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Crop monitoring and yield prediction are central to management decisions for farmers.

One key task is counting the number of kernels on an ear of corn to estimate yield in a

field. As ears of corn can easily have 400–900 kernels, manual counting is unrealistic;

traditionally, growers have approximated the number of kernels on an ear of corn through

a mixture of counting and estimation. With the success of deep learning, these human

estimates can now be replaced with more accurate machine learning models, many

of which are efficient enough to run on a mobile device. Although a conceptually

simple task, the counting and localization of hundreds of instances in an image is

challenging for many image detection algorithms which struggle when objects are small

in size and large in number. We compare different detection-based frameworks, Faster

R-CNN, YOLO, and density-estimation approaches for on-ear corn kernel counting and

localization. In addition to the YOLOv5 model which is accurate and edge-deployable,

our density-estimation approach produces high-quality results, is lightweight enough

for edge deployment, and maintains its computational efficiency independent of the

number of kernels in the image. Additionally, we seek to standardize and broaden this

line of work through the release of a challenging dataset with high-quality, multi-class

segmentation masks. This dataset firstly enables quantitative comparison of approaches

within the kernel counting application space and secondly promotes further research in

transfer learning and domain adaptation, large count segmentation methods, and edge

deployment methods.

Keywords: counting, density estimation, precision agriculture, dataset, YOLO, machine vision application, edge

deployment, UNET

1. INTRODUCTION

Corn yield is driven both by optimizing the number of plants per area as well as the number of full,
mature kernels on an ear. Disease, pests, weather, and nutritional challenges can cause ears to fail
to develop properly, reducing the farmer’s yield for that field. Depending on the variety of corn,
each ear may have 400–900 kernels when fully developed; manually counting each kernel is slow,
inaccurate, and labor intensive. Effectively automating such a process would provide the farmer
with substantial speed and accuracy improvements. Developing such a model to aid farmers is the
motivation for this work; recent advances in computer vision and machine learning enable the
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development of highly accurate models including those which
may be deployed directly to a mobile device and run in the
absence of high-speed internet.

The ultimate goal of this vision system is to enable
farmers to make real-time management decisions using the
most accurate information available. For kernel counting, this
may involve a farmer in a field, taking a photo with a
smart-device such as a phone or tablet, and receiving an
accurate, real-time response with both count and localization
information. Alternately, it may be embedded on robotic
equipment which traverses the field for monitoring and
management. Importantly, high-speed internet is often lacking
in these scenarios and therefore having an edge-deployable
solution is key. In addition to comparing several counting
by detection approaches, we also demonstrate the utility of
counting by density-estimation for such a task. Such approaches
often have simpler architectures than detection models, which
enables them to be more easily deployed on edge or mobile
because they are smaller in size and lack sophisticated layers
like ROI-pooling layers which can cause trouble in the
conversion processes.

Corn kernel counting is not a new task for computational
agriculture (Velesaca et al., 2020; Wu et al., 2020). However,
past analyses have been done on proprietary datasets which
prevents comparison across approaches. Very recently, Khaki
et al. (2020) developed a CNN-based sliding-window approach
as opposed to using SOTA detection methods like SSD, YOLO, or
Faster R-CNNbecause “thesemethods need considerable amount
of annotated images which do not exist publicly for the corn
kernel detection.” This statement is a key motivator for creating
this dataset; SOTA methods which have proven so valuable in
the broader computer vision community should not be out of
reach for precision agricultural because relevant datasets are
kept private.

The objective of this work is thus 3-fold:

1. [Application] Baseline three deep learning approaches for
counting and localization of on-earn kernels which can be
deployed to a mobile device.

2. [Dataset] Release a dataset to enable development and
comparisons of approaches for such an application.

3. [Dataset] Further construct this dataset to enable future
research around high-count small-object detection and
segmentation, domain adaptation, lightweight models for
edge deployment, and other areas to advance precision
agriculture.

Our belief is that with the release of this dataset and
demonstration of the success of these three different deep-
learning methods, agriculture applications will continue to
move toward greater adoption of state-of-the-art deep learning
methods which have been successful in so many other domains.

By releasing this dataset (Figure 1), we seek to create a
standard against which different approaches may be compared.
Additionally, many past works are focused on a narrow range of
data in which the corn variety, image size, resolution, background
appearance, number of ears, or orientation of the ear are

restricted. How a model’s performance will transfer to an unseen
dataset or generalize across datasets is therefore unknown. This is
perfectly acceptable when the primary goal is to develop a model
which supports a particular application; in that case, many of
those sources of variation may be controlled for or ignored as
out-of-scope for the given application.

However, as humans we are able to count and localize
corn kernels trivially across a wide range of appearances and
conditions; it is a decidedly “system 1” task that even young
children can complete with ease (Kahneman, 2011; Booch et al.,
2020). Thus from a machine learning perspective, we would
desire that our intelligent system be capable of generalizing
to broad domains as well. In addition to these theoretical
considerations, the ability to learn from different data domains
has key practical relevance; acquiring sufficient data from the
desired domain is not always possible, especially when seasonal
effects come into play. Instead, we would desire that our model
learn from all available sources of data, with minimal effort
required (here in the form of annotated data) when it is exposed
to a new domain.

To address this, we constructed our dataset to consist
of three sub-components. The Base portion of our dataset
is designed to be “challenging,” with a wide range of corn
varieties, diseases, lighting conditions, number of kernels visible,
and broad appearances including synthetic images. We further
supplemented the base component with a further challenging
Many portion which contains images with many ears and very
high numbers of kernels; such a task remains simple (albeit
time consuming) for a human, but causes many SOTA computer
vision models to fail. Finally, the Narrow portion of the dataset
consists only of those images from the single application-specific
domain (i.e., one corn variety, vertically oriented images, all of
the same size). Formulating the dataset in such a manner will
additionally enable future work in transfer learning and domain
adaptation approaches.

Constructing the kernel counting application alone, per-image
count, center-point, or bounding-box annotations of healthy
kernels could have proven sufficient. To extend the applicability
and breadth of this dataset, we also annotated diseased and
incomplete kernels as well as barren tips and kernel areas (where
kernels are present, but too indistinct to count) in addition to
healthy kernels. For all classes, we have provided instance masks
of these multiple classes to encourage the exploration of instance
and panoptic segmentation methods that can handle hundreds
of instances. The multi-class composition results in a highly
imbalanced dataset, providing additional challenges and avenues
of exploration.

2. RELATED WORKS

2.1. Kernel Counting
Kernel counting has been explored previously using traditional
computer vision and image processing techniques as well as
deep learning-based approaches. A distinct advantage of image
processing-based techniques is that they do not require annotated
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FIGURE 1 | The ultimate goal of this model is count and localize the healthy kernels on ears of corn. (A) Our dataset is densely labeled with per-instance

segmentation masks (area shown in faded magenta with centers in blue). (B,C) In addition to healthy (magenta) kernels, we also label barren tips (red),

incomplete/underdeveloped kernels (cyan), diseased kernels (green), and kernel areas (beige). (D–L) The dataset contains a diverse range of images with different

types of corn, numbers and sizes of ears and kernels, photos and cartoon-imagery, shadowing and occlusion challenges, scales and resolution, as well as kernels

which are loose, and therefore should be ignored. (M) The distribution of the number of ears in each image in the full dataset.

data formodel training. In 2014, Zhao et al. (2014) performed on-
ear kernel counting using multiple preprocessing steps including
Otsu thresholding (Xu et al., 2011), wallis filters (Mastin, 1985),
and histogram enhancement; while performance was high, it was
demonstrated on only 20 images of single ears of maize, taken on
a black background.

Recently, while deep learning techniques have come to
dominate much of the computer vision space, Grift et al. (2017),
Li et al. (2019), and others continue to use image processing
techniques; as their task of interest was highly constrained—
often taken in a laboratory setting with a simplistic background,
controlled lighting, loose kernels which naturally have separation
—the flexibility and generalization offered by deep learning
methods may not have warranted the effort of collecting a dataset
to support deep learning methods. Even more recently, Wu
et al. (2020) used a five-step approach consisting of Gaussian
Pyramids, Mean Shift Filtering, Color Deconvolution, local
adaptive thresholding, and local maxima finding to count the
kernels on an ear of corn. While their results were good (> 93%
accuracy reported) and conducted using two lighting conditions,

the backgrounds were simplistic, all 8 maize varieties were yellow
or white, and the approach requires 0.64 s to process a single
image, quite slow compared to current SOTA deep learning-
based approaches.

As deep learning approaches have shown superior
performance across numerous machine vision tasks in
multiple domains, they have been increasingly adopted
for kernel counting tasks as well. Velesaca et al. (2020)
used Mask R-CNN to segment individual corn kernels as
well as to classify them as good, impure, or defective. This
analysis was done on loose, not on-ear, kernels with a highly
uniform background. Nevertheless, they demonstrated the
resounding performance of their deep learning approach
over traditional image processing (i.e., watershed) or hybrid
(i.e., U-Net plus watershed) approaches. Very recently, Khaki
et al. (2020), motivated by a lack of detection-enabling
annotations (e.g., bounding boxes, instance masks, point
annotations), used a CNN trained to classify individual kernels
and then deployed as a sliding window across the entire image
at inference.
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2.2. Counting Overview
Our main task concerns counting the number of kernels on an
ear of corn and therefore we draw heavily from the methods
coming out of the crowd counting domain (Loy et al., 2013;
Sindagi and Patel, 2018). These approaches tend to fall in one of
three categories: counting by detection, counting by regression,
and counting by density-estimation. If the sole goal is to obtain
the count, counting by regression is a viable pathway. These
methods seek to learn a set of either hand crafted or deep features,
and then directly regress the total count without localizing the
entities of interested (Chen et al., 2012, 2013). However, as the
desired end application here provides the user with both the
count and some validation or intuition behind that number (e.g.,
a point or bounding box around the entities to be counted), these
approaches are less applicable here and therefore we focus on
detection and density-estimation techniques.

2.2.1. Counting by Detection
Counting by detection approaches leverage state-of-the-art
detectionmodels like Faster R-CNN (Ren et al., 2015), R-Fcn (Dai
et al., 2016), RetinaNet (Lin et al., 2017), SSD (Liu et al., 2016),
and YOLO (Redmon et al., 2016; Redmon and Farhadi, 2018)
to detect, and subsequently count, the entities of interest in the
image. Each of these approaches makes architectural decisions
to balance speed vs. accuracy as detailed in Huang et al. (2017).
In general, single-stage detectors like SSD and YOLO tend to
be lighter weight and faster than two-stage detectors like Faster-
RCNN, at the cost of accuracy, although performance is strongly
dependent on the choice of backbone.

In addition to the framework, the choice of backbone also
impacts performance and speed. Commonly use backbones
include VGG (Simonyan and Zisserman, 2014), ResNet (He et al.,
2016), EfficientNet (Tan and Le, 2019), and MobileNet (Howard
et al., 2017), again with the speed/performance needs of the end
application dictating the choice of architecture.

Recently, new detection paradigms have come to surpass the
now “standard” approaches like Faster R-CNN. RetinaNet (Lin
et al., 2017) leveraged focal loss and a dense detection
model which performed at speeds comparable to one-stage
detectors while outperforming two-stage detectors on the COCO
benchmark. DETR (Zhu et al., 2020) used transformers with
the same or fewer parameters to outperform Faster R-CNN
on the COCO benchmarks. Similarly, EfficientDet (Tan et al.,
2020) used a very lightweight bi-directional feature pyramid to
drive enhanced performance. Although lightweight, these are
not commonly deployed in mobile frameworks currently, and
therefore not the focus of the present analysis.

Detection-based approaches work best in sparse counting
scenarios where the entities are well separated, occlusions are
limited, the number of entities is relatively low, and entities
are larger in size (Elbishlawi et al., 2020). The computational
efficiency of these models often scales with the number of
detections and therefore can perform quite inefficiently in a
dense-counting scenario (Arteta et al., 2016). Furthermore,
the amount of memory required grows with the number of
detections for processing the potential candidates; this can

require a large amount of compute when the count is high, or
require the image to be windowed if a high count is anticipated.

2.2.2. Counting by Density-Estimation
In contrast to counting by detection, density-estimation
approaches are tailored to scenarios where the number of entities
may be quite large (potentially in the hundreds to thousands),
occlusions and overlaps are present, and entities can be quite
small in size (perhaps only a few pixels). These approaches
tend to use architectures more characteristic of segmentation
tasks such as the fully convolutional encoder-decoder structure
of U-Net (Ronneberger et al., 2015). Recent work in this area
has used more complex networks to handle the variations in
size, scale, and perspective common in dense crowd counting
scenarios (Boominathan et al., 2016; Sang et al., 2019; Xu et al.,
2019). When localization is desired, but an exact bounding box
is not required, density-estimation techniques provide a useful
alternative to detection-based counting methods.

3. METHODS

3.1. Dataset
We gathered 402 images from publicly available data as well as
privately acquired images. Images were annotated for (healthy)
kernels, diseased kernels, “incomplete” (i.e., not fully matured)
kernels, barren tips (i.e., where the top of the ear does not produce
kernels), and “kernel areas” where on-ear kernels were present
but resolution/lighting prevented annotation. After images were
annotated, they underwent careful QA for needed changes and
improvements. For the present work we only explore the healthy
kernels; all other classes were ignored. The full dataset contains
over 113,000 individual kernel segmentation masks and the
associated bounding boxes in COCO format.

As seen in Figure 1, this dataset is highly varied in a number
of manners including image size, resolution, number of ears
present, total number of kernels present, background, lighting,
corn variety, image type (i.e., photograph vs. cartoon), amount
of zoom, etc. This is in stark contrast to the datasets used for
many corn kernel counting applications which are restricted
to the domain expected at inference: an outdoor image of
a single ear of corn, belonging to a single (or limited set)
corn variety, vertically oriented, at a roughly standardized size,
at a standardized resolution, and with minimal shadowing or
occlusions. Limiting the training domain in this manner can
suffice if the domain at inference time is guaranteed to be similar;
however, these models will likely not generalize well and may be
unstable to unanticipated shifts in the inference domain. Instead,
we elect to train the model on a broad set of data and then
allow for fine-tunning to specific, narrower application-specific
domains if needed.

To explore this impact, we divide the data into three datasets
whose statistics are shown in Figure 2. The bulk of the data
(313 images) form the “base” dataset. These images have a
wide range of appearances and may have multiple ears. A
“narrow” dataset is compiled from 60 we collected from taking
photos of ears in several fields during the 2020 season. All
of these images have a single ear of (solid) yellow feed corn,
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FIGURE 2 | (Left) Distribution of the number of kernels per image in each of the three datasets. (Right) Distribution of the kernel size (i.e., area) in pixels in each of the

three datasets.

located roughly in the center of the image, vertically oriented,
and with shadowing and occlusions largely minimized. Finally,
while the base dataset contains several images with a very high
kernel count, it is skewed toward simpler scenes. In contrast
all 29 images in the “many” dataset have at least 4 ears, a

very large number of kernels, and often have on-ear kernels
occupying the vast majority of the pixels. In the present work,
we have not done significant exploration with this portion
of the dataset as poses problems for both detection-based
methods. However, we have chosen to include it in this release
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so that others may test their approaches on these very high-
count examples.

3.2. Model Training
We divide each of three data subsets (base, narrow, many) into
60% train, 20% validation, and 20% test.

We used the albumentations (Buslaev et al., 2020) package
to introduce significant augmentation during training on a per
image, per epoch basis. Augmentations and their probabilities
included: random rotation (p = 0.9), vertical flipping (p = 0.5),
horizontal flipping (p = 0.5), random brightness contrast (p =
0.4), random gamma (p = 0.4), hue saturation (hue shift limit =
0.1, saturation shift limit = 0.1, value shift limit = 0.2, p = 0.5),
random sun flare (p = 0.2), random shadow (p = 0.1), random
rain (p = 0.2), Gaussian noise (p = 0.4, maximum = 0.01). All
other parameters not noted here are the default parameters given
in Buslaev et al. (2020).

Additional model-specific processing is described in the
associated sections.

All models were constructed using the PyTorch
framework (Paszke et al., 2019). Models were trained on a
machine equipped with an Intel i7-10700 processor, 64GB of
RAM, and two NVIDIA GeForce 1080Ti GPUs.

3.3. Metrics
For all models, we compute the Mean Absolute Percent Error
(MAPE), also known as Mean Absolute Percent Deviation
(MAPD), on the total count (which we refer to as “Count
MAPE”) for the entire image. Count MAPE is given by

Count MAPE = 1

J

J
∑

j=1

|Actualj − Predictedj|
Actualj

where J is the number of images, and Actualj and Predictedj are
the actual and predicted number of healthy kernels in the image
j, respectively. Note that for Faster R-CNN, the images must first
be windowed to enable inference; Count MAPE is computed on
the entire (recombined) image, not the windows individually.

For the detection models, we also compute the (mean)
Absolute Precision at 0.5 intersection over union (IoU) written
as “map@0.5” (Padilla et al., 2020).

IoU = area of overlap

area of union
precision = true positives

true positives + false positives

mAP@0.5 is the mean absolute precision when the actual and
predicted bounding box have at least 0.5 IoU.

3.4. Detection Methods
3.4.1. Faster R-CNN
Faster R-CNN is a widely used detection model because of its
accuracy; however its speed and size limits its usefulness for
deployment on mobile devices. Although our end goal is to
produce a model which can be deployed on mobile, we wish
to benchmark that final model against the performance of a
two-stage detection model like Faster R-CNN.

Therefore, we constructed two Faster R-CNN models with
two different backbones: VGG-16 (Simonyan and Zisserman,
2014) and ResNet-50 (He et al., 2016). The choice of these two
backbones was somewhat arbitrary: we sought two backbones
with different sizes in this two-stage framework. However,
alternative backbones including SqueezeNet (Iandola et al.,
2016) or MobileNet (Howard et al., 2017) could be explored
in the future. In both cases, the models were pretrained on
Imagenet (Deng et al., 2009).

Out-of-memory errors can occur when the number of
instances is large because each one must be held in memory
and evaluated during processing. To counter-this, we split the
training images into smaller windows for training and inference;
images were split in half repeatedly until they were able to fit
into memory; usually two divisions (a factor of 4) was sufficient.
Alternatively, one can address such issues with larger machines
with greater memory, however, as the focus of this work is on the
creation of an application not on the optimization of training,
we note this as a practical limitation of this approach. A goal of
this work is to engage the broader community in this application,
and therefore we solve this challenge “practically,” not with more
compute, to make it more accessible.

We trained the model trained with a batch size of batch
size of 1 using SGD with an learning rate of 0.005. All of
these experiments are conducted with the base dataset. Training
continued for up to 300 epochs unless halted early due to
early stopping.

For Faster R-CNNwe focused only on the base dataset because
performance was seen to be noticeably worse than the other two
frameworks in addition to being much more difficult to work
with due to having to cut the image into smaller windows. As
a result, we did not focus on analyzing the narrow dataset in the
Faster R-CNN framework as it would be exceedingly difficult to
use in themobile application setting that the narrow dataset seeks
to capture.

3.4.2. YOLO
Since the original YOLO framework was introduced, there have
been a number of improvements with subsequent versions. We
chose to focus on the recent YOLOv5 (Jocher, 2020): although
YOLOv5 has not been released with a formal publication,
significant colloquial evidence has shown it has outperformed
many other models, particularly for mobile deployment. Briefly,
YOLOv5 is a single-stage detector with a model backbone, neck,
and head. It uses a Cross Stage Partial Network (CSP) (Wang
et al., 2019) as its backbone, PANet (Liu et al., 2018) as its neck,
and the samemodel head as in YOLOv3 and YOLOv4 to generate
output vectors with class probabilities, bounding boxes, and
objectness scores. Unlike previous versions, it attempts to learn
the anchor box locations using kmeans and a genetic algorithm.
This architecture emphasizes LeakyReLU activation functions in
the middle layers and sigmoid activation at the final output layer.
We compared the impact of using weights pretrained on COCO
data vs. beginning with randomly initialized weights.

We first train the model on the base dataset and calculate the
desired loss and metrics. We also compute the Mean Absolute
Percent Error on the total count for the unseen narrow dataset.
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We compare this result to training on the smaller narrow dataset
directly. Each model was trained using SGD with a learning rate
of 0.01, batch size of 12, for a maximum of 300 epochs.

3.5. Density-Estimation
3.5.1. Density-Map Creation
Density-estimation approaches only require point annotations,
unlike the previous methods which require bounding-boxes;
to generate these point annotations we took the centroid of
each instance-mask and placed a single point annotation at
that location.

That is, we define a sample image I with M pixels xm and the
associated set of N kernel annotations masks K = {k1, k2, ..., kN}
where each kn = {x1, x2, ..., xP} is the set of 2D pixels in
that individual kernel mask. The centroid of a given mask is

then defined by k̄n = 1
P

P
∑

p=1
xp We convert this set of pixel

masks to point annotations defined by Z = {z1, z2, ..., zN} =
{k̄1, k̄2, ..., k̄N}. Note that this approach does not require mask
or bounding box annotations: directly annotating Z as point
locations, would suffice.

Once all annotations for that image were converted to points,
we applied an isotropic Gaussian blur with σ = 12 across the
point-annotationmask to generate the target densitymap. That is
we define the ground-truth density map D to be a kernel density
estimate given by:

D(xm)
def=

N
∑

n=1

N (xm; zn, σ 212×2) (1)

=
N

∑

n=1

1√
2πσ

exp

(

−‖xm − zn‖22
2σ 2

)

(2)

Because the Gaussian is infinite and therefore can extend well
outside the original mask’s boundaries, we truncated all values
below 1e−4 and then renormalized the remaining occupancy
mass so that it sums to 1 as required.

3.5.2. Model Architecture and Training
All of the models used for the density estimation approach
leverage a U-Net style architecture with different backbones:
EfficientNet-b1 and MobileNet-v2 with ImageNet pretrained
weights in the encoder. During training, the images were
randomly cropped to 480 × 640 and at validation/testing, the
image was split into windows of the same size. The choice to crop
was not due to any memory limitations, but because we wished
to expand the variability of the data seen during training.

We leverage the PyTorch Segmentations Models package
for ease of analysis (Yakubovskiy, 2020). We used Adam
Optimization with an initial learning rate of 0.0005, a batch size
of 10, and a maximum of 300 epochs.

Finally, we define the loss for each of these models to be the
pixel Mean Squared Error (pixel MSE) between the ground-truth
and predicted density maps given by,

MSE = 1

M

M
∑

m=1

‖D(xm)− D̂(xm)‖22. (3)

4. RESULTS

4.1. Detection Models
Results for the Faster R-CNN and YOLOv5 models trained (and
tested) on the base dataset are shown in Table 1. Note that
Faster R-CNN and YOLOv5 use different loss functions so those
should not be compared directly; instead the mAP@0.5 and
mean absolute percent error (MAPE) is useful for comparing the
performance of these models. In addition to not requiring pre-
processing to split the image into smaller windows, the YOLOv5
model outperformed both Faster R-CNN models.

Not surprisingly we see that using pretrained weights made a
difference both on the in-domain dataset (test loss = 0.70, count
MAPE 0.24) as well as the narrow dataset (test loss= 0.63, count
MAPE 0.17), compared to using randomweights (test loss= 0.74,
count MAPE 0.25).

With the goal of creating a model which can count and
localize kernels on a (presumably) single ear of corn, training
and inferencing on this specific, narrow domain could be
advantageous, provided enough data exists: the narrow dataset is
an “easier” dataset relative to the base, as the images are much
more stereotypic. However, gathering a dataset with sufficient
sample in the target domain is not always feasible and therefore
the ability to learn from the broader base dataset is also valuable.
When trained and tested on the base dataset, the MAPE on the
(test) base dataset is 0.24. When tested further on the (unseen,
different domain) narrow dataset, the MAPE falls to 0.20. This
captures the “difficulty” of the base dataset; the model performs
better on the unseen narrow dataset than on the unseen test
portion of the base dataset on which it was trained. However,
when trained directly on the narrow dataset, the MAPE on the
(test) narrow dataset is 0.17. (Note that “Count MAPE” and
“Narrow Count MAPE” correspond to the same thing in this
row). This does not mean that the broader base dataset is not
useful; using the base dataset for initial training and then fine
tuning on the narrow dataset is likely to be advantageous and a
focus of ongoing work.

Results from the YOLOv5 model (pretrained weights) trained
on the base dataset are shown Figure 3. Overall we see that
these results are very impressive: the model is detecting the
vast majority of the kernels, even on many “unusual” ears with
different colors and kernel shapes, although it seems to struggle
most with solid, dark-red kernels like the one seen in the bottom
left. Impressively, the model has learned to ignore loose kernels
which have detached from an ear. Furthermore, inference time
for this model is 26 fps (0.038 s/image) on the GPU.

4.2. Density-Estimation
Results for the density estimation approach are seen in Table 2.
EfficientNet-b1 and Mobilenet-v2 are both relatively small
backbones with 6M and 2M parameters, respectively, and
performed roughly equivalently across all tasks.

Furthermore, both density-estimation models outperform the
detection-based approaches on the MAPE for both the base and
narrow datasets. From the visualization of the output from the
EfficientNet-b1 model trained on the nase dataset, we see that
the model has learned to handle numerous challenging scenarios
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TABLE 1 | Detection model performance.

Training data Test loss mAP@0.5 Count MAPE Narrow count MAPE

Faster R-CNN: ResNet50 Base 0.80 0.74 0.21 –

Faster R-CNN: VGG16 Base 0.85 0.73 0.24 –

YOLOv5: CSP Base 0.70 0.70 0.24 0.20

YOLOv5: CSP, no pretraining Base 0.74 0.64 0.25 0.29

YOLOv5: CSP Narrow 0.63 0.63 0.17 0.17

FIGURE 3 | Results from YOLOv5 model trained on the base data. Samples from the base test set are shown on the left and middle and two samples from the

unseen test narrow set are shown on the far right.

TABLE 2 | Density estimation model performance.

Training

data

Pixel MSE

loss

Count MAPE Narrow count MAPE

EfficientNet-b1 Base 0.12 0.18 0.19

Mobilenet-v2 Base 0.18 0.19 0.18

EfficientNet-b1 Narrow 0.16 0.18 0.18

Mobilenet-v2 Narrow 0.16 0.15 0.15

including different varieties, disease, missing kernels, cartoon
images, difficult lighting conditions and shadows, and a large
number of kernels in an image (Figure 4). While the “many”
dataset is problematic for the detection methods, the density-
estimation models handle these with ease (far right column of
Figure 4); the Count MAPE on the unseen many dataset for
this model is 0.23. While higher than the MAPE on the base or

narrow subsets, this result is still quite impressive as these images
contain very high amounts of occlusion and often extremely
small instances.

While we have cropped the images for training to boost the
variety of the dataset, there is no need to crop the data, as
in the case of Faster R-CNN, or resize the image, as occurs
naturally in YOLOv5. As those steps can dramatically slow the
performance of the overall application, this is a key advantage
for the density-estimation approach. The inference time for this
model is 200 fps (0.005 s/image) on the GPU across all three data
subsets (base, narrow, many).

5. DISCUSSION

5.1. Model Performance
In the present work we have constructed a dataset and
compared the performance of three different deep learning-based
approaches for on-ear corn kernel counting and localization.
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FIGURE 4 | Results from our Density Estimation approach using an EfficientNet-b1 model. Other models are visually similar. Even though it was trained on the base

dataset (left two columns), it performs quite well on the narrow (third column) and many (far right) dataset as well. Even though the number of instances may be large,

the model does not struggle with memory issues and continues to be computationally efficient.

The single-stage YOLOv5 model was found to outperform the
two-stage Faster R-CNN approach in addition to being faster
and more memory efficient, working directly off the raw images
as opposed to requiring windowing. The U-Net based density
estimation approach also performed quite well, matching or
exceeding the CountMAPE andNarrow CountMAPE compared
to the best YOLOv5model. An additional advantage of the U-Net
model is its ability to handle samples from themany datset, which
remains problematic for the YOLOv5 model due to memory
constraints. Qualitative comparison suggests that the U-Net is
able to find the smallest kernels on the sides of the ear which are
only slightly visible better than the YOLOv5 model; this is likely
due to the fixed anchor resolution of YOLO models which is a
known limiting factor.

Both the YOLOv5 and U-Net models met speed and accuracy
requirements necessary to deploy to our mobile application
and have their advantages and disadvantages in the application
setting. While the output of the U-Net provides the localization
required to provide the user confidence in the predicted count,
it is more difficult for the user to make a “mental correction”
if he notices that a kernel is missed and simply increment or
decrement the provided count. We could enhance the U-Net’s
visual output by placing a peak-finding algorithm on top, but
that would reduce computationally efficiency. Next, because the
application is expected to see only a single, vertically oriented
ear, some of advantages the U-Net holds in the general setting

become less relevant within this particular application. Similarly,
because all images in the application are of the same size, the fixed
image-size (via padding or reshaping) that YOLOmodels require
is not a concern. While the U-Net-based density estimation
framework offers many advantages on the general modeling
front, the YOLOv5 model was almost as performant on the
narrow dataset and offers a more effective visualization to the
user out of the box from an application viewpoint.

5.2. Future Work
The absence of sufficient annotated data has hindered the
adoption of deep learning approaches in domains such as
computational agriculture. The dataset created for this present
work, while motivated by a single application, is highly complex
and opens the door for many lines of research while still having
real world significance.

First, we have explored only a few frameworks and
backbones in the present work. While massive speed-accuracy
benchmarking studies have been conducted in the past (Huang
et al., 2017), those were done on large public datasets like
COCO (Lin et al., 2014). Performing a similar large-scale analysis
on this dataset which has a limited number of classes, but large
number of entities per image could prove illuminating.

Additionally, this dataset supports studies around transfer
learning and domain adaptation. We demonstrated that when
trained on the base dataset, the models performed as well
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or better on the narrow, target domain. We would anticipate
that by first training on the base dataset and leveraging
domain adaptation techniques, this performance would only
further increase. Additionally, it is interesting to ask whether
given a target domain, is the entire base dataset equivalently
useful for training? That is, is the broadest possible dataset
the best for initial training, or are some samples too
different and should be discarded or phased out during the
training process?

Next, while the dataset was annotated with instance masks,
we used only the associated bounding boxes (for the detection
methods) or instance centroids (for the density-estimation
methods). Performing instance or panoptic segmentation would
be highly valuable, however, current SOTA methods do not
scale well to hundreds of instances as required by this task.
We hope this work and dataset motivate the development of
segmentation methods which can handle such a large number
of entities.

We have focused only on the healthy kernels for the present
analysis as it is the central component of the motivating
application. However, the dataset contains multi-class labels;
whether learning the additional classes aids in the primary task
is the focus of future research. Incorporating these additional
classes introduces the challenge of handling significant class
imbalance, as all of the other classes are extremely rare compared
to the healthy kernels.

For researchers specifically interested in edge-deployment,
this dataset and benchmarks offer a starting place to explore
numerous topics in this area so performance can be compared.
Since the outset of this work, newer models like EfficientDet
and DETR have shown improved performance over the models
explored here. However, they have not yet been exhaustively
tested in the small-size-high-count realm like the present ormade
easily deployable to mobile through the support of necessary
layers; we hope this work will encourage both. The development
of other lightweight frameworks and backbones, quantization
methods, as well as improved target hardware itself would all
benefit from further study.

6. CONCLUSION

An edge-deployable automated kernel counting model is a key
application for improving management decisions for farmers.
Such a model may be used on a mobile device during inspection
of a field or on robotic inspection and treatment devices which
are becoming more prevalent in precision agriculture. In this
work we have constructed several different models from the
counting-by-detection and density-estimation paradigmswith an
eye toward fast, lightweight models which could be deployed to
mobile. While we have by no means performed an exhaustive
study on the different varieties and parameterizations of
detection and density-estimation techniques, we have established
that there are numerous ways to produce accurate, lightweight,
deep learning-based counting and localization models, amenable
to mobile deployment, for this key agricultural task.

Central to this work is the creation and release of a dataset
which includes over 300 challenging images from a broad
domain, 60 images of highly constrained images which mirror
those likely seen by such a mobile application, and a smaller set
of 29 images containing a large number of ears and kernels. A key
goal of creating this dataset was to engage researchers on both the
algorithm and application sides of machine vision for agriculture
and we believe this dataset is a powerful step in this direction.
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