET is a helpful tool for differential diagnosis, and supports the patients’
management as well as treatment.

Keywords: dementia; Alzheimer’s Disease; β-amyloid plaques; neurofibrillary tangles; MCI; positron
emission tomography (PET); diagnostic imaging; patient management

1. Introduction

Alzheimer’s Disease (AD) is the most common form of dementia and makes up about
two-thirds [1–3] of all neurodegenerative disorders (NDD), particularly in older people
(≥65 years) [4]. Other NDD are vascular dementia, mixed dementia, PD, Lewy body
dementia (LBD) or frontotemporal lobar degeneration (FTLD) [2]. Although these diseases
present distinctly different clinical and pathological features, many similar mechanisms are
involved in them [5].
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β-amyloid plaques (Aβ) and tau depositions are considered as pathological hallmarks
of AD and implicated in the disease pathogenesis [2,6,7]. According to the amyloid cascade
hypothesis, the pathogenesis of AD is as a result of a dysfunction in the production
and the secretion of the amyloid precursor protein (APP) over-producing two major Aβ

isoforms: Aβ1–42 and Aβ1–40, which subsequently misfold and aggregate to form β-amyloid
plaques [8,9].

Although no causal link between Aβ plaques deposition and dementia has been
established, a definitive diagnosis of AD still requires a histological Aβ plaques examination
of brain autopsy sample as a pathological hallmark of AD dementia [10–12]. Recent
studies suggested that cerebrospinal fluid (CSF) biomarkers, amyloid positron emission
tomography (PET), and [18F]FDG PET may help early diagnosis of AD [13,14].

The measurement of Aβ peptides and total tau protein levels in the CSF according the
European Medicines Agency (EMA) is a complementary usable tool in the diagnosis and
therapy monitoring of AD [15,16]. It is a less expensive assessment method, nonetheless
needs a careful lumbar puncture in order to reduce the risk of associated side effects and
discomfort [17–19].

PET has been widely used to help identifying either patients who were at risk of
developing AD, and also to monitor disease progression or both [20–22]. PET is a very
sensitive method, which aids to visualize, characterize, and quantify physiological activities
at molecular and cellular levels [23,24]. Hence, amyloid PET may show continued build-up
of amyloid deposition beyond the CSF plateau [25]. Therefore, it serves as an important
diagnostic tool to provide information on the spatial distribution of the AD pathology and
brain metabolism.

[18F]FBB also known as AV-1, BAY94-9172 or NeuraCeq was selected because no bind-
ing to postmortem cortex of subjects with FTLD or with tauopathies and α-synucleinopathies
was observed [26–28] and it was a suitable tracer for differential diagnosis in human stud-
ies [29]. [18F]FBB has shown good sensitivity and specificity for the detection of Aβ in
preclinical [30] and clinical setup [31]. Therefore, in this work FBB, FDG, and CSF investi-
gations were carried out to distinguish patients with FTLD from AD, and in a variety of
neurodegenerative diseases.

2. Results

The baseline characteristics of the 40 evaluated patients are summarized in Table 1.
The patients with an [18F]FBB+ and [18F]FBB− result were on average 71 years old. The
percentage of female patients was higher in the group with an [18F]FBB+ results (52.4% vs.
31.6%), whereas the mean MMSE was slightly lower in patient with [18F]FBB+ compared
to the group with [18F]FBB− result. Out of the 40 patients, CSF assessments were available
in 31 patients. In only 2 patients with positive [18F]FBB, Aβ1–42 in the CSF was reduced.
In 2 patients with negative [18F]FBB, Aβ1–42 in the CSF was also reduced. There were
13 patients with a non-pathological Aβ1–42 result who were nevertheless [18F]FBB positive.
Approximately, half of the patients in both groups had an increased, i.e., pathological, p-tau.
Only 4 (10.0%) patients were already treated with an antidementive medication prior to
the imaging.

Table 1. Patients’ characteristics.

[18F]FBB+
(N = 21)

[18F]FBB−
(N = 19)

Total
(N = 40)

Age, mean (SD) 71.0 (±9.79) 70.6 (±8.23) 70.8 (±8.97)

Sex, N (%)

Female 11 (52.4%) 6 (31.6%) 17 (42.5%)

Male 10 (47.6%) 13 (68.4%) 23 (57.5%)

MMSE *, mean (SD) 19.9 (±4.34) 22.8 (±5.01) 21.2 (±4.83)
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Table 1. Cont.

[18F]FBB+
(N = 21)

[18F]FBB−
(N = 19)

Total
(N = 40)

Aβ1–42, N (%)

Pathological 2 (9.5%) 2 (10.5%) 4 (10.0%)

Normal 13 (61.9%) 14 (73.7%) 27 (67.5%)

Missing 6 (28.6%) 3 (15.8%) 9 (22.5%)

Aβ Ratio, N (%)

Pathological 9 (42.9%) 11 (57.9%) 20 (50.0%)

Normal 6 (28.6%) 5 (26.3%) 11(27.5%)

Missing 6 (28.6%) 3(15.8%) 9 (22.5%)

Total tau, N (%)

Pathological 12 (57.1%) 5 (26.3%) 17 (42.5%)

Normal 3 (14.3%) 11 (57.9%) 14 (35.0%)

Missing 6 (28.6%) 3 (15.8%) 9 (22.5%)

p-tau, N (%)

Pathological 11 (52.4%) 8 (42.1%) 19 (47.5%)

Normal 4 (19.0) 8 (42.1%) 12 (30.0%)

Missing 6(28.6) 3(15.8%) 9(22.5%)

Treatment before beta-amyloid imaging

Antidementia 4 (19.0) 0 (0.0%) 4 (10.0%)

No Antidementia 17 (81.0) 19 (100.0%) 36 (90.0%)

* For 1 patient ([18F]FBB−) MMSE was missing.

The results as obtained from the logistic regression analysis are summarized in Table 2.

Table 2. Proportion of patients with Antidementia treatment after [18F]FBB result.

[18F]FBB+
N (%)

[18F]FBB−
N (%)

Antidementia 17 (81.0) 3 (15.8)

No antidementia 4 (19.0) 16 (84.2)

Sum 21 19

Odds ratio * 22.67

(95% confidence interval) * (4.96; 141.14)

p-value * 0.0002

* Based on a logistic regression model including [18F]FBB status as the only term in the model. Two-sided 95%
confidence interval was calculated applying profile-likelihood method.

For 17 of the 21 investigated patients (81.0%) with a positive [18F]FBB result, a therapy
with antidementive medication was recommended by the treating psychiatrist. Sixteen
(84.2%) patients with a negative [18F]FBB status were not treated with antidementive
medication. Only in 7 (17.5%) cases, the psychiatrist recommendation was discordant with
the [18F]FBB result: 3 (15.8%) patients received an antidementive treatment despite the
negative [18F]FBB status and 4 (19.0%) patients were not treated with an antidementia
although the [18F]FBB result showed an Aβ increase in the grey matter. The resulting odds
ratio of 22.7 (95% CI: 4.96–141.14) was considerably greater than 1.0 (exploratory p-value:
0.0002). Thus, the likelihood of being treated with an antidementia was estimated to be
nearly 23-fold higher in patients with a positive [18F]FBB status compared to patient with
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a negative [18F]FBB result. One should note that the broad confidence interval indicates
some uncertainty of the estimate due to the small sample size. Nevertheless, the observed
results confirm a trend that the physicians’ treatment recommendation was motivated by
the results obtained from the [18F]FBB assessment.

In 8 (20%) of 40 patients, therapy with an antidepressant medication was recom-
mended because of an unsure diagnosis (dementia vs. depression) as summarized in
Table 3. For 7 of these 8 patients, the [18F]FBB status was assessed as negative indicating
that the psychiatrist mostly based their decision on the [18F]FBB status.

Table 3. Proportion of patients with antidepressant treatment after [18F]FBB result.

N (%) of [18F]FBB+ N (%) of [18F]FBB− Total (%)

Antidepressant * 1 (4.8) 7 (36.8) 8 (20.0)
No antidepressant 20 (95.2) 12 (63.2) 32 (80.0)

Sum 21 19 40
* The antidepressants prescribed are duloxetine 60–120 mg, mirtazapine 15–45 mg, venlafaxine 150 mg, lithium
500 mg, escitalopram 10–20 mg, or citalopram 20 mg.

The [18F]FDG result was only available in 10 (25%) of the 40 evaluated patients.
Therefore, an analysis of the relation between [18F]FDG PET and [18F]FBB was very limited,
so that only frequencies were calculated as depicted in Table 4.

Table 4. [18F]FDG PET and [18F]FBB result.

[18F]FBB+ (N = 21) [18F]FBB− (N = 19) Total (N = 40)
N (%) N (%) N (%)

[18F]FDG+ 4 (19.0) 2 (10.5) 6 (15.0)
[18F]FDG− 0 (0.0) 4 (21.1) 4 (10.0)

No [18F]FDG PET
performed

17 (81.0) 13 (68.4) 30 (75.0)

3. Discussion

Dementia is a syndrome with specific diagnoses based on causal factors, neuropatho-
logical hallmarks, pattern of cognitive impairment, CSF measurements and imaging. EMA
guideline suggests for typical AD, the most common form of dementia, the CSF mea-
surements (decreased Aβ1–42 together with increased total tau or p-tau) following in-vivo
evidence of the pathology (increased tracer retention on Aβ-PET) [32]. FDG-PET has been
increasingly used in the clinical practice supporting the diagnosis of AD (at both mild
cognitive impairment—MCI—and early dementia stages), FTLD and its variants, as well
as VaD and pseudodepressive dementia.

3.1. Glucose Metabolism

Recently, the hypometabolism pattern of AD is well defined, and its negative predicted
value may help the differential diagnosis when comorbidities like vascular disease or
depression are present [33]. In this work, the pattern of hypometabolism in 6 cases of
[18F]FDG imaging showed indications of a dementia-typical pattern of AD. For 4 of these
6 cases, this pattern was supported by a positive [18F]FBB imaging. However, in the
remaining 2 patients, the amyloid imaging was negative, suggesting no Alzheimer-type
dementia. All 4 patients with negative [18F]FDG imaging also showed negative amyloid-
imaging. These results suggest an agreement between FDG and FBB in 8 out of 10 subjects.
In a similar setup, regional distribution of amyloid deposition (increased tracer retention by
[18F]FBB PET) and brain hypometabolism (measured by [18F]FDG) association was shown
using a longitudinal approach over 2-year follow-up of MCI and early AD patients [34].
Hence, it is reported that in early AD, decline in glucose metabolism is quantitatively related
to the amyloid deposition. This interrelationships between brain glucose metabolism and
amyloid PET is determined in our study.
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3.2. Amyloid PET Positivity/Negativity

Obviously, the aim of the diagnostic findings is to arrive at a clear binary result in the
sense of amyloid positive or amyloid negative imaging; for example, the determination
by nuclear medicine clinician that [18F]FBB PET scan shows the presence or absence
of Aβ plaque in pathologically relevant brain regions. The protocol for the qualitative
[18F]FBB that governs positivity or negativity must be standardized [35] and conform to
the supplier guideline.

The limitations of amyloid PET: (a) the causality of β-amyloid plaques cannot be
established solely with amyloid PET yet, and (b) non-AD patients (e.g., frequently by
dementia with Lewy bodies) can also show a positive amyloid PET.

CSF biomarkers assays along with multiple PET imaging approach have been inves-
tigated in research and clinical setups. This is because [18F]FDG PET in a clinical setting
can be diagnostically useful when a characteristic pattern of hypometabolism is detected
for specific dementia in addition to molecular brain imaging [36]; in particular, by positive
amyloid PET to distinguish AD from DLB or by negative amyloid PET for subtypes of
FTLD. CFS assessments of amyloid and tau peptides are widely used to screen populations
for AD pathology in clinical settings.

The impact of amyloid PET on the management of patients with suspected dementia is
an ongoing worldwide research effort in neuroimaging field to estimate and understand the
clinical relevance of AD biomarkers in the assessment of cognitive disorders [37]. Indeed,
evidences regarding the agreement among biomarkers, their effectiveness in the correct
diagnostic definition and the optimal strategy for combining biomarkers, is still scarce.
In this study, we have shown the complimentary effect of FDG PET to amyloid-PET, and
compared with CSF. The Aβ42/Aβ40 ratio may increase the diagnostic certainty on the
clinical thinking and on the decision making when added to the routine diagnostic workup.
The relationship between amyloid load and glucose metabolism of patients with AD were
in consistence with already published studies [35,38,39].

CSF results solely cannot help, whereas [18F]FBB appears to be a very promising tracer
for human amyloid PET imaging. The subjects underwent [18F]FDG imaging showed
complimentary diagnostic value to the FBB PET (Figure 1). The current CSF and FBB-PET
results of dementia patients lead to similar outcome from other groups (Table 5).
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Table 5. Demographic, CSF, and FBB-PET data of dementia patients.

Age, y, Median (SD) 68.6 (±10.4), Female 40 %

CSF t-tau, median (range) (in pg/mL) 876 (555–2200)
CSF p-tau, median (range) (in pg/mL) 121 (63–210)
CSF Aβ42, median (range) (in pg/mL) 501 (427–571)

Neocortical FBB-PET SUVR * (cerebellar), median (range) 1.80 (1.3–2.5)
FBB-PET SUVR (cerebellar), frontal lobe, median (range) 1.78 (1.3–2.6)
FBB-PET SUVR (cerebellar), parietal lobe, median (range) 1.85 (1.3–2.3)

FBB-PET SUVR (cerebellar), temporal lobe, median (range) 1.72 (1,2–2.2)
FBB-PET SUVR (cerebellar), occipital lobe, median (range) 1.83 (1.2–2.5)

* SUVR, standardized uptake value ratio.

4. Materials and Methods
4.1. Cohort

The human subjects were recruited from the outpatient at the Department of Psychi-
atry and Psychotherapy of Marburg University. They had been referred for diagnostic
evaluation of cognitive impairment and underwent a standardized diagnostic protocol in-
cluding a comprehensive neuropsychological testing, cerebral MRI or CT, CSF diagnostics,
and PET/CT procedure. Examinations were part of their routine check-up in the course
of the evaluation of the patients’ suspected neurodegenerative disorders. The retrospec-
tive and non-interventional design of this study made patient consent unnecessary. The
patients′ characteristics are shown in Table 1.

In this retrospective study, we examined forty-nine patients for a deferential diagnosis
of dementia syndrome to exclude or find indications of Alzheimer’s disease. Forty of
forty-nine patients were examined during their stay at our Psychiatry and Psychotherapy
clinic. We collected data on gender, age, time of examination, MMSI, CSF diagnostics
(Aβ1-42, tau proteins, p-tau, and Aβ ratio) and compared the working hypothesis before
and after amyloid imaging. The local Ethic Committee approved this retrospective study
(Ref.: ek_mr_yousefi_ 11_ 12_20).

4.2. Neuropsychological Diagnostics

Psychometric workup was based on the Consortium to Establish a Registry for AD
neuropsychological assessment battery (CERAD-NAB) [40], which includes the Mini-
Mental-State Examination (MMSE) [41]. Further parts of the CERAD-NAB are the evalua-
tions of verbal fluency (animal naming), Boston naming test (15 items), word list (learning,
delayed recall, and recognition), constructional praxis, trail making test, and phonematic
fluency. For all subtests of the CERAD-NAD, only German language versions were used.
The complete CERAD-NAB was available for 47 patients.

4.3. CSF Diagnostics

We performed the CSF diagnostics according to the German national S3-guidelines for
diagnostics and treatment of dementia (ZITAT: S3-Leitlinie Demenz). For lumbal punction,
all study subjects underwent a short in-patient treatment in the Department of Psychiatry
and Psychotherapy of Marburg University. The basic CSF diagnostic includes cell count,
estimation of total protein, lactate, glucose, and albumin values, as well as the analysis
of the cerebral immunoglobulin synthesis, and oligoclonal bands. Additionally, values of
total and phosphor-tau, Aβ1–42, and Aβ-ratio were measured. The basic CSF diagnostics
was performed in the Department of Neurology of Marburg University; the measurements
of the neurodegeneration parameters took place in the German National Reference Center
at Göttingen University.

Results of CSF diagnostics were available in thirty-one patients. In nine patients, no
CSF diagnostics were carried out because the puncture was too risky (systemic anticoagu-
lation) or it was rejected. The clinical information from the Department of Psychiatry was
available for the evaluation of the results.
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4.4. [18F]FBB and [18F]FDG-PET/CT

All subjects underwent [18F]FBB-PET/CT; additionally, [18F]FDG-PET/CT was per-
formed in eleven cases. Nine patients came from colleagues in private practice, and the
course of further therapy management could not be followed completely and was therefore
not considered. In all patients, an organic cause of the dementia syndrome was excluded
beforehand (hypothyroidism, vitamin deficiency, etc.).

[18F]FDG and [18F]FBB were received from Bad Berka Hospital Radiopharmacy and
Life Radiopharma f-con GmbH.

PET/CT protocols: The [18F]FBB (300 ± 14 MBq) was given as intravenous bolus
injection and then the indwelling venous cannula catheter was flushed with 0.9% sterile
saline solution. The optimal imaging window for [18F]FBB was from 90 to 110 min p.i.
using Siemens Software.

The [18F]FDG -PET/CT was recorded under standardized conditions with a fasting
time of 6 h before the start of the examination. The glucose level of all patients was deter-
mined by capillary blood test. The [18F]FDG -PET/CT was performed up to a maximum
blood sugar value of 150 mg/dL. The patients were screened from visual and acous-
tic stimuli for 30 min in a darkened room. To perform the cerebral [18F]FDG -PET/CT,
200 ± 10 MBq [18F]FDG were administered. Data acquisition was performed 60 min post
injection (p.i.) using a Siemens Biograph 6 TruePoint PET/CT scanner. For attenuation cor-
rection, a low-dose CT with 50 mAs was performed immediately before the acquisition. To
avoid motion artefacts, the head was placed in a holder and was fixed. The reconstruction
of the PET images was performed iteratively (Gaussian, 3 iterations/21subsets).

The image data were acquired according to the recommendations of national and
international guidelines (German Society for Nuclear Medicine and EANM [42–44]). After
the monitor was adjusted (to the cerebellum), the gray matter of the cortex (temporal,
frontal, posterior cingulum/precuneus, and parietal cortex) was examined visually. Each
of the brain regions, such as lateral temporal cortex, frontal cortex, posterior cingulate
cortex/precuneus, and parietal cortex have been visually assessed and scored according to
regional cortical tracer uptake (RCTU)/regional cortical tracer binding (RCTB) scoring and
brain b-amyloid plaque load (BAPL)scores using already published procedure [44]. BAPL
scores of “1” are classified as “b-amyloid-negative PET scan”, and BAPL scores of “2” and
“3” as “b-amyloid-positive PET scan”.

4.5. Statistical Analysis

The analysis of the data was done descriptively. Frequencies and percentages were
provided for categorical data, mean (SD) were calculated for continuous data. In addition,
the interrelationship between brain metabolism, measured by [18F]FBB retention, and the
clinical treatment of patients with symptoms of dementia was investigated by means of a
logistic regression model with the clinical treatment (antidementia yes/no) as dependent
variable and [18F]FBB result as the only independent variable in the model. The odds ratio
and its two-sided 95% confidence interval based on the profile-likelihood method were
calculated and the exploratory p-value obtained from the logistic regression analysis was
provided. The analysis was completed using R version 3.6.2 [45].

5. Conclusions

Several Aβ PET tracers have entered clinical investigation stage; three of them, as
aforementioned, have been approved by FDA and EMA and commercially available for
aiding nuclear medicine physicians. The brain hypometabolism detected by [18F]FDG
PET lacks pathological specificity but is very valuable for the detection and staging of
disease in case the routinely evaluated MMSE values and measured CSF biomarkers are not
conclusive enough. Therefore, using a multi-biomarker approach (e.g., CSF, FDG, and FBB)
is recommended to add further evidences and support the stratification of those patients
who may have unclear diagnoses.
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The use of these diagnostic measures in relation of PET has been explored considering
the patient management, and benefits based on resource consumption. A positive [18F]FBB
PET result that raises confidence in the diagnosis of patients with dementia, is likely to
result in earlier and appropriate use of specific medications for symptomatic treatment
of dementia especially AD, such as acetylcholinesterase inhibitors and memantine. This
diagnostic study showed a greater physician confidence in the diagnosis of or exclusion
of AD can result in better medication management. Further assessments of the interrela-
tionships between [18F]FBB-PET and [18F]FDG-PET using larger cohorts, including various
neurodegenerative diseases, are planned.
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