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As the core of Internet of Things (IoT), embedded processors are being used more and more 
extensive. However, embedded processors face various hardware security issues such as hardware 
trojans (HT) and code tamper attacks. In this paper, a cycle-level recovery method for embedded 
processor against HT tamper is proposed, which builds two hardware-implementation units, a 
General-Purpose Register (GPRs) backup unit and a PC rollback unit. Once a HT tamper is 
detected, the two units will carry out fast recovery through rolling back to the exact PC address 
corresponding to the wrong instruction and resuming the instruction execution. An open RISC-
V core of PULPino is adopted for recovery mechanism verification, the experimental results 
and hardware costs show that the proposed method could guarantee the processor restore from 
abnormal state in real time with a reasonable hardware overhead.

1. Introduction

In recent years, the Internet of Things (IoT) has been widely used in various electronic product market ranging from industrial 
products to national strategic military products. At the meantime, the security of the IoT has attracted the attention of research. As 
the embedded core of IoT, it is vulnerable to hardware Trojan [1–13] and code tamper attacks [14–16], which could have serious 
consequences, including functional changes, denial of service (DoS), information leakage, and even system crashes. Thus, the security 
issue of embedded processor becomes extremely prominent, the recovery mechanism after attack detection is an important scheme 
to guarantee the security of embedded processor.

At present, research on processor-oriented security technology has achieved certain results, which can effectively solve the se-
curity problems caused by processor hardware vulnerabilities. Existing approaches for processor fault recovery mechanism could 
be generally categorized into two kinds, 1) checkpoint backup and rolling back [17–26], 2) combined approach to attack detection 
followed by fault repairing [27–30]. The first kind approaches take advantage of checkpoint file for recording the state of executing 
program and performing restoring once a failure occurs. The basic idea of second kind approaches is to build basic blocks (BBs) as 
minimum monitoring and recovery architecture. Although both approaches could guaranty the security of the embedded processors, 
they both suffer from lower real-time performance and higher resource requirements.
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Fig. 1. The function of GPRs information in processor pipeline.

This paper aims to solve the security issues of embedded processor attacked by malicious HT tamper. Research on security 
technology for processor based on the idea of active defense have been carried on, including cycle-level detection and recovery 
mechanism. Moreover, hardware implementation has been also investigated. This entails the following.

1) An embedded reference model is built for monitoring whether abnormal state occurs. This part has been presented in our 
previous work [31]. The instructions worked in processor have certain life time. During the life time of the instruction, the 
status of the processor GPRs is unique and only changes at a fixed moment in the life cycle of the instruction. Then, any 
exception status induced by HT tamper on GPRs can be real-time detected in comparison the value of the designed reference 
model to the value of the execution instruction written to the GPRs.

2) A cycle-level recovery mechanism is proposed to accomplish the restoring the right value which should write to GPRs, as well 
as suspend all pipelines of the processor and complete pipeline flushing, empty the prefetch instructions in the prefetch FIFO, 
then use the PC rollback method to replace the value with PC address corresponding to the exact moment of an attack occurs, 
and finally restore the processor pipeline to complete the proposed fast recovery mechanism.

The rest of the paper is organized as follows. The proposed cycle-level recovery method and hardware implementation is given in 
section 2. Attack model and some experiments are designed to verify the proposed method. Further, experimental results, hardware 
overhead, and limitations are also given in section 3. Finally, we give some conclusions in section 4.

2. The proposed cycle-level recovery method and hardware implementation

For in-order embedded processors, instructions are statically scheduled. In other words, instructions are fetched, executed and 
completed in compiler generated order. Consequently, instructions executed in embedded processor may have data dependencies. 
An example is given for analyzing the data dependencies scenario in Fig. 1.

The first instruction performs the add operation and stores the result in the R1 register at time t3. The subsequent instruction also 
performs the add operation, uses the value of the R1 register in the decode stage and completes the output at time t4. In this case, it 
is obviously that the correct instruction execution depends on the GPRs value written by the previous instruction in addition to the 
instruction itself.

For in-order embedded processors, if a rollback operation could be restored at the exact time point when the attack occurred, 
while a GPRs backup consists of storing the correct value of the previous instruction, then the cycle-level recovery mechanism could 
be achieved by re-executing the instruction which was tampered. Consequently, the proposed recovery scheme consists three function 
units, and the specific functions of which are described as follows.

GSRTM: In our previous work [31], GPR-State Real-Time Detection Module (GSRTM) was proposed for monitoring the state of 
GPRs in real time. An embedded self-reference model based on processor instruction set and micro-architecture to realize continuous 
2

and real-time detection of abnormal state of GPRs. Once an attack detected, the detection result would be trigged to start the 
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Fig. 2. The proposed approach based on GPRs backup and PC rollback techniques.

Fig. 3. The information relationship of instruction stream between Primary and Secondary GPRs.

subsequent recovery operations. Meanwhile, the attacked instruction and its PC address are also provided to PC rollback unit to 
perform the recovery operations.

GPRs Backup Unit: Use latch to back up the GPRs information. Make the backup information always corresponds to the life time 
of the previous executed instruction.

PC Rollback Unit: First suspend and flush the processor pipeline, then replace the current PC in the instruction fetch stage with 
the exact PC value when the attack occurred, then switch the GPRs used by the processor to the backup GPRs, finally restore the 
processor pipeline so that the instruction rolls back to the time when the fault occurred and re-execute.

These three functional units act on different stages of the pipeline and work together to complete the fast recovery. RI5CY, an open 
four-stage RISC-V core of PULPino [32,33], is adopted as embedded processor core. And the hardware implementation implanted 
into RI5CY is shown in Fig. 2.

2.1. The function and hardware implementation of GPRs backup unit

It can be known from the above analysis that the designed GPRs backup unit should have two functions. It should not only bypass 
the result of the current instruction in EX or WB stage to GPRs without extra delay in normal work situation, but also store the 
GPRs information corresponding to the previous intrusion. Therefore, two groups of register file are needed. The so called “Primary” 
registers are used in normal work without extra delay. In the meantime, the so called “Secondary” registers are working for store 
information corresponding to the previous instruction. The information relationship between “Primary” registers and “Secondary” 
registers during instruction life time (the time of an instruction between ID stage to EX or WB stage) is given in Fig. 3.

Besides, a label is designed within the register group to indicate the current usage of the register group. If tag=1, it works as 
“Primary” register group, else if tag=0, it works as “Secondary” register for backup. When the “Primary” registers are subject to 
malicious tampering attack, the labels of the two register groups are switched. The register group used by the processor is changed 
from the “Primary” registers group to the “Secondary” registers group (tag changes from 1 to 0). At the same time, the backup register 
group is changed from the “Secondary” register group to the “Primary” register group (label changes from 0 to 1), and when another 
tampering attack is detected, the labels of the two register groups are switched again. Consequently, the hardware-implementation 
of the proposed unit is given in Fig. 4.

The input of backup unit comes from the execute or write-back stage, named as write channel, which is used for updating 
corresponding GPRs. As mentioned above, the “Primary” registers work just as a bypass channel without any processing. The inputs 
of “Secondary” registers are same signals but with three clock cycles delay, then perform a latch operation according to whether 
the current instruction life time is over or not, indicated by signal insn_life_over. When the current instruction life time ends, the 
latched write channel signal is released and passed to the “Secondary” registers for backup. Further, the detection result (signal 
3

strong_warning) to select whether “Primary” registers output or “Secondary” registers output.
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Fig. 4. The implementation of GPRs backup unit.

Fig. 5. The implementation of PC rollback unit.

2.2. The function and hardware implementation of PC rollback unit

The PC rollback unit works similarly to program rollback. The difference is that the PC rollback unit rolls back to the exact PC 
address corresponding to the wrong instruction, while the program rollback unit rolls back to the latest checkpoint. Once a fault 
is detected, the fast recovery scheme can be realized through re-executing the wrong instruction utilizing the PC address and GPRs 
information storage in “Secondary” registers.

The reason why PC rollback can be implemented is that the information of GPRs corresponding to the preceding instruction is not 
related to the executed result of the following instruction, but the execution of the following instruction depends on the information 
of GPRs corresponding to the preceding instruction. When an abnormal state of the processor GPRs is detected, the information of the 
“secondary” register backup is related to the previous instruction corresponding to the instruction at the time of the fault detected, 
that is, to the previous instruction.

The memory access instruction STORE, used to store data from GPRs into memory, need to be processed specially. It is only 
necessary to immediately block the memory access permission of the STORE instruction when a fault occurs, and the state before the 
fault can be maintained. Therefore, it is only need to execute the instruction again, which corresponds to the fault time based on the 
backup information in “Secondary” registers, and then quickly restore to the normal state.

Once an attack is detected, the indicated signal strong_warning would trigger recovery scheme. The PC rollback unit suspends all 
pipelines of the processor and completes pipeline flushing, empties the prefetch instructions in the prefetch FIFO, then uses the PC 
rollback method to replace the current PC with PC address corresponding to the exact moment of an attack occurs, and finally resets 
warning signal and restores the processor pipeline. The hardware implementation of PC rollback unit is shown in Fig. 5. And there 
are five steps for perform recovery scheme.

Step 1: When the indicated signal strong_warning is valid, the pipeline control logic would suspend all of the pipeline stages for 
prevention the fault propagation spread and efficient execution of subsequent step.

Step 2: Insert three No Operations (NOPs) into the instruction transfer path between IF and ID stages, and resume the pipeline of 
the ID, EX and WB stages simultaneously. This step clears the invalid state by flushing pipeline and provides process time for 
4

subsequent operations.
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Fig. 6. An example of tamper attack on x15 of GPRs.

Step 3: When the second NOP is inserted, the current PC address output to the ITCM in the IF stage is replaced with the PC address 
corresponding to the exact moment of an attack occurs.

Step 4: When the third NOP is inserted, the prefetch FIFO located in IF stage is needs to be emptied. This is because the FIFO stores 
the previously unexecuted instructions which are the subsequence instructions of the corresponding instruction to the exact 
moment of an attack occurs. And then the pipeline of the processor IF stage is restored.

Step 5: When the instruction to retrieve the PC after rollback is detected in the ID stage, it indicates that the PC rollback recovery 
has been completed, and reset the signal strong_warning generated by the GSRTM unit.

3. Experimental results and discussion

In order to analyze and verify the security and effectiveness of the processor security technology designed in this paper, PULPino, 
an open-source single-core microcontroller system, is used as the experimental verification platform. Further, a HT maliciously 
tampered with x15 of the GPRs, is used to explain the tamper flow.

1. Attack model and tamper flow

An attacker can launch a hardware Trojan attack on the processor GPRs to tamper with the GPRs value, thereby achieving the 
purpose of modifying the processor’s operating function or causing the processor to crash. The tamper flow is shown in Fig. 6.

The function of the assembler is as follows. Firstly, write the data address 0x00100000 into the registers x14 and x15 through the 
lui (Load Upper Immediate) instruction, which used to construct global address or large constant. Secondly, read the data from the 
data addresses of x14+1292 and x15+1288 through the lw (Load Word) instruction, which loads data from data memory through a 
specified address. Then use the add instruction to complete the addition operation of x14 and x15, and write the value 4 into x15. 
Finally, judge whether the value of x15 is equal to 4, if it is equal to 4, jump to function 1, otherwise jump to function 2. After all, 
the attacker has completed the change of the intended function of the program by tampering with the register x15.

2. Detection results and discussion

Six programs with different functions are implanted for test. In order to obtain more experimental test data, the activation 
conditions of the hardware Trojans is set very simply. Pseudo-randomly generates several random numbers, when the number of 
time cycles during the execution of the processor matches the random number, the hardware Trojan is triggered. And the test results 
are shown in Table 1, including number of HT implanted, detection number and recovery time.

To explain more clear, take add.c as an example. Fig. 7 shows the relevant information of activated hardware Trojans and 
detection results. Position_HT is the moment when the hardware Trojan is activated while Register_number_HT denotes the target 
register for malicious tampering by the hardware Trojan, wrong_Cycles represents the exact moment of an attack occurs, Wrong_PC 
is the PC address corresponding to the exact moment of an attack occurs, and Wrong_Instr denotes the instruction attacked by HT 
tamper. As can be seen from Table 1, all six programs with 207 HTs had been detected with the latency of 2 clocks.

In order to evaluate the effectiveness and performance of the proposed cycle-level recovery method, same hardware Trojan are 
implemented both in the original RI5CY (baseline processor) and security processor with recovery mechanism. Then run the C 
program add.c on the verification experiment platform of the baseline processor and the security processor respectively, and its code 
and its running results on the two platforms are shown in Fig. 8. When the hardware Trojan is activated, the baseline processor’s 
5

jump value is tampered with 5 (the expected value should be 4), and the function func2 is executed against the established program 
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Table 1

Detection and recovery results.

Codes HT number Detected number Recovery Time

add.c 5 5 7 cycles

testALU.c 50 50 7 cycles

testClip.c 38 38 7 cycles

testCnt.c 18 18 7 cycles

testMUL.c 82 82 7 cycles

testDivRem.c 17 17 7 cycles

Fig. 7. The relevant information of active HTs and detection results.

Fig. 8. add.c program implement results on baseline and security processors.

control flow. Because the security processor has a detection and fast recovery mechanism for GPRs, even if the hardware Trojan is 
activated, its operation result is still normal.

3. Recovery simulation results and analysis

A hardware Trojan is implanted in the processor GPRs, and its function is consistent with the threat tamper example as shown 
in Fig. 6. More detailed and further analysis to obtain the attack time of the hardware Trojan as shown in Fig. 9. The hardware 
Trojan has maliciously tampered with the x15 of GPRs, making the operation result of add.c change from 4 to 5, resulting in the 
program function is running incorrectly. According to the operating waveform of the security processor detection mechanism and 
fast recovery mechanism, as shown in Fig. 9, it can be known that the proposed detection and fast recovery technology for GPRs 
designed and implemented in Section 2 can be used when GPRs are subjected to malicious tampering attacks (x15 is changed from 4 
to 5, the PC address corresponding to the abnormal moment is 0x0000_041C, and the instruction is 0x0010_0537), the inserted HT 
attacks can be recovered in real time with the latency of 7 clock cycles, including 2 clock cycles for detection. The proposed method 
has performance improvement compared with the part work in [6], which has at least 100 us sample length for HT detection and 
6

more time for analysis and recovery.
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Table 2

Hardware overhead of the proposed method.

LUT Flip-Flops

Baseline processor 6265 1317

Processor with recovery 6377 (+1.7%) 2361(+79.2%)

Fig. 9. Simulation wave of HT activated, detection and recovery mechanism.

4. Hardware overhead

The baseline processor and the proposed security processor are implemented on same Xilinx FPGA platform, respectively. And 
the synthesis results of hardware costs are given in Table 2 above. It shows that the increase amounts of combination logic and 
sequential logic, presented using number of LUT and number of Flip-Flops (FFs) is 1.7% and 79.2%, respectively. The former one is 
reasonable while the latter one is rather high, which resulted the register file is duplicated in our proposed mechanism. Compared 
with hardware implementation results in [28], which aimed at developed a low-cost recovery for embedded processors, the overhead 
of combination logic and sequential logic, are 18.8% and 68.86%. And the proposed method could deduce a similar result.

5. Limitations

The proposed recovery mechanism is now only effective in in-order microarchitectures. The microarchitectures are different 
between in-order processor and out-of-order processor. Although, the architecture of out-of-order processor may still decode them 
and retire them in the actual order of appearance in the program, ILP (Inductive Logic Programming) or Instruction Level Parallelism 
should be studied carefully for out-of-order execution. Future work will further to consider an effective solution for out-of-order 
embedded processor.

4. Conclusion

In this paper, a real-time recovery method after real-time detection is presented to protect GPRs against the HT attacks. We 
introduce a GPRs backup unit and a PC rollback unit to perform fast recovery. Furthermore, the hardware implementation is also 
investigated and incorporated into RI5CY, a four-stage pipeline core of RISC-V. Experiments are designed to verify the proposed 
method. And the experimental results demonstrate that the proposed method can effectively guarantee that processor restored from 
abnormal state with the latency of 7 clock cycles, which introduces a reasonable hardware overhead. Future work will further to 
consider an effective solution for out-of-order micro architectures.
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