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» . . .the photoreceptor and
ion channel were intimately
linked, forming a single
protein. . . «
We did not expect that research on the

molecular mechanism of algal phototaxis

or archaeal light-driven ion transport

might interest readers of a medical

journal when we conceived and per-

formed our experiments a decade ago. On

the other hand, it did not escape our

attention that channelrhodopsin is helping

an ever-increasing number of researchers

to address their specific questions. For

example, the channelrhodopsin approach

is used to study the molecular events

during the induction of synaptic plasticity

or to map long-range connections from

one side of the brain to the other, and to

map the spatial location of inputs on the

dendritic tree of individual neurons. The

current applications have been summar-

ized in a number of recent reviews (Fenno

et al, 2011; Yizhar et al, 2011; Zhang et al,

2011). Here, we give personal insight into

the history of the discovery of channel-

rhodopsin and a biophysical perspective

on this remarkable class of proteins that

has been the main topic of our research

since the 1990s.
Channelrhodopsin’s roots

The discovery of channelrhodopsin is based

on two quite different research fields,

studies on living algae and experiments

on reconstituted microbial rhodopsins.

A number of researchers have char-

acterized the swimming behaviour and

light responses of motile microalgae

over at least 140 years (Fig 1A). Early

studies on green microalgae root back to

L.G. Treviranus (Treviranus, 1817) and

behavioural responses were described

by A. Famintzin from St. Petersburg

University in 1878 (Famintzin, 1878).

During helical swimming of the green

alga Chlamydomonas, its orange eye

signals to the flagella to alter the flagellar

beating plane (Mast, 1916). Researchers

at Stanford University implicated Mg2þ

and Ca2þ in the behavioural responses
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and identified the role of Ca influx in

flagellar beat frequency changes (Halldal,

1957, Schmidt & Eckert, 1976). Then Oleg

Sineshchekov from Moscow State Uni-

versity recorded electrical light responses

from Haematococcus pluvialis, an alga

known for the production of the anti-

oxidant Astaxanthine (Litvin et al, 1978).

Oleg used a suction pipette technique

applied at the time by Dennis Baylor for

recording photocurrents from bovine

photoreceptor rods and cones. But Oleg’s

publication gave no hints about the type

of photoreceptor involved. Kenneth W.

Foster however, a physicist at Mount

Sinai School of Medicine re-analysed

published action spectra for phototactic

movement of algae and postulated that
the sensory photoreceptor is rhodopsin

(Foster & Smyth, 1980). Ken substan-

tiated his claim by restoring behavioural

light responses in blind algae by com-

plementation with retinal and retinal

analogues (Foster et al, 1984). However,

the photoreceptor field did not really

understand the importance of the claim

and progress remained slow. Years

later, Peter Hegemann’s former graduate

student Hartmann Harz recorded photo-

currents from Chlamydomonas by revi-

talizing Oleg’s suction pipette technique

for a Chlamydomonas cell wall-deficient

mutant. He recorded action spectra,

which led to the proposal that the

photocurrents were mediated by a rho-

dopsin, the photoreceptor that also med-

iates phototaxis and phobic responses

(Harz & Hegemann, 1991). The ultra-fast

appearance of the photoreceptor current

suggested that the photoreceptor and

ion channel were intimately linked,
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forming a single protein complex (Braun

& Hegemann, 1999).

In parallel, biophysicists had character-

ized the precise nature of light-regulated

ion transport across cellular membranes.

Some of these studies started with

investigations on animal rhodopsin and

even suggested rhodopsin-mediated

light-induced calcium entry with rhodop-

sin itself as the carrier for calcium (Cone,

1972). Several decades later, we know

that animal-type rhodopsins are G pro-

tein-coupled receptors indirectly modu-

lating ion channel activity via signalling

molecules. A big surprise was the

discovery of the first rhodopsin in a

procaryote (Oesterhelt & Stoeckenius,

1971). This ‘bacteriorhodopsin’ is a

light-driven proton pump andmeanwhile

the best-studied membrane protein. For

our considerations important are the

electrical studies on bacteriorhodopsin

(BR) which started in the mid-1970s

(Bamberg, 1977; Herrmann & Rayfield,

1976), confirming and detailing the light-

activated proton pumping function of BR.

One of the big advantages of bacterior-

hodopsin was its ready availability and

its unusual stability at room temperature.

Paradigms changed with the tremendous

success of gene technology, when pro-

teins could be investigated without the

need of protein purification, simply by

expressing the protein in the cellular

system of choice. Even though a lot

was already known about BR, the exact

voltage dependence of proton pumping

was unclear. Therefore, Ernst Bamberg

and Georg Nagel decided to study BR in

the membrane of an animal cell, the

oocyte of Xenopus laevis (Fig 1B). This

gene transfer allowed the exact determi-

nation of the voltage dependence of light-

activated proton pumping in a wide

voltage range (Nagel et al, 1995). Later,

the Cl�-pump halorhodopsin and the

phototaxis-mediating sensory rhodop-

sins were also studied successfully in

oocytes (Schmies et al, 2001).
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» . . .demonstrated the
functionality of ChR2 in
the retina of blind mice,
hippocampal neurons, spine
of living chicken embryos,
PC12 cells, mouse brain slices
and transgenic worms. . . «
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Discovery of channelrhodopsins

After many years of hard work, the

Hegemann group had not succeeded in

purifying the photoreceptors biochemi-

cally, due to the scarceness, instability,

and heterogeneity of the proteins. A new

approach needed to be initiated. In 2001,

Suneel Kateriya in the Hegemann group

identified novel DNA sequences that

encoded for large microbial-type rhodop-

sins in a cDNA data bank from Chlamy-

domonas. To explore their function, our

fruitful collaboration started when Georg

Nagel expressed the two rhodopsins in

Xenopus oocytes. We demonstrated that

both DNAs encode directly light-gated

cation channels. We named these new

genes channelrhodopsin-1 (ChR1) and

channelrhodopsin-2 (ChR2; Nagel et al,

2002, 2003; Fig 1C and D). These

experiments were the undisputable proof

for a completely new class of rhodopsins.
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Figure 1. The discovery of channelrhodopsins.

A. Phototaxis of the Chlamydomonas wild type strain

B. Electrophysiological recording from oocytes (in the

oocyte) currents, e.g. mediated by rhodopsins.

C. Light-induced currents mediated by channelrhodo

D. Model of channelrhodopsin opening, following ligh
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During this collaboration we also

expressed ChR2 in human kidney and

other mammalian cells, showed large

light-induced membrane depolarization,

and suggested that ChR2 could also be

used in other cells to depolarize these

cells with light (Nagel et al, 2003).
Transfer to neuroscience,
take-off of optogenetics

Taking our suggestion into account,

several groups began to work with ChRs,

primarily with a truncated version of

ChR2 that we had shown to be sufficient

for light-gated cation conductance. The

seminal publications appeared in 2005

and 2006 and came from the laboratories

of Zhuo Pan, Karl Deisseroth, Stefan

Herlitze, Hiromu Yawo and Alexander

Gottschalk, who demonstrated the func-

tionality of ChR2 in the retina of blind
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mice, hippocampal neurons, spine of

living chicken embryos, PC12 cells,

mouse brain slices and transgenic worms

(Bi et al, 2006; Boyden et al, 2005;

Ishizuka et al, 2006; Li et al, 2005; Nagel

et al, 2005). These publications were

the beginning of the field that we now

term optogenetics. In this emerging field,

researchers express light-activated pro-

teins in well-defined cell subpopulations

of a neuronal context and activate these

cells by using short light pulses. Opto-

genetic studies started earlier, for example
B
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in Gero Miesenböck’s and Rich Kramer’s

laboratories, when researchers imple-

mented photosensitive actuators into

host cells (Banghart et al, 2004; Zemel-

man et al, 2002). These systems turned

out to be either too complicated or the

electrical response was too slow. How-

ever, neuroscientists were sensitized for

approacheswith light-modulated proteins.

The recent success of optogenetics is to a

large part based on the simplicity of the

merely 315 amino acid long ChR2 frag-

ment, which only needs easily available

and cheap retinal as a co-factor. As the

mammalian brain already contains retinal,

no exogenous addition is required.

The success of ChR2 encouraged us

and a number of neurobiologists to test

halorhodopsin, a light-driven chloride

importer and membrane hyperpolarizer,

as an additional optogenetic tool for action

potential suppression, which worked

astonishingly well (Zhang et al, 2007).
The architectural design and
function of channelrhodopsins

ChRs are composed of seven trans-

membrane helices that form the ion

channel and a long C-terminal extension
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Figure 2. Cartoon of the Channelrhodopsin 7TM-fra

data of Kato et al (2012) with key residues shown in

access channel (magenta), central gate (blue), and inn

Schiff base is seen in red.
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of unknown function, which is routinely

omitted for optogenetic purposes. The

light-absorbing chromophore retinal, a

vitamin A derivative, is embedded within

the hydrophobic center of the seven

helices (Fig 2). The retinal is connected

to a conserved lysine via a Schiff base

linkage (C––N), which is protonated to

shift the absorption into the visible range

of the spectrum. The colour of the

protonated retinal Schiff base (RSBHþ)

is fine-tuned by the distance of the

negatively charged counter ion that

together form the active site (Fig 2) and

the location of a few polar residues

around the retinal polyene chain. Light

absorption by retinal leads to isomeriz-

ation, followed by a protein conforma-

tional change and opening of the ion pore

(Fig 1D). In the light-activated ion pumps,

bacteriorhodopsin and halorhodopsin

undergo similar conformational changes,

which lead to active proton export and Cl�

import, respectively. Interestingly, internal

and external pHs strongly influence

ChR2 channel closing and recovery from

desensitization (Nagel et al, 2003).

The structural changes are reversed

during closure of the conducting pore and

reversion to the dark state.We now know

that this reaction path differs from the
e
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er gate (orange), OH-cluster green, and the retinal
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opening path and that the kinetics of dark

state recovery is many orders of magni-

tudes slower. Besides the OH-cluster,

two residues, C128 and D156 (DC-pair in

Fig 2) are of fundamental importance

for both channel opening and closing,

and mutation of either residue results in

a dramatic increase of the open state(s)’

lifetime.
Perspectives

Our expectations for future applications

of ChR are high. However, ChRs show

clear limitations, such as the small

conductance. We may be able to widen

the pore by molecular engineering, but

presumably at the cost of destabilization

and thermal activation in darkness.

Selectivity can be changed towards

higher or exclusive Hþ conductance as

found naturally in ChR from the halotol-

erant alga Dunaliella salina (Zhang et al,

2011). Likewise, ChR is tunable towards

higher selectivity for monovalent or

divalent cations. But greater selectivity

for Kþ over Naþ, to be used for light-

controlled hyperpolarization of host

cells, will be very difficult to achieve.

Moreover, the highly appreciated red-

shifted absorption is limited to around

630 nm due to thermal activation (dark

noise) of red light-absorbing rhodopsins

even when synthetic retinal analogues

are used as chromophores.

Despite these limitations, engineering

of ChR and other microbial rhodopsins

will progress and, moreover, countless

ChR variants will be discovered from

the hundreds of new algal genomes

sequenced. Better solutions for targeting

ChRs into membrane subareas will be

found, directing them into organelles,

making them bimodal switchable, con-

trolling expression more accurately, and

guaranteeing better turnover and photo-

stability for retinal prosthesis and vision in

bright light. ChRswill be further optimized

for two-photon microscopy and many

novel unprecedented variants will be

identified. Moreover, ChRs may become

commonly used analytical tools or even

therapeutics for treating specific diseases.
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