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ABSTRACT

RNA molecules are able to bind proteins, DNA and
other small or long RNAs using information at pri-
mary, secondary or tertiary structure level. Recent
techniques that use cross-linking and immunopre-
cipitation of RNAs can detect these interactions
and, if followed by high-throughput sequencing,
molecules can be analysed to find recurrent elements
shared by interactors, such as sequence and/or
structure motifs. Many tools are able to find se-
quence motifs from lists of target RNAs, while oth-
ers focus on structure using different approaches to
find specific interaction elements. In this work, we
make a systematic analysis of RBP–RNA and RNA–
RNA datasets to better characterize the interaction
landscape with information about multi-motifs on
the same RNAs. To achieve this goal, we updated
our BEAM algorithm to combine both sequence and
structure information to create pairs of patterns that
model motifs of interaction. This algorithm was ap-
plied to several RNA binding proteins and ncRNAs in-
teractors, confirming already known motifs and dis-
covering new ones. This landscape analysis on in-
teraction variability reflects the diversity of target
recognition and underlines that often both primary
and secondary structure are involved in molecular
recognition.

INTRODUCTION

Interactions between molecules in cells can influence myr-
iad of functions, from localization to co- and post- tran-
scriptional regulation, mediated by degradation or stabi-
lizations of transcription products. The scenario of all pos-
sible interactions diversifies based on the principal actors of
this interplay: protein, RNA and DNA. RNA-binding pro-

teins (RBPs) can be classified by sequence and/or structural
preference, often ascribed to specific RNA binding domains
(1,2).

The study of RBPs has witnessed an increasing attention
in the last decade, mostly due to the rise of high-throughput
screening assays like Cross-Linking ImmunoPrecipitation
(or CLIP-Seq) and derived techniques (PAR-CLIP, iCLIP,
eCLIP), but a plethora of specific techniques emphasizing
some aspects over others has been developed (3,4). These as-
says allow inquiring the landscape of RBP interactions by
forcing in vivo covalent bonds between proteins and their
RNA targets, followed by antibodies pull-down and high-
throughput (HT) sequencing. In this way, it has been possi-
ble to shed light on the binding-sites of NOVA1 and NOVA2
in the mouse brain (5), or other splicing factors such as
SRSF1 (6), hnRNP C (7) and FMRP (8), as well as a num-
ber of other RBPs with different post-transcriptional regu-
lation roles in the cell (2).

Another well studied protein/RNA–RNA interaction in-
volves microRNAs (miRNAs). MiRNAs, small RNA se-
quences usually composed of 22 nucleotides, are able to
bind AGO proteins inducing mRNA silencing of specific
genes that have complementary seed sequence. The seed
sequence, a short seven nucleotides region at 5′-end of
miRNA, is found to be fundamental for target recognition
and regulatory responses, but additional recognition sites
emerged in several experiments (9–12). Non-canonical seed
pairing in CLASH (Crosslinking, Ligation And Sequencing
of Hybrids) experiments was 1.7-fold more frequent than
perfect base complementarity (10) and binding sites can oc-
cur both in coding region and UTRs. These new evidences
suggest other crucial features that could reflect binding site
accessibility and strengthen the interaction with miRNAs.
Some information about hybridization energy and struc-
tural context, that is known to contribute to miRNA/target
interactions (13–17), is used in the prediction of new possi-
ble miRNA targets: these methods take into consideration
binding free energy and secondary structure accessibility in
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order to find suitable binding sites. The limitation of these
methods is that they scan only the binding sites and not the
entire mRNA target sequence that could have additional
recognition sites for the AGO protein complex. MiRNA in-
teraction is one of the most studied RNA–RNA interac-
tions, but there are many long non coding RNAs that are
able to bind other RNA molecules and that can be involved
in gene regulation being, for example, competing targets of
microRNAs (18).

In this scenario, there is a discrepancy between the
amount of data available and the accuracy of current al-
gorithms capable of extracting meaningful information,
additionally it must be noted that each of the computa-
tional methods deputed to information extraction from
RBP/miRNA/RNA HT data has a different and often
unique approach.

Of particular interest is the motif discovery problem,
which presents itself as the search of common elements (in
terms of primary sequence or secondary structures) that
justify the molecule selection induced by the assay. A de-
tailed review of recent methods developed to address the
motif problem has been presented by Morris et al. (19).
At primary sequence level, motif models complexity can be
classified by different categories: position-specific sequence
matrices (PSSMs and multiple PSSMs) (20), base neigh-
bor dependent (diPSSM and HMM) (21,22) that take into
account also dependencies between nucleotide positions,
and Higher-order dependencies that are able to capture tri-
nucleotide or other higher-order interactions (23). At sec-
ondary structure level, structural complexity can be de-
scribed by site-specific structural context (the ensemble of
all structural preferences) (24), Position-specific structural
context (described by PSSM-like models) (25) or Higher-
order structural dependencies (structure or sequence de-
pendent) (26,27). The complexity of the structural alphabet
used to describe motifs found with one of these methods
increases from site-specific to higher-order structural con-
text, and a motif can be represented by a single represen-
tative structure (28) or an ensemble of potential structural
conformations (29).

Some interactions are dictated by sequence patterns,
while others by structural patterns, that are recognized and
bound by the interaction partner. Often, a given RNA
molecule contains more than one motif, and the relation-
ships, interactions and, possibly, cooperativity among dif-
ferent motifs is unclear and hard to study, often because of
the lack of sufficiently accurate and fast tools for their iden-
tification and mapping.

Recently, we developed BEAM (BEAr Motif finder) (27),
which exploits the BEAR secondary structure encoding
(30) to discover structural interaction motifs by means of a
heuristic simulated annealing procedure, which proved to be
suited for protein–RNA interaction HT datasets and their
typical size. The evidence of novel and accurate techniques
to analyze RNA interactions has laid the foundations for
finding new features that characterize RBPs and microR-
NAs interaction with target RNAs using the BEAM algo-
rithm. The variability in RNA binding sites is the main fo-
cus of this work, whose purpose is to explore structural and
sequence signals in target RNAs that could play a role in
RNA and protein recognition. With this in mind, we further

developed the BEAM software, which was previously able
to only work on structural motifs, by adding a module for
the identification of RNA sequence motifs and by improv-
ing the overall search strategy in order to find co-occurring
sequence and structure motifs. We systematically analyzed
the co-occurrence of RNA sequence and structural motifs
involved in RBP and miRNA binding, finding relationships
that can better explain the modes of recognition. First, we
considered known RBP binding preferences, recapitulating
and often expanding and clarifying the interaction motifs
and their relationships. Then, we tackled the issue more sys-
tematically, by the analysis of large protein–RNA interac-
tion datasets, finding novel motifs and general trends and
rules. Finally, we considered the interaction between miR-
NAs or ncRNA and their targets, identifying structural de-
pendencies of the target sites.

MATERIALS AND METHODS

BEAM sequence module and statistical tests

We improved the BEAM algorithm with the addition of
a primary sequence motif discovery module. In particu-
lar, now BEAM2.0 can search for primary sequence motifs
during a standard secondary structure motif-seeking run.
Since the nature of the problem is separable, the simultane-
ous sequence and secondary structure motifs runs are split
into different threads using java. The heuristic strategy for
the primary sequence motifs discovery is the same we fol-
lowed for the original BEAM formulation (27), but with
a match/mismatch 3/-2 substitution matrix for nucleotides
and no restraints on the motif length, to allow for short se-
quence motifs.

For both sequence and structure motif discovery, the sig-
nificance of a motif model is assessed by rejecting the null
hypothesis that the medians of the alignment score distri-
butions induced by the molecules involved in the creation
of the motif and the background are equal. This is accom-
plished by means of a Mann-Whitney-test (MW): this non-
parametric test is used to compare the medians of the scores
distribution, in particular the scores of the RNA sequences
containing the motif aligned against the motif model ver-
sus the background scores, estimated by sampling Rfam
sequences having similar length and fraction of predicted
paired nucleotides (see the (27) for more details on Rfam
binning).

On top of the core software, an additional python module
has been added to post-process results in order to better de-
scribe the motif landscape in terms of co-occurrence of pri-
mary sequence and secondary structure motifs. To address
this, for each run, now BEAM reports the distance distri-
bution between pairs of motifs present on the same RNAs,
as well as percentages of co-occurrence and motif mutual
information. An estimation of the significance of both co-
presence and mutual distance is made respectively with
an Hypergeometric (HG)-test and a Kolmogorov–Smirnov
(KS)-test.

The HG-test is computed by considering the presence or
absence of a motif in a certain RNA and testing if the two
motifs are co-present more than by chance alone. The prob-
lem is restated as a conditioned sampling problem (more
details in the Supplementary Materials).



4960 Nucleic Acids Research, 2019, Vol. 47, No. 10

The KS is used here to assess if two motifs have a signif-
icantly enriched distance. For each motif we build a distri-
bution based on the starting positions on involved RNAs.
We state that two motifs have an enriched distance if the
distribution given by the difference of the two starting po-
sitions (on each RNA containing both) has a definite peak,
detectable by the algorithm encoded in the peakutils python
library. Since the random distribution given by the differ-
ence of two uniform random variables is a triangular curve,
we use a KS with the null hypothesis that our difference dis-
tribution has a triangular distribution with suitable param-
eters (Supplementary Materials).

In this work, all the experiments were conducted with the
following parameters:

• three random starting points for the simulated annealing
for each motif (-R 3)

• three motifs in sequence and three motifs in structure
(-M 3 -N t)

The (N)ucleotide parameter is the new addition (a full list
of the parameters can be found in (27)): a run with the (N)
flag activated searches for (M) motifs in structure and (M)
motifs in sequence. The choice of (R) = 3 is due to optimal
results obtained in the artificial testing done in the original
paper. Moreover, stability tests done with the data presented
in this work have shown satisfactory results (Supplementary
Materials).

DoRiNA and eCLIP dataset

All high-throughput data involving RNA interacting with
RBPs was downloaded from the DoRiNa database (31)
and from the ENCODE project database (32,33). From
DoRiNa, we collected 104 HITS-CLIP/PAR-CLIP exper-
iments, both from human (hg19) and mouse (mm9). From
ENCODE, we collected 223 eCLIP experiments only from
human (hg19), with 150 unique RBPs spanning two differ-
ent cell types (K562 and HepG2). Then, for both DoRiNA
and ENCODE datasets, we extended the RBP-binding re-
gion 100 nt upstream and downstream using Bedtools util-
ities (34) to facilitate the RNA folding prediction with
RNAfold (33). Then, we divided every dataset in two dif-
ferent sub-datasets by mapping every sequence to its ge-
nomic region (coding regions-CDS and Untranslated Re-
gions UTR) by means of the Gencode provided annotation
file; for those RBP known to act in the nucleus on unspliced
RNA (mostly splicing factors SRSF1, HNRNPL, NOVA,
WTAP) we kept the fragments mapping on introns too. The
structure for each RNA was obtained using RNAfold (35)
with default parameters (results presented are, however, ap-
plicable to RNAstructure MFE predictions too, see Supple-
mentary Materials, Table S2). Sequences longer than 500 nt
were filtered out to avoid misleading structure prediction
that can occur with very long primary sequences (36,37). In
this way, we filtered out about 90k sequences out of ∼26
millions in a total of 71 datasets.

The datasets we downloaded had already been processed
and are to be considered post peak-calling, we use all the
available data. The only available filter that we decided to
ignore is the one on the experiment score (e.g. CLIP score).

There are methods available which make use for e.g. the first
1000 intervals with high score (25), but we deliberately used
each interval after the robustness tests done in the original
paper (where we show how BEAM can handle up to 80% of
noise) in order not to cut out any positive information. The
only limitation refers to sequence length in order to obtain
a more accurate prediction.

Every RNA structure was then translated into the BEAR
encoding (30) (the structural alphabet) to be BEAM-ready.

Co-variation analysis

In order to analyze the role of the structure with respect to
the sequence motif, we have tested a two-way approach: We
have simplified the structural alphabet using a 7-characters
encoding, and plotted a logo of the structure underlying the
sequence motif (Supplementary Table S2).

The underlying sequence co-variation in structural mo-
tifs can instead be used as an information to select a mo-
tif among many alternatives. We have used an information-
based approach to perform the sequence covariation analy-
sis within the structure. For each motif found, we have cal-
culated the per-position Shannon sequence entropy on the
relative model Position Frequency Matrix, normalized from
0 to 1, 0 being assigned to fully conserved columns. A sin-
gle value estimation E(PFM) of the sequence conservation
underlying the structural motif is done by taking the mean
of all the involved positions:

E (PF M) = − 1
L

∑
pos ∈{1..L}

∑
c∈{ACGU} PF Mc

pos Log
(

PF Mc
pos

)

where L is the length of the motif model.

miRNA and RNA–RNA interaction data set

The miRNA dataset was composed of miRNA target data
from Helwak and collaborators (10) containing informa-
tion about chromosome coordinates of the mRNA targets.
13 905 molecules formed our collection of mRNAs. For
each of these sequences, we chose the first nucleotide at the
5′ end of the longest stem predicted within each chimeric
CLASH target (hybridization data provided by Helwak
et al., 2013) as reference nucleotide. From this specific nu-
cleotide, as for DoRiNa RBPs datasets, the collections of
target RNAs were extended by 100 nucleotides upstream
and downstream and then folded using RNAfold (35).

In order to extend the landscape of RNA interaction mo-
tifs, we chose the RISE interaction database, that collects
data from different HT experiments in which both interac-
tors are RNA molecules. We downloaded the 87 474 hu-
man interactions and selected only the ones involving non-
coding RNAs and coding RNAs, discarding the coding-
coding interactions and the miRNAs ones (that were pre-
viously analyzed). From the 39 249 total interactions, we
have applied the BEAM2 algorithm to the 39 ncRNA that
had more than 50 target interactors. Also in this case we ex-
tended the binding site region 100 nucleotides upstream and
downstream and we folded the sequences using RNAfold.

Structuration and sequence analysis workflow for miRNAs

To globally analyze the structural trends for miRNA tar-
get sequences, we have converted each target sequence from
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dot-bracket notation to a string of 1s and 0s standing for
paired and unpaired nucleotides, respectively. Each RNA
has been centered at the reference nucleotide (as described
in the previous paragraph) to obtain a superposition, and
structuration was represented as a binary vector S:

Sj = {
s j

i
}

where s j
i = 0 if NT in position i of RNA j is unpaired, 1

otherwise.
For each position of the aligned sequences, the position-

specific mean of Si has been measured, and denoted as the
Position Specific Structuration Score (PSSS).

13 905 random nucleotide sequences (each generated se-
quence has a uniform nucleotide sampling probability for
each position) with the same length were generated, folded
with RNAfold and compared to target nucleotide sequences
from our dataset using TwoSampleLogo (38) to create a nu-
cleotide composition logo. The logo was obtained from 25
nucleotides upstream and downstream with respect to the
central position of the sequences as described in dataset
preparation. Another set of random sequences with the
same GC content of the experimental target sequences was
generated and folded with RNAfold. In order to build this
second random set we have evaluated the GC content fre-
quency for each position in the experimental dataset and
generated random sequences with the same nucleotides fre-
quency in each position. PSSS was measured and compared
to the CLASH experimental data.

RESULTS

RNA binding proteins benchmark

We applied BEAM to 104 CLIP (HITS-CLIP and PAR-
CLIP) and 223 eCLIP experiments corresponding to 45
(CLIP) and 150 (eCLIP) different proteins in vivo, with 15
proteins in common between the two classes of techniques.
The full list of results is reported in the Supplementary
Materials. The CLIP datasets are both from human (hg19,
74 experiments, 13 different cell lines, principally HEK293
cells) and mouse (mm9, 30 experiments, 7 different cell lines,
mostly brain cells and ESC), while eCLIP data is from hu-
man chronic myelogenous leukemia K562 and Hepatocellu-
lar Carcinoma HepG2 cells.

We obtained sequence and structure motifs in order to
find pairs of motifs that act concurrently in the determina-
tion of the interaction. For each dataset we took the best 3
motifs in sequence and structure, respectively, and analysed
their co-coverage in pairs, which is the fraction of RNAs
in the dataset that contain both motifs, and their reciprocal
localization. First we compared sequence and structure mo-
tifs found by BEAM with the reported motifs from corre-
sponding original works, RNAcompete and HTR SELEX
(39), SSMART and SMARTIV (25,40), when available (Ta-
ble 1). Since eCLIP suffers from less experimental noise
than CLIP (41), for proteins of which we had both assays
we reported the eCLIP only if BEAM was not able to re-
trieve the signal in the CLIP datasets.

Results show strong agreement between our predictions
and the known motifs (both in sequence and structure,
when available) for the reported RBPs.

Moreover, for each of the presented motifs, we calcu-
lated the mean Shannon Entropy value. As we could expect
from the absence of sequence motifs superposed to struc-
tural ones, the entropy is high (∼0.9) for all the motifs ex-
cept for SLBP that has an entropy score of 0.1. These re-
sults suggest that sequence covariation would be an excel-
lent guide to choose among different structural motifs, yet
it cannot be considered a conditio sine qua non to determine
the validity of a structural motif, since this tool has origi-
nally been primarily designed to tackle the problem of con-
served structure/non conserved sequence motifs.

We additionally report structural motifs found in the
same datasets, and relative positions between the motifs are
calculated (see Supplementary Table S1 for coverages and
distances between motif pairs).

The RNA motifs identified as binding the ELAVL1
(HuR) protein (42) show agreement with the known U-rich
sequence motif present in 50% of the data. We also identi-
fied a hairpin structure with a 6 nt loop in the 36% of the
RNAs. An overall 18% of the molecules share both the se-
quence and the structural motif and the distribution of the
distance between the two shows a peak at 15nt from the start
of the structural motif. The evidence however is not statisti-
cally significant (KS test against random distance distribu-
tion P-value >0.05, Supplementary Materials Table S1) to
prove both the localization of the sequence motif in the hair-
pin loop and the mutual presence on the same molecules
(HG test pval > 0.05).

RNA molecules binding the quaking (QKI) protein
(9,41) are characterized by a strong sequence motif on
which all methods agree (ACUAA). BEAM could not find
a structure motif in the CLIP dataset, thus we reported the
eCLIP results on the same RBP where a structure motif was
found in 52% of the RNA molecules. A 7nt long hairpin
loop is reported in the 35% of the structures, and both are
shared by the 19% of the whole dataset (HG pval < 0.001).
No preferred distance between the two significantly emerges
(KS pval > 0.05).

The fragile X-mental retardation 1 (FMR1) protein (9)
has multiple RNA-binding domains. The original paper re-
ports two sequence motifs, ACUK and WGGA, which dis-
tinctly interact with KH and RGG domains. Our results
show the WGGA motif, but fail to retrieve the ACUK one,
in favour of a 3nt enriched 3-mer (AGC). The two sequence
motifs are respectively found in 77% and 96% of the RNAs,
shared in the 74% (HG pval < 0.05) and have a significantly
enriched distance peak of 14 nucleotides (KS pval < 0.01).
The structure motif is found in 33% of the RNAs and is a
hairpin structure with a 5–6 nt long loop and small inter-
nal loop 3′ of the main loop, the co-occurrence between the
structure and the two sequence motifs however is not statis-
tically relevant (HG pval > 0.05).

LIN28A (43,44) has a zinc-finger domain CCHC that has
been hypothesized to bind an internal loop in the hairpin
containing the sequence motif, at variable distances (45,46).
The sequence motif that BEAM identifies is similar to the
one found by other methods: the motif found in the data
from Cho and colleagues is found in 38% of the RNA, and
the structure motif shows an internal loop structure in the
hairpin, in 37% of RNAs. Both occur in 14% of the RNA
(HG pval < 0.001). The data from Hafner and colleagues
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Table 1. Comparison with known motifs from various sources. The first column shows the BEAM results with sequence and structural motif logos.
Alongside the structural logos, the mean Shannon Entropy (E) of the underlying sequence. Structural logos are displayed in qBEAR (Supplementary
Materials Table S5); the second column shows the motifs reported in the original papers, when available (exception: SLBP interaction motif has a better
representation in the SMARTIV paper); the third column contains the top reported motifs by SSMART along the pairing probability found in the structural
context of the sequence motif; the last column contains the motifs reported both by RNAcompete and HTR SELEX

led to similar results: the sequence motif is found in 58% of
the RNA and the structural hairpin with an internal loop
is found in the 40%, with both occurring in the 23% of the
molecules.

FUS (47), an RNA binding protein whose muta-
tion can generate two incurable neurological dis-
eases (ALS––Amyotrophic Lateral Sclerosis and
FTLD––Frontotemporal Lobar Degeneration), has a
Zinc finger domain (RanBP2-type) that recognizes a vari-
able length hairpin loop that is found by BEAM (it finds
different structural motifs with variable loop lengths) and
a sequence motif that is in agreement with the top motif
reported by SSMART (HG pval < 0.01).

SRSF1 (6,48) has a role in preventing exon skipping and
it controls the accuracy of splicing and alternative splicing.
This protein interacts by RS domains with other spliceoso-
mal components and it is known to bind purine-rich RNA
sequences. It recognizes three reported motifs in the origi-
nal paper, all composed of poly-purinic stretches. Both the
predictions by HT SELEX and by the original paper are in
agreement with our sequence motif. The structural motifs
found are two, one with a symmetrical internal loop and a
4 nt hairpin loop and the other with a longer 7 nt hairpin
loop. The signal is found respectively in the 26% and 29%
of the data, shared by the 19% (HG pval < 0.001) and have
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Figure 1. Absolute frequency of co-localized pairs of motifs in the CLIP (left) and eCLIP (right) datasets. The majority of sequence-structural pairs are
centered around 19% with extreme cases of ∼40% (orange line). More cases of co-localization on RNAs are present in the sequence-sequence pairs while the
structure-structure pairs are relatively low, with a mean of 10%. eCLIP results show a generalized higher co-localization because of the lower experimental
noise produced by the assay.

an enriched distance of 63 nt (KS pval < 0.01) between the
two structures.

The RNAs binding the SLBP protein (48,49), involved in
histone pre-mRNA processing, is known to bind stem-loop
structure. BEAM results within an eCLIP dataset, shows
that SLBP targets are enriched in a long sequence motif in
perfect agreement with the data reported by SMARTIV and
HT SELEX, included in a short stem with a 4 nt hairpin
loop. However the data is not sufficient to statistically con-
sider the two motif to be co-localized significantly (KS pval
> 0.05). The sequence motif is present in 66% of the RNAs
while the structure motif is in 59%. Both are present in 51%
of the RNAs (HG pval < 0.001).

RNA binding proteins landscape

We studied the pairs of motifs generated in each experiment
dataset to better characterize the landscape of interaction.
We divided the results in 3 classes, characterized by the mo-
tif implicated: sequence-sequence pairs, sequence-structure
pairs, structure–structure pairs. A global analysis on all the
motif pairs, conducted by plotting the distribution of mo-
tif pairs co-coverage for each dataset (CLIP and eCLIP),
shows a general trend of low co-occurrence of motifs on the
RNAs (Figure 1). This is probably due to the inherent noise
in the CLIP techniques, since the co-localization distribu-
tion moves to higher values for the eCLIP datasets (t-test
P-values < 0.001 for all three classes in both datasets).

We analyzed the top sequence and structure pairs in
eCLIP datasets (ranked by co-coverage) and reported some
interesting results (for a full list of results, see Supplemen-
tary Materials).

RBM5, a component of spliceosomal A complex that
is able to regulate alternative splicing of target mR-
NAs, contains two zinc finger domains. Results show
the sequence motif ‘GGGAGGUGG’ in 70% of the
dataset and the structure motif (in qBEAR notation,
a reduced version of the alphabet with 19 charac-
ters instead of 83, details in Supplementary Materials)
‘z**zzzzzccczzzxxxxxzzzzcczzz****zz’ in 69% of sequences.
Together these two are present in 45% of the molecules (HG
pval < 0.01). The structural motif shows a symmetrical in-

ternal loop situated in a short hairpin loop of about 5nt,
and located outside the binding site (Figure 2). This is con-
sistent with previous findings about other ZF domains (e.g.
LIN28A Zinc Finger), that is known to guide the protein to
the interaction hairpin loop and has a similar structural mo-
tif (11). A similar structural motif is found in the LIN28A
dataset, with which RBM5 share a ZF domain (Supplemen-
tary Materials, Figure S2).

TIAL1 (a protein involved in translational control, splic-
ing and apoptosis) shows preference for U-rich sequence
motifs with a sequence motif present in 65% of targets and a
structure motif ‘zzzzzcc*zzzzxxxxzzzzzz*zzz’ that is shared
by 68% of mRNAs (HG pval < 0.01). Together these are
present in 45% of the molecules. This protein has three
recognition motifs and is known to bind adenine and uri-
dine elements. In the TIAL1 eCLIP dataset, the sequence
motif is located in the binding site, while the structural mo-
tif has no enriched position (Figure 3), yet it has signifi-
cantly higher scores than the background (Mann-Whitney
P-value < 0.001) within the BEAM scoring model. A sim-
ilar sequence motif is found in the ELAVL1 dataset, with
which TIAL1 share a common RRM domain (Supplemen-
tary Materials, Figure S2).

miRNA sequence and structure motifs

Sequence analysis of target RNAs captured by CLASH
binding miRNAs has shown an enrichment in GC con-
tent along the target region interacting with microRNA.
The local increase in this composition is consistent with the
GC percentage in microRNA seed sequences, reflecting the
complementarity of the two RNA strands. The sequence in-
formation obtained aligning the target sequences along the
interaction sites have confirmed previous analyses about the
importance of GC content in miRNA recognition (11) to-
gether with a novel signal about how structure can influence
microRNA interaction. In fact, a global analysis of struc-
turation trends reveals a preference in more structured nu-
cleotides in the position corresponding to the microRNA
interaction site as in Figure 4.

The overlapping of the structure trend and sequence pref-
erence in GC content appear to be localized in the same
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Figure 2. RBM5 interaction landscape. Top: sequence and structure motifs shared by 45% of the RNA molecules. Bottom: location of sequence (left) and
structure (right) motifs; the residue in position 0 corresponds to the start of the binding site reported by the experiment. Lower right: score distributions
of input sequences and background sequences with respect to the motif model.

Figure 3. TIAL1 interaction landscape. Top: sequence and structure motifs shared by 49% of the sequences. Bottom: location of sequence (left) and
structure (center) motifs; the residue in position 0 corresponds to the start of the binding site reported by the experiment. Lower right: score distributions
of input sequences and background sequences with respect to the motif model.

position, corresponding to miRNA binding sites suggest-
ing that, before the interaction, target transcripts are more
structured in these sites compared to flanking regions. Re-
sults do not change if we take into account 10 sub-optimal
secondary structure predictions for each RNA sequence
(Supplementary Materials, Figures S3 and S4).

In order to validate this result with respect to a back-
ground, we compared this data with an equal number of
randomly generated sequences of the same length with
the same nucleotide composition for each aligned position
(see Materials and Methods) and then folded them using

RNAfold. Results of the comparison of real targets and
control sequences reveal the same preference for structured
regions when GC content increases. This same structura-
tion trend decreases in the real data when the GC percentage
of nucleotide composition decreases under 0.5 in the bind-
ing site region (Supplementary Figure S1). This data re-
veals that primary sequence specific composition influences
structure conformation, leading to an increase of paired nu-
cleotides produced by variations in nucleotide composition
related to guanine and cytosine abundance in miRNA tar-
gets across the miRNA binding site. This variation in nu-
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Figure 4. Structural trend and sequence motifs for miRNA targets. Red
lines correspond to PSSS mean score; the weblogo shows the sequence mo-
tif identified (top) in that specific regions compared to background (bot-
tom). Here, position 0 corresponds to miRNA binding site as described in
methods.

Figure 5. Overview of motifs results for miRNA targets. Each spot is a
sequence-structure motif pair found in one of the 383 miRNA set of tar-
gets. Ten representative pairs are shown in red circles. The size of the spot
is proportional to the size of the dataset and the color represents the co-
coverage, the position along x- and y- axes are respectively the reverse log10
P-value for structure and sequence motifs.

cleotide composition is important for the interaction and
it also generates structural preferences. In fact, the signal
is not specific for certain groups of targets (Supplementary
Figure S2), defined as specific miRNAs’ target sets. Even if
miRNAs have different unique seed sequences, the displace-
ment in nucleotide composition generates a structure trend
shared by the vast majority of target RNAs.

Common structure interaction motifs

We have shown that an enrichment in GC content generates
a typical structure trend, but this structure could be part of
a specific structure motif. To investigate further, we used the
BEAM2.0 algorithm to discover common motifs, shared by
all the miRNA targets as a whole. Motif discovery on the
whole dataset revealed that some specific motifs are shared
by ∼30% of target genes. Since the found structural motifs

seem not to be specific for all targets under miRNA con-
trol (Supplementary Table S2), we looked for the presence
of motifs in groups of mRNAs that interact with the same
miRNA. The results of motif finding are schematized in
Figure 5, with the some specific examples highlighted with
red circles, and listed in Table 2.

The motifs found by BEAM are, at the structural level,
all similar and are in general hairpin structures, some per-
fectly paired, some presenting internal loops or bulges. At
the sequence level, they are all complementary to seed se-
quences (this is consistent with the high specificity of the
miRNA/mRNA interaction for target recognition). The se-
quence motifs confirm also the GC enrichment found in the
global analysis of target genes and the structural motifs ob-
tained, all similar, are in agreement with the structuration
trend.

RNA motifs in RNA–RNA interactions

The analysis of sequence and structure motifs in RNA–
RNA interactions has shown some interesting motifs.
The Terminal differentiation-INduced Non Coding RNA
TINCR is known to be involved in cancer as tumor suppres-
sor and it regulates prostate cancer cell proliferation, migra-
tion and invasion (50). It is a 3.7 kb long non-coding RNAs
that in normal condition is able to control human epider-
mal differentiation (51). Our data shows that 48% of the 258
target RNAs share a C-rich sequence motif ‘CCCCUCC’
and 40% of molecules have a specific structure in the bind-
ing site region ‘zzzzzzzz*cczzzzxxxxxxzzzzz*zzzzzzz’. The
sequence and structure motifs co-exist in only 16% of the
targets and that is not sufficient to reject the hypothesis that
it is due to chance (HG pval > 0.05) (Figure 6).

Another important ncRNA, XIST, is located in the nu-
cleus and it is involved in X chromosome silencing in mam-
malian females to provide equal dosage distribution be-
tween male and female (52). Motif discovery with BEAM2
shows that 73% of XIST targets share the ‘UCUGAG’ se-
quence motif and 57% of the molecules have the struc-
ture motif ‘**zzz*czc*zzzzxxxxxxzzzz**zz****zzz’ mostly
located in the binding site region. The two motifs co-exist
in 42% of the molecules but the data is not sufficient to re-
ject the hypothesis that their coupling is due to chance (HG
pval > 0.05) (Figure 7).

DISCUSSION

We conducted a systematic analysis over 104 CLIP and
223 eCLIP datasets to uncover a broad landscape of in-
teractions between RNA-binding Proteins/RNAs and their
targets. Given the current lack of tools able to simultane-
ously and efficiently detect RNA sequence and secondary
structure patterns, we implemented a sequence module for
BEAM, extending the breadth at which it describes an in-
teraction landscape. BEAM has been developed to optimize
execution time when analyzing high-throughput datasets
(CLIP-Seq and similar assays), and now adds a sequence
characterization to the predicted interaction motif. This
module acts independently from the main unit, which looks
for conserved structural motifs. Results with CLIP-Seq and
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Table 2. Ten representative sequence-structure motif pairs. From the first column: miRNAs, the number of interactors for each miRNA, the web logo
of the sequence motif found, the structure motif best representative, sequence motif coverage, structure motif coverage and co-coverage of the pair. Last
column contains an estimate of the enriched distance (if present) between sequence and structure motif. If the two motifs overlap, the model structure in
the fourth column as a color-coded sequence motif, otherwise a KDE is shown in the last column (in nucleotide units)

eCLIP data are in agreement with recent findings (repre-
sented by HT SELEX and SSMART), and add a struc-
tural information layer which may be disjointed from the
sequence motif. Although the BEAM software has been
demonstrated to work well with noisy datasets (up to 80%
of unrelated data), CLIP-Seq data may be difficult to anal-
yse, given the possibly large proportion of unspecific RNAs
that the method can detect amidst those that are really able
to interact with the immunoprecipitated RBP; however, the
eCLIP assay has proven a better technique and overcomes
CLIP-Seq limitations by reporting less unspecific targets
(33,48). In few cases, we have been able to identify con-
served structural motifs that are found at specific distances
from the sequence motifs, or pairs of sequence-sequence or
structure-structure motifs that have also enriched distances.
Some words should be spent about the aspect of modularity,
which has been recently reviewed by (1) and (53): The pres-
ence of multiple binding domains on RBP alters the land-
scape of interaction. Dominguez and colleagues have shown

how same singular domains do not guarantee the same sig-
nal structure. Our dataset was not sufficient to extensively
test the modularity of the binding interaction. Yet we can
see from our results how similar proteins sharing one or
two domains may have similar binding partners (domains
shown in Supplementary Materials).

Moving to the landscape analysis with the focus on struc-
tural aspects of miRNA target recognition we show novel
structural characteristics in target genes that could be im-
portant for the specificity of the interaction. Even if the seed
sequence is fundamental for target recognition, also struc-
ture could play a role in the complex mechanism of gene
regulation. Our results show a trend to a more structured
folding in the target region bound by miRNA. This struc-
turation composition reflects a nucleotide variation in the
region with an increment in GC content localized in the
same position. GC enrichment do not change with differ-
ent types of interaction and it is localized in the target re-
gion complementary to the seed, suggesting a role in the
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Figure 6. TINCR interaction landscape. Top: sequence and structure motifs shared by 16% of the sequences. Bottom: location of sequence (left) and
structure (center) motifs; the residue in position #0 corresponds to the start of the binding site reported by the experiment. Lower right: score distributions
of input sequences and background sequences with respect to the motif model.

Figure 7. XIST interaction landscape. Top: sequence and structure motifs shared by 42% of the sequences. Bottom: location of sequence (left) and structure
(center) motifs; the residue in position 0 corresponds to the start of the binding site reported by the experiment. Lower right: score distributions of input
sequences and background sequences with respect to the motif model.

stability of the miRNA–target hybrid. Even if more investi-
gations about hybrid stability are necessary to confirm our
data, these results could open new scenarios about the im-
portance of structure in miRNA interactions, allowing a
better understanding of the recognition mechanisms and,
in principle, a better target prediction.

The RNA–RNA interaction analysis have revealed some
interesting motifs that are enriched in the protein-coding
mRNA targets of a selected number of ncRNA, especially
long non coding RNAs, and their protein-coding targets.

These results may be the starting point to highlight the
mechanism by which these molecules interact with their tar-
gets and how this can affect their regulatory function.

Summarizing, we presented a survey of the landscape of
interaction motifs, using an update of our BEAM method,
by analyzing both sequence and structure motifs indepen-
dently and then combining the information obtained to
better characterize RBP–RNA and miRNA/RNA interac-
tions.
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