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Histone methylation is an epigenetic modification regulated by histone

methyltransferases, histone demethylases, and histone methylation reader

proteins that play important roles in the pathogenic mechanism of cancers.

However, the prognostic value of histone methylation in lung adenocarcinoma

(LUAD) remains unknown. Here, we found that LUAD cases could be divided

into 2 subtypes by the 144 histone methylation modification regulators

(HMMRs), with a significant difference in OS time. Ninety-five of the HMMRs

were identified as differentially expressed genes (DEGs) between normal and

tumor samples, and 13 of them were further discovered to be survival-related

genes (SRGs). By applying the least absolute shrinkage and selector operator

(LASSO) Cox regression, we constructed an 8-gene-based risk signature

according to the TCGA (training) cohort, and the risk score calculated by the

signature was proven to be an independent factor in both the training and

validation cohorts. We then discovered that the immune functions were

generally impaired in the high-risk groups defined by the HMMR signature

(especially for the DCs and immune check-point pathway). Functional analyses

showed that the DEGs between the low- and high-risk groups were related to

the cell cycle. The drug sensitivity analysis indicated that our risk model could

predict the sensitivity of commonly used drugs. Moreover, according to the

DEGs between the low- and high-risk groups, we discovered several new

compounds that showed potential therapeutic value for high-risk LUAD

patients. In conclusion, our study demonstrated that HMMRs were promising

predictors for the prognoses and drug therapeutic effects for LUAD patients.
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Introduction

Lung cancer is the most common malignancy in the world,

and its morbidity and mortality have increased rapidly over the

years. There are approximately 2million new cases of lung cancer

worldwide and 1.76 million deaths directly or indirectly due to

lung cancer per year, of which more than 70% are non-small cell

lung cancer (NSCLC) (Thai et al., 2021). Lung adenocarcinoma

(LUAD) gradually became the most common histological type,

accounting for approximately 50%–70% of NSCLCs (Kinoshita

et al., 2016). Despite advances in molecular biology and the

development of new drugs in recent years, the overall survival

rate of lung cancer remains poor, with a 5-year survival rate of

less than 15% (Siegel et al., 2020). The initial symptoms of LUAD

are often not obvious, and by the time the disease becomes

apparent, it is already in an advanced stage. LUAD is treated with

radiotherapy, chemotherapy, immune checkpoint inhibitor

therapy, and molecular targeted therapy, of which molecular

targeted therapy has achieved excellent results in recent years but

is prone to treatment resistance (Drosten and Barbacid, 2022;

Seguin et al., 2022). Lung cancer is often accompanied by

abnormal expression of multiple genes, and recent studies

have indicated that multigene-targeted treatments have

favorable therapeutic effects (Piñeiro-Yáñez et al., 2018). Thus,

an in-depth understanding of the molecular pathogenesis and

explorations of novel biological markers affecting lung cancer

prognosis for individualized treatment are of great significance to

improve the overall survival of LUAD patients.

Epigenetic modifications are the transcriptional regulation of

a gene without altering its DNA sequence, which are widely

involved in the occurrence and development of tumors and have

played important roles in the diagnosis, prognosis, and

therapeutic drug development of tumors in recent years

(Mohammad et al., 2019; Zhao et al., 2021). Histones are

proteins with highly conserved sequences, including H1, H3,

H2A, H2B, and H4, which are bound to DNA to form chromatin

in the nucleus, and their N-terminal amino acid residues can be

modified by methylation, acetylation, phosphorylation, ADP-

ribosylation, and ubiquitination (Millán-Zambrano et al., 2022).

Among them, histone methylation is a very important epigenetic

modification. It can regulate gene transcription and translation

by affecting the structure and relaxation of chromatin, which is

involved in various biological processes, such as heterochromatin

formation, X chromosome inactivation, gene imprinting, and

DNA damage repair (Bhat et al., 2021). Histone methylation

occurs at the lysine and arginine residue sites in the N-terminal

tail of H3 and H4 and is dynamically catalyzed by histone

methyltransferases (HMTs) and histone demethylases (HDMs)

(Huo et al., 2021). The histone lysine residues can be mono-, di-

or trimethylated, while the arginine residues can be mono-, di-

and asymmetrically demethylated (Greer and Shi, 2012). HMTs

can be classified into three functional enzyme families: SET

domain-containing lysine methyltransferases, the non-SET

domain DOT1L lysine methyltransferase PRDM family, and

the arginine methyltransferase PRMT family (Di Tullio et al.,

2022). Aberrant expression of histone methyltransferases is

detected in many human tumors, participating in cell cycle

regulation, epithelial-mesenchymal transition (EMT),

apoptosis, and other oncogenic mechanisms and has been

proven to be closely associated with the prognosis of various

malignancies (Singh, 2019). The methylation level of histones is

also regulated by HDMs, which can be divided into two major

families, namely, lysine-specific demethylases (LSD) and histone

demethylases containing the JMJC structural domain (He et al.,

2022). The LSD protein family consists of LSD1 and LSD2, which

can both catalyze H3 lysine 4 (H3K4me1/2) to form

nonmethylated lysine, in addition, LSD1 can be involved in

the demethylation of histones H3 lysine 9 (H3K9me1/2), and

these processes are closely related to the development of various

diseases (Shi and Tsukada, 2013). Other HDMs containing JMJC

structural domains, including KDM2 to 7, are iron- and 2-

ketoglutarate-dependent dioxygenases that can remove the

methylation of H3K9me1/2, H3K27me1/2 and

H4K20me1 associated with transcriptional silencing

(Markolovic et al., 2016; Yoo et al., 2020). Generally, HMTs

and HDMs dynamically maintain the balance of the histone

methylation level, whereas the abnormal methylation level

contributes to tumorigenesis. In addition, there is a large class

of proteins or structural domains called histone methylation

reader proteins (HMRPs) that specifically recognize different

types of histone modifications and play important roles in

epigenetic regulation mediated by methylation modifications

as adaptors (Cheng et al., 2020). Recently, numerous studies

have confirmed that HMT/HDM inhibitors can be used as

potential antitumor drugs with promising therapeutic effects;

however, there is not enough research on the reader domains.

Therefore, exploring the functions and prognostic values of

histone methylation modification regulators (HMMRs),

including the study of “readers”, is necessary for the

development of highly selective targeted drugs.

Based on the existing findings, we know that histone

methylation plays an important role in tumors; however, its

specific functions in LUAD have been less studied. For this

reason, we performed a study to comprehensively understand

the expression patterns of HMMRs in LUAD and explore the

prognostic value of these regulators, as well as to make targeted

therapies more feasible.

Materials and methods

Data collection

The transcriptome sequencing data, including 54 normal

lung tissues and 497 LUAD samples, and the corresponding

clinical information were obtained from The Cancer Genome
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Atlas (TCGA) database (downloaded at https://portal.gdc.cancer.

gov/). An external validation cohort containing the

transcriptome data and the clinical features of 398 LUAD

patients was downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/,

GSE72094). The RNA-seq data were all downloaded as

fragments per kilobase million (FPKM), and the “Scale”

function was used to normalize the expression data of each

gene before external validation. The histone methylation

modification regulators (HMMRs) were acquired from the

WERAM 1.0 database (Writers, Erasers, and Readers protein

of Histone Acetylation and Methylation system database; http://

weram.biocuckoo.org/) in December 2021, and after filtering out

duplicate genes, 144 of them were retained for further analysis.

Consensus clustering analysis

To explore whether there were connections between the

expression profiles of HMMRs and LUAD subtypes, we

employed the “Consensus Cluster Plus” package in

Bioconductor to classify the tumors in the TCGA cohort.

Kaplan–Meier survival analysis was used to compare the

survival status among tumor subtypes.

Identification of the differentially
expressed genes and survival-related
genes

We applied the “limma” R package to identify the

differentially expressed genes (DEGs) between tumor and

nontumor samples following the criteria of false discovery rate

(FDR) < 0.01. A volcano plot was established by employing the

“GEOquery,” “limma,” “ggplot2,” “ggrepel,” and “ggthemes” R

packages to show the expression levels of the HMMRs.

Combined with the survival information of patients in the

TCGA cohort, we evaluated the prognostic value of each HMMR,

and the survival-related genes (SRGs) were detected by the

univariate Cox regression model with p < 0.05 by using the

“survival” R package. A Venn diagram accomplished by applying

the “VennDiagram” R package was utilized to screen the

intersecting genes for further analysis. Spearman correlation

analysis was conducted by employing the “reshape2” R

package, while forest plots and violin plots were established by

the “forestplot” and “vioplot” R packages, respectively.

Construction and validation of a risk
model

To develop an HMMR-related risk gene signature, the TCGA

cohort was treated as the training set, and a GEO cohort

(GSE72094) was used as the external validation set. Those

intersecting genes were chosen for developing the prognostic

risk signature by applying the least absolute shrinkage and

selection operator (LASSO) Cox regression model, which was

involved in the “glmnet” R package. Following the minimum

criteria and simulating more than 1000 times, 8 genes with

nonzero coefficients were retained. Based on the coefficient of

each gene, the risk score was calculated by the following formula:

Risk Score = ∑8
i CiEi (C: coefficients, E: expression levels). In

terms of the risk score, patients were divided into low- and high-

risk subgroups, and to show the distinctions, we applied principal

component analysis (PCA) and t-distributed stochastic neighbor

embedding (t-SNE), which were performed by the “ggplot2” and

“Rtsne” R packages, respectively. To evaluate the sensitivity and

specificity of our risk model, we constructed a time-dependent

receiver operating characteristic curve (ROC) by applying the

“timeROC” R package. The risk scores of patients in the

validation cohort were obtained from the same formula, and

these patients were also classified into 2 subgroups to make

comparisons.

Prognostic value of the risk score

We next employed univariate and multivariable Cox regression

models conducted by the “survival” R package to assess the

prognostic value of the risk model. The clinical characteristics,

including age, sex, and tumor stage (I to IV), in combination

with the risk score, were included in the regression models.

These variables were then utilized to construct a nomogram with

the “survival” and “rms” R packages. In addition, we set up the

calibration curves (applying the “foreign” R package) to evaluate the

consistency between ideal and actual predicting outcomes

conducted by the regression model.

Immune status comparisons

Based on the molecular markers, we identified 16 types of

immune cells and 13 immune-related pathways, which are

provided in Supplementary Table S1. Single-sample gene set

enrichment analysis (ssGSEA), which was performed by the

“gsva” R package, was used to calculate the enrichment scores

of immune cells and to estimate the activity of immune-related

pathways between subgroups.

Functional enrichment analysis of
differentially expressed genes

The DEGs between the low- and high-risk subgroups were

identified by the criteria of |log2 FC|≥1 and FDR < 0.05. To better

understand the specific functions of the DEGs, we performed Gene
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Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses (utilizing the “cluster Profiler” R package).

Drug sensitivity analysis and cMap analysis

The drug sensitivity analysis was accomplished by the

“pRRophetic” R package. The pRRophetic algorithm

constructs a ridge regression model to predict drug

IC50 based on GDSC (Genomics of Drug Sensitivity in

Cancer) and gene expression profiles. The whole gene

expression profiles were compared to determine the

IC50 of common therapeutic drugs between the low- and

high-risk subgroups in the TCGA cohort. We used the

Connectivity Map (cMap) online tool (https://clue.io/) to

screen novel efficient drugs according to the particular gene

FIGURE 1
The graphical workflow maps of the study.
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expression patterns (up- and downregulated genes) in the

high-risk group. The connectivity score ranged from -100 to

100 and indicates the degree of correlation between a

compound and the gene expression patterns. Positive

connectivity scores demonstrate that the compounds

promote the gene expression patterns, while negative

scores indicate that the compounds suppress the gene

expression patterns.

Statistical analysis

The statistical analyses were all accomplished with R

software (version 4.1.1). When comparing the gene

expression levels, we applied Student’s t-test. The

categorical variables were compared by the Pearson chi-

square test. The Kaplan–Meier curve was applied to

compare the survival time and survival rates

between subgroups. Multivariable Cox regression models

were utilized to construct the predictive risk model in this

study.

The analysis process of this study is shown in Figure 1.

Results

Consensus clustering of histone
methylation modification regulators
identified 2 subtypes of lung
adenocarcinoma

To explore the association between the expression profile of

HMMRs and the prognosis of LUADpatients, we applied consensus

clustering analysis, which could provide an unbiased way to group

all LUAD patients (only 436 patients had complete clinical

information) based on the expression profiles of the

144 HMMRs. When increasing the clustering stability (k) from

2 to 9, we found that k = 2 seemed to be the optimal selection

according to the expression similarity of HMMRs (Figures 2A–D).

We then applied the Kaplan–Meier curve to compare the OS rate

between the 2 clusters (Ncluster1 = 183, Ncluster2 = 253), and a notably

lower survival possibility was found in patients classified into cluster

1 (p = 0.009, Figure 2E). Combining the clinical characteristics and

the expression profiles of HMMRs, we constructed heatmaps to

explore the discrepancies between the 2 clusters. We could acquire

from the heatmaps that patients in cluster 2 had longer survival

FIGURE 2
Tumor classification based on the HMMRs. (A)Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (B) The changes in the
area under the CDF curve for k = 2 to 9. (C) The tracking plot for k = 2 to 9. (D) The optimal consensus clustering matrix when k = 2; (E) The
Kaplan–Meier OS curves for the two clusters.
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times, higher survival rates, a larger number of women, earlier tumor

stages, and fewer tumor metastases (Supplementary Figure S1). The

details of the clinical features between the 2 clusters are included in

Supplementary Table S2.

Identification of the differentially
expressed genes among 144 histone
methylation modification regulators

The gene expression levels of the 144 HMMRs were compared

between 54 normal lung samples and 497 LUAD specimens in the

TCGA cohort, and the expression heatmaps are presented in

Figure 3A. We found that most of the HMMRs were enriched in

the tumor samples (Supplementary Table S3). Additionally, a

volcano plot was also applied to show the expression differences

(green plots: downregulated genes in tumors; red plots: upregulated

genes in tumors, Figure 3B). TheDEGswere screened out within the

criteria of FDR < 0.01, and a total of 95 DEGs were identified.

Exploration of the prognostic values of
these histone methylation modification
regulators

Univariate regression analysis was applied to evaluate the

prognostic values of the 144 HMMRs by combining the survival

information and the expression level of each gene. Following the

criteria of p < 0.05, 18 genes were screened out. Among them,

13 genes (SMNDC1,CBX5, SETDB2, PHF14, SGF29,UHRF1,ORC1,

PRDM16, CBX7, KDM1A, ZCWPW2, PHF19, KMT5A) were also

identified as DEGs between normal and tumor samples (Figure 4A),

and the Kaplan-Meier curve for each gene was presented in

Supplementary Figure S2. To investigate the association of the

13 key genes, we established a co-expression network according to

the mRNA level of each gene in the TCGA cohort (red: positive

correlation, blue: negative correlation, Figure 4B). We next utilized

the forest plot to show the hazard ratio (HR) and the 95% confidence

interval (95% CI) of the 13 hub genes (Figure 4C) while applying the

violin plot to display the differential expression of each gene between

normal and tumor tissues (Figure 4D). We confirmed that SETDB2

(HR: 0.773, 95%CI: 0.640–0.932), SGF29 (HR: 0.918, 95%CI:

0.860–0.979), PRDM16 (HR: 0.891, 95%CI: 0.807–0.983), CBX7

(HR: 0.906, 95%CI: 0.833–0.986), and ZCWPW2 (HR: 0.325, 95%

CI: 0.117–0.901) were protective genes, and they were all

downregulated in the tumor samples.

Development and validation of a
prognostic gene signature

We applied the least absolute shrinkage and selection operator

(LASSO) regression model based on the expression profiles of the

13 genes to construct our risk model. According to the optimum λ

FIGURE 3
Identification of the DEGs between normal and tumor samples. (A) Heatmap of the 144 HMMRs between normal (N) and tumor tissues (T); (B)
Volcano plot showing the DEGs (green dots: downregulated at least 2-fold in tumor tissues; red dots: upregulated at least 2-fold in tumor tissues).
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value (λmin = 0.0223, left dotted line; λ1se = 0.0989, right dotted line,

Figure 5A), an 8-gene-based risk signature was finally established, and

the coefficient of each gene was shown in Figure 5B. The risk score

was calculated by the following formula (gene names mean the

expression levels): risk score =

0.125*SMNDC1+0.107*CBX5+(−0.172)*SETDB2+0.073*PHF14+(0.

086)*SGF29+(−0.051)* PRDM16+(−0.030)* ZCWPW2+0.016*

PHF19. Based on the formula, the risk score of each patient was

determined and ranged from−0.990 to 1.342. Referring to themedian

risk score (−0.018), all patients in the training cohortwere divided into

low- and high-risk subgroups (Figure 5C). The distribution plot

revealed that patients in the high-risk group suffered lower

survival possibilities and shorter OS times (Figure 5D). Moreover,

we applied PCA and t-SNE analysis to show the discrepancy in gene

expression profiles, and the results showed clear separations between

the 2 subgroups (Figures 5E,F). The Kaplan–Meier curve showed

significantly lower survival rates and OS times in the high-risk

subgroup (p < 0.001, Figure 5G). The time-dependent receiver

operating characteristic (ROC) curve was applied to evaluate the

sensitivity and specificity of the predictive model, and we observed

that the area under the curve (AUC) was 0.688 for 1 year, 0.643 for

3 years, and 0.669 for 5 years (Figure 5H).

To clarify the relationships between the tumor subtypes and

risk subgroups, we compared the risk scores and the numbers of

high-risk patients between the 2 clusters. As it was shown in

Supplementary Figure S3, the risk scores and the numbers of

high-risk patient were much higher in cluster 1 than that in

cluster 2 tumor type (p < 0.0001).

TheGSE72094GEO cohort containing 398 LUADpatients with

complete clinical information was utilized as the external validation

set. The risk score of each patient was calculated by the risk score

formula, and according to the median risk score of the training

cohort, 398 patients in the validation cohort were divided into either

low-(N = 199) or high-risk (N = 199) groups (Figure 6A). We also

discovered that the number of deaths was larger in the high-risk

group (Figure 6B). Similarly, based on the gene expression profiles,

patients in the 2 subgroups werewell separated into two directions in

the PCA and t-SNE plots (Figures 6C,D). The Kaplan–Meier

analysis also indicated a significant difference in the survival time

between the two risk subgroups (p < 0.001, Figure 6E). Moreover,

the time-dependent ROC analysis showed that our risk model could

be a favorable predictor in the validation cohort, and the AUC was

0.675 for 1 year, 0.675 for 3 years, and 0.656 for 5 years (Figure 6F).

Independent prognostic value of the risk
model

To explore whether the risk model could independently

predict the prognosis of LUAD patients, we applied univariate

FIGURE 4
Characteristics of the 13 candidate genes. (A) Venn diagram showing the intersection genes between DEGs and SRGs. (B) Spearman correlation
analysis for the 13 genes (red, positive correlations; blue, negative correlations). (C) Forest plot showing the prognostic value of the 13 genes. (D)
Violin plot showing the expression levels of the 13 genes between normal (green) and tumor tissues (red).
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and multivariate Cox regression models for validation. The

clinical features (age, sex, and tumor stage) of each patient

were extracted and applied in regression models. In the

training cohort, we found that tumor stage and the risk score

were risk factors associated with poor prognosis in the univariate

regression model (Figure 7A). In the multivariate regression

model, patient age (HR: 1.020, 95% CI: 1.003–1.036, p =

0.018), tumor stage (HR: 1.573, 95% CI: 1.304–1.896, p <
0.001), and risk score (HR: 2.109, 95% CI: 1.558–2.855, p <
0.001) were identified as independent risk factors (Figure 7B).

Then, we constructed heatmaps to compare the differences in the

clinical features and the expression of the 8 key genes between the

low- and high-risk subgroups in the TCGA cohort, and we found

that the mRNA levels of the key genes, tumor stage (including T,

N, and M stages), sex, and survival status were quite different

between the 2 clusters (Figure 7C).

In the GEO cohort, the univariate analysis indicated that

sex, tumor stage, and risk score were risk factors (Figure 8A).

In the multivariate model, we found that sex (HR: 1.725, 95%

CI: 1.185–2.551, p = 0.004), tumor stage (HR: 1.781, 95% CI:

1.432–2.063, p < 0.001), and risk score (HR: 3.183, 95% CI:

1.892–5.356, p < 0.001) were also independent risk factors for

prognosis (Figure 8B). The heatmap revealed that the tumor

stage, survival status, and expression levels of the 8 genes

were quite different between the two risk subgroups

(Figure 8C).

Next, we combined all the clinical features and the risk score

to construct a predictive nomogram by applying the logistic

regression model. In the TCGA cohort, the 1-, 3-, and 5-year

survival rates could be well predicted (Figure 9A). We also

established a nomogram in the GEO cohort, which is shown

in Figure 9B. To validate the accuracies of the models, we

employed the calibration curve, and the results indicated that

our predictive models revealed high consistencies to ideal 5-year

survival rates in both TCGA and GEO cohorts (Figures 9C,D).

Comparison of immune cells and immune
activities between the low- and high-risk
groups

According to the classical marker proteins of immune cells

and the major genes participating in immune-related pathways,

we identified 16 types of immune cells and 13 immune-related

signaling pathways (Supplementary Table S1). We next

established a scoring system by employing ssGSEA to evaluate

the immune status among groups. In the TCGA cohort, most of

the immune cells were at lower infiltration levels in the high-risk

FIGURE 5
Construction of a risk model based on the TCGA cohort. (A) The cross-validation for tuning the parameter selection; (B) The LASSO regression
for the 13 candidate genes; (C) The distribution of risk scores for the patients; (D) Survival status for each patient (low-risk: left of the dotted line; high-
risk: right of the dotted line); (E) The PCA plot based on the risk groups; (F) The t-SNE analysis for the two risk groups; (G) The Kaplan–Meier curves to
show the survival possibilities between low- and high-risk group; (H) The time-dependent ROC curves for 1-, 3-, and 5-years.
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FIGURE 6
Validation of the prognostic value of the risk signature in an external GEO cohort. (A) The distribution of risk scores for each patient; (B) Survival
status for each individual (low-risk: left of the dotted line; high-risk: right of the dotted line); (C) The PCA plot for the two risk groups; (D) The t-SNE
analysis for the two risk groups; (E) The Kaplan–Meier curves to compare the OS time between the two risk groups; (F) The time-dependent ROC
curves for 1-, 3-, and 5-years.

FIGURE 7
The independent prognostic value of the risk score in the training cohort. (A) The forest plot for univariate analysis; (B) The forest plot for
multivariate analysis; (C) The heatmaps for the gene expression combined with clinical characteristics.
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FIGURE 8
The independent prognostic value of the risk score in the validation set. (A) The forest plot for univariate analysis; (B) The forest plot for
multivariate analysis; (C) The heatmaps for the gene expression combined with clinical characteristics.

FIGURE 9
Construction of the nomogram and the calibration curve. (A) The nomogram for the training cohort. (B) The nomogram for the validation
cohort. (C) The calibration curves for the model in the training set. (D) The calibration curves for the model in the validation set.
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subgroup, especially B cells, all types of dendritic cells (DCs),

mast cells, neutrophils, tumor-infiltrating lymphocytes (TILs),

and T helper cells (all p < 0.001, Figure 10A). In addition, we

discovered that immune-related signaling pathways were inactive

in the high-risk group (Figure 10B). Similarly, in the GEO cohort,

we also found that most of the immune cells were at lower levels

and that the activity of the immune-related signaling pathways

was impaired in the high-risk group (Figures 10C,D). Moreover,

we noticed that the activities of the immune checkpoint pathways

were decreased, indicating the confined antitumor effects of

immune checkpoint inhibitors (ICIs) in the high-risk subgroup.

GO and kyoto encyclopedia of genes and
genomes analyses of differentially
expressed genes between the low- and
high-risk groups

The “limma” R package was utilized to identify the DEGs

between the low- and high-risk subgroups by following the

criteria FDR < 0.05 and |log2FC | ≥ 1. Finally, 659 DEGs

between the subgroups in the TCGA cohort were screened

out, and among them, 343 genes were downregulated, while

316 were enriched in the high-risk group (Supplementary Table

S4). Functional enrichment analyses were then set up based on

these DEGs. The GO analysis showed that the DEGs mainly

participated in the procedures of mitosis (Figure 11A). Moreover,

the KEGG pathway analysis indicated that most of the DEGs

were involved in systemic lupus erythematosus, the cell cycle, and

neutrophil extracellular trap formation (Figure 11B). In the GEO

cohort, we also found that the DEGs were related to the main

steps of cell division by applying GO analysis (Figure 11C). The

results of the KEGG analysis demonstrated that the DEGs were

associated with neuroactive ligand–receptor interactions, the cell

cycle, and the cAMP signaling pathway (Figure 11D).

Accordingly, we can confirm that the DEGs between

subgroups divided by our risk signature were closely related to

the cell cycle.

Drug sensitivity analysis and identification
of promising therapeutic drugs for high-
risk patients

We explored the association between the risk model and the

efficacy of the commonly used drugs in patients with LUAD. We

listed 6 common chemotherapy drugs, including cisplatin,

docetaxel, etoposide, gemcitabine, paclitaxel, and vinorelbine.

Significant differences in the IC50 between the two risk groups

were discovered (Figures 12A–F), suggesting that our risk model

could be applied to predict the sensitivity of chemotherapy.

Gefitinib and erlotinib are both first-generation EGFR-TKIs;

however, there are still some controversies about the efficacy

advantages of the two drugs. Our results indicated that the low-

FIGURE 10
Comparison of immune cells and immune pathways. (A,B) Comparison of the enrichment scores of 16 immune cells and 13 immune-related
pathways between the low- and high-risk groups in the training set. (C,D)Comparison of the enrichment scores of 16 immune cells and 13 immune-
related pathways between the low- and high-risk groups in the validation set. (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001).

Frontiers in Cell and Developmental Biology frontiersin.org11

Ye et al. 10.3389/fcell.2022.991980

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.991980


risk LUAD population was more sensitive to gefitinib, while

erlotinib revealed more therapeutic advantages in high-risk

LUAD patients (Figures 12G,H).

Then, we applied the cMap tool to screen the effective

candidate drugs based on the DEGs between the low- and

high-risk groups. According to the similarity scores (ranging

FIGURE 11
Functional analysis based on the DEGs between the two risk groups. (A,B) GO bar plot graph and KEGG bubble plot for the DEGs in the training
cohort; (C,D) GO bar plot graph and KEGG bubble plot for the DEGs in the validation cohort. (q-value: the adjusted p value).

FIGURE 12
Comparison of the drug sensitivities between low- and high-risk LUAD patients. (A–H) Comparison of the IC50 of each drug between the two
risk groups.
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TABLE 1 The top 20 candidate drugs based on the DEGs in the TCGA cohort.

Score ID Name Description MOA

−99.82 BRD-K50836978 purvalanol-a CDK inhibitor CDK inhibitor, DYRK inhibitor

−99.4 BRD-K04546108 JAK3-inhibitor-VI JAK inhibitor JAK inhibitor

−99.15 BRD-K00615600 AG-14361 PARP inhibitor PARP inhibitor

−98.91 BRD-K07762753 aminopurvalanol-a Tyrosine kinase inhibitor Tyrosine kinase inhibitor, CDK inhibitor

−98.77 BRD-K99749624 linifanib PDGFR receptor inhibitor PDGFR receptor inhibitor, VEGFR inhibitor

−98.63 BRD-K52522949 NCH-51 HDAC inhibitor HDAC inhibitor

−98.52 BRD-A30437061 camptothecin Topoisomerase inhibitor Topoisomerase inhibitor

−98.45 BRD-K64800655 PHA-793887 CDK inhibitor CDK inhibitor

−98.41 BRD-A60245366 AS-601245 JNK inhibitor JNK inhibitor

−98.41 BRD-K06543683 bisindolylmaleimide-ix CDK inhibitor CDK inhibitor, PKC inhibitor

−98.38 BRD-K11636097 JNJ-7706621 CDK inhibitor CDK inhibitor

−98.38 BRD-K69840642 ISOX HDAC inhibitor HDAC inhibitor

−98.38 BRD-A73909368 dactinomycin RNA polymerase inhibitor RNA polymerase inhibitor

−98.38 BRD-K43389675 daunorubicin RNA synthesis inhibitor RNA synthesis inhibitor, Topoisomerase inhibitor

−98.38 BRD-A02333338 cyclopamine Smoothened receptor antagonist Smoothened receptor antagonist

−98.34 BRD-U51951544 ZG-10 JNK inhibitor JNK inhibitor

−98.34 BRD-K38615104 A-443644 AKT inhibitor AKT inhibitor

−98.34 BRD-K12867552 THM-I-94 HDAC inhibitor HDAC inhibitor

−98.31 BRD-K13566078 BMS-345541 IKK inhibitor IKK inhibitor

−98.31 BRD-A59985574 topotecan Topoisomerase inhibitor Topoisomerase inhibitor

TABLE 2 The top 20 candidate drugs based on the DEGs in the GEO cohort.

Score Id Name Description MOA

−99.79 BRD-K50836978 purvalanol-a CDK inhibitor CDK inhibitor, DYRK inhibitor

−99.75 BRD-K04546108 JAK3-inhibitor-VI JAK inhibitor JAK inhibitor

−99.37 BRD-K07762753 aminopurvalanol-a Tyrosine kinase inhibitor Tyrosine kinase inhibitor, CDK inhibitor

−98.77 BRD-K56334280 amonafide Topoisomerase inhibitor Topoisomerase inhibitor

−98.45 BRD-K64800655 PHA-793887 CDK inhibitor CDK inhibitor

−98.45 BRD-A30437061 camptothecin Topoisomerase inhibitor Topoisomerase inhibitor

−98.34 BRD-A60245366 AS-601245 JNK inhibitor JNK inhibitor

−98.34 BRD-A59985574 topotecan Topoisomerase inhibitor Topoisomerase inhibitor

−98.31 BRD-U51951544 ZG-10 JNK inhibitor JNK inhibitor

−98.31 BRD-K92093830 doxorubicin Topoisomerase inhibitor Topoisomerase inhibitor

−98.24 BRD-K11636097 JNJ-7706621 CDK inhibitor CDK inhibitor

−98.21 BRD-K87909389 alvocidib CDK inhibitor CDK inhibitor

−98.2 BRD-K99545815 PF-562271 Focal adhesion kinase inhibitor Focal adhesion kinase inhibitor

−98.17 BRD-A11702965 chromomycin-a3 DNA binding agent DNA binding agent

−98.17 BRD-K19220233 JNK-9L9 L JNK inhibitor JNK inhibitor

−98.17 BRD-K13390322 AT-7519 CDK inhibitor CDK inhibitor, Cell cycle inhibitor

−98.17 BRD-A73909368 dactinomycin RNA polymerase inhibitor RNA polymerase inhibitor

−98.13 BRD-K06543683 bisindolylmaleimide-ix CDK inhibitor CDK inhibitor, PKC inhibitor

−98.1 BRD-K38615104 A-443644 AKT inhibitor AKT inhibitor

−98.03 BRD-K79090631 CGP-60474 CDK inhibitor CDK inhibitor
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from -100 to 100), we listed the top 20 antagonistic drugs in the

TCGA cohort (Table 1). Meanwhile, the top 20 blockers based on

the DEGs of the GEO cohort are presented in Table 2, and 12 of

them were identified to be crossover drugs (purvalanol-a, JAK3-

inhibitor-VI, aminopurvalanol-a, PHA-793887, camptothecin,

AS-601245, topotecan, ZG-10, JNJ-7706621, dactinomycin,

bisindolylmaleimide-ix, and A-443644). Consequently, these

12 drugs could be considered potential therapeutic agents for

high-risk LUAD patients based on our risk model.

Discussion

In this study, we first explored the associations between

HMMRs and LUAD. According to the gene expression

patterns of the 144 HMMRs, all LUAD individuals could be

separated into 2 tumor subtypes, and a significant difference in

the survival rate was observed between the 2 subtypes, indicating

that these regulators play important roles in the development of

LUAD. Ninety-five of the HMMRs were then identified as DEGs

between LUAD and normal lung samples, and 13 of them were

further investigated as SRGs. By employing the LASSO Cox

regression model, we constructed an 8-gene risk signature in

the TCGA cohort, which was verified to have favorable

prognostic value in both the training and validation cohorts.

LUAD patients in each cohort were classified into 2 risk groups

based on our risk model, and we found that in the high-risk

group, immune cells were less abundant, while immune activities

were decreased compared with those in the low-risk

group. Functional analysis indicated that the DEGs between

the low- and high-risk groups were mainly related to the cell

cycle. We next conducted a drug sensitivity analysis, and the

results indicated that our risk model could be applied to predict

the sensitivity of commonly used chemotherapeutic drugs. With

the help of the cMap tool, we discovered 12 new drugs that could

be potential therapeutic agents for high-risk LUAD patients.

According to the specific functions in histone methylation,

the 8 genes in our risk signature could be classified into 2 types:

PRDM16 and SETDB2 belong to the HMTs, while SMNDC1,

PHF19, SGF29, ZCWPW2, CBX5, and PHF14 appertain to the

HMRPs. Among them, PRDM16, SETDB2, SGF29, and

ZCWPW2 were protective genes and were all downregulated

in the tumor samples, while the others were enriched in the

cancer tissues and were associated with poor prognosis. PR

domain-containing 16 (PRDM16) is a member of the PRDM

family, which contains a conserved PR structure and multiple

zinc finger structures at its N-terminal end and has been proven

to catalyze the mono-methylation of H3K9 (Biferali et al., 2021).

PRDM16 was initially found to enhance the function of brown

adipocytes, promote their differentiation, induce the conversion

of precursor adipocytes into brown adipocytes and promote the

differentiation and maturation process of brown adipocytes (Chi

and Cohen, 2016), while its role in tumors has been less studied.

Our results demonstrated that PRDM16 functioned as a tumor

suppressor gene, and this may be explained in Fei et al.‘s study,

which showed that PRDM16 could regulate histone methylation

in the promoter region of MUC4 to reduce its expression and

inhibit the EMT process mediated by MUC4 (Fei et al., 2019).

SETDB2 (SET domain bifurcated histone lysine

methyltransferase 2) contains a bifurcated SET region, an

anterior SET region, and a methylated CpG-binding region

that can trimethylate H3K9. A recent review reported that low

expression of SETDB2 was associated with shorter disease-free

survival time in renal cell tumors, while in gastric cancer,

SETDB2 overexpression predicted poor prognoses and was

associated with tumor progression (Torrano et al., 2019). In

our study, SETDB2 was found to be downregulated in tumor

samples, and its higher expression level predicted a better

prognosis, indicating that it is a tumor suppressor gene.

However, due to the rarity of studies on SETDB2, its specific

mechanisms in LUAD still need further exploration. Survival

motor neuron domain containing 1 (SMNDC1) was reported to

be the “reader” of the asymmetrically deposited dimethylation at

histone H3 arginine 17 (H3R17me2a) (Yang et al., 2010). It has

been reported that silencing SMNDC1 can significantly inhibit

the proliferation of ovarian cancer cells, whereas the mechanism

in ovarian cancer and the roles of SMNDC1 in other tumors have

not been elucidated (Giri et al., 2014). SMNDC1 was identified as

an ideal marker predicting poor prognosis in LUAD in our study,

as it was upregulated in tumor samples and in high-risk LUAD

populations. PHF19 (PHD finger protein 19) recognizes the

trimethylation of lysine 36 and lysine 27 on histone H3

(H3K36me3 & H3K27me3) through its own Tudor domain

and is involved in chromosome activation (Dong et al., 2020).

PHF19 was discovered as a tumor-promoting gene in various

cancers, including LUAD (Zhu et al., 2021), but the in-depth

molecular mechanism has yet to be studied. SAGA-associated

factor 29 (SGF29) has two tandem Tudor structural domains at

the carboxyl terminus, which can recognize H3K4me2/3 and

then lead to H3 acetylation and deubiquitination (Lu and Wang,

2013). Murakami et al. found that SGF29 could enhance c-Myc-

mediated malignant transformation (Murakami et al., 2014);

nevertheless, our data revealed that it is downregulated in

tumor samples, while its enrichment predicts better clinical

outcomes, indicating that it is a tumor suppressor gene. Given

the contradictory roles of SGF29 in cancers, it is worth initiating

further studies. ZCWPW2 (zinc finger CW-type PWWP domain

protein 2), which is the reader of H3K4me3 (Danuta et al., 2020),

was identified as an antioncogene in our study. Until now, the

functions of ZCWPW2 in tumors have not been fully studied.

Fan et al. revealed that a lower H3K4me3 level was associated

with a poor prognosis for LUAD patients (Fan et al., 2022), and

we hypothesized that ZCWPW2 could maintain a higher level of

H3K4me3 to play a tumor-suppressive role. Chromobox protein

homolog 5 (CBX5), which has been proven to be associated with

silenced, heterochromatic regions of the genome and belongs to
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the reader of H3K9me3. Yu et al. also identified CBX5 as a tumor-

promoting gene, and knockdown of CBX5 decreased the

aggressiveness of tumor stem-like cells (Yu et al., 2012). It has

been reported that CBX5 and H3K9me3 are enriched in the FAS

and PUMA promoters in glioma, indicating that CBX5 could

suppress apoptotic activators by sustaining the methylation level

of H3K9me3 (Lai et al., 2017). Further studies are necessary to

clarify whether the mechanisms of the tumorigenic effect of

CBX5 in LUAD are similar to those in glioma. PHF14 (PHD

finger protein 14) is a conserved multi-PHD finger protein that

can recognize unmodified lysine or arginine residues,

dimethylated or trimethylated lysine residues, and acetylated

lysine residues. However, the histone methylation-specific

recognition sites of PHF14 have remained indeterminate in

the past few years. Recently, a study conducted by Zheng

et al. revealed that PHF14 was able to recognize

H3K4me3 and H3R8me2a to exert its repressive functions

(Zheng et al., 2021). In colorectal cancer, downregulation of

PHF14 could reduce carcinogenesis, and our study also indicated

that PHF14 was enriched in tumor samples and was associated

with poor prognosis, while the molecular mechanisms were not

clear. Further in-depth studies on PHF14 should be considered.

Different sites and statuses of histone methylation can evolve

many patterns of methylation modification, increasing the

complexity and diversity of gene expression regulated by

histone methylation. Generally, HMTs and HDMs carefully

maintain histone methylation levels, whereas histone

methylation is a relatively minor modification compared to

other modifications and does not affect the binding of

histones to DNA to any great extent. Therefore, most of the

biological effects of histone methylation are thought to be

mediated by highly specific HMRPs (Musselman et al., 2012).

In addition, misinterpretation of histone methylation marks

(abnormal HMRP activity) has been proven to be associated

with many human diseases, including developmental

abnormalities as well as cancer. Based on that, it is not hard

to understand why most of the prognosis-related genes were the

HMRPs in our study. HMRPs mediate a variety of roles, such as

recruiting enzyme complexes, and can act as transcription factors

or as other effector proteins. As the biological effects of HMRPs

and their role in different tumors have been gradually revealed,

HMRPs are becoming very attractive drug targets; however,

structure-based drug design for targeting HMRPs is still in its

infancy. Most of the current studies mainly focused on the

predictive roles of HMTs and HDMs, neglecting the

importance of HMRPs. Our work comprehensively explored

the prognostic values of these HMMRs, providing insights and

novel molecular targets for epigenetic therapy in LUAD.

In addition to providing prognostic values for LUAD

patients, our risk model can also predict the efficacy of

commonly used chemotherapy drugs. Previous research has

indicated that the levels of histone methylation modification

are related to the drug sensitivity of tumors. Wang et al. found

that the transcription factor C/EBPβ contributes to increased

H3K79 methylation modifications through recruitment of

DOT1L, thereby reducing the efficacy of ovarian cancer

chemotherapy (Wang et al., 2019). In NSCLC, researchers

discovered that the levels of H3K27me3 and H3K4me3 could

also be applied to determine the sensitivity of chemotherapies

(Ávila-Moreno et al., 2014). In this work, the high-risk LUAD

population was more sensitive to chemotherapies, demonstrating

its higher degree of malignancy, and it may be related to the

abnormal expression of these oncogenes regulated by the

methylation of histones. Most of the clinical trials (Urata

et al., 2016; Yang et al., 2017; He et al., 2021) showed that

there were no differences in the therapeutic effects between

gefitinib and erlotinib for EGFR-mutated NSCLC patients,

complicating the choice of optimum drugs. Our results

suggest that gefitinib is suitable for low-risk patients, while for

high-risk LUAD patients, it is better to take erlotinib.

When comparing the immune status of the 2 subgroups,

universally decreased activities were observed in the high-

risk group. It is worth noting that the immune checkpoint

pathways were inactive in the high-risk group, indicating that

ICIs may have lower therapeutic efficiency. Additionally, the

decreased amount of DCs, CD4+ T cells (T-helper cells), and

TILs, combined with the impaired functions of antigen

presentation, also revealed that the response to

immunotherapy would not be good in the high-risk

group. Previous studies have shown that chemotherapy-

induced cell death can enhance the immunogenicity of

tumors (Heinhuis et al., 2019), activating APC functions,

while the inflammatory response generated by cell death can

upregulate PD-L1 expression (Zhang et al., 2016), and both can

synergistically enhance the efficacy of immunotherapy. Based

on the current evidence and our findings, a high-risk

population should be given priority to chemotherapy, and

then followed by immunotherapy, while erlotinib should be

chosen for those with EGFR-mutated high-risk LUAD patients.

The DEGs between the low- and high-risk groups were mainly

enriched in the cell cycle pathways, and based on that, we screened

several compounds that showed high curative possibilities for high-

risk LUAD patients. However, explorations of most of these

candidate drugs have not even been initiated in lung cancers,

and our study may be of guiding significance in developing new

targeted drugs against high-risk LUAD.

Conclusion

Our study showed that histone methylation is closely

connected to LUAD because most of the regulators are

expressed differently between normal and tumor tissues.

According to the histone methylation modification modes,

LUAD can be divided into 2 tumor subtypes, which have

distinctly different clinical features. We constructed a novel
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risk model based on the 8 HMMRs, and this model was proven to

be an independent prognostic factor in both the training and

validation cohorts, providing a new strategy for treating LUAD.

In addition, our risk model can predict the efficacies of

chemotherapy, EGFR-targeted therapy and immunotherapy

and provides a theoretical basis for the development of new

targeted drugs for LUAD.
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