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INTRODUCTION 
 

White matter lesions (WMLs), also called white matter 

hyperintensities (WMH), refer to hyperintense signals 

on T2-weighted or fluid-attenuated inverse recovery 

(FLAIR) images. These are largely thought to be due to 

cerebral small vessel disease and are widely prevalent 

among elderly individuals [1]. Histopathologically, 

WMLs may reflect demyelination, axon loss, or gliosis 

of brain white matter [2, 3], and they are associated with 

an increased risk of vascular cognitive impairment and 

dementia [4]. Neuroimaging studies have provided 

strong evidence that WMLs may be a useful surrogate  

 

biomarker predictive of cognitive decline and 

progression to dementia [5]. Consistent with that idea, it 

has been estimated WMLs contribute to nearly half of 

dementias worldwide, though the mechanism remains 

unknown [6–8]. 

 

WMLs are often accompanied by impairments in 

executive function, processing speed, attention, and 

memory [9, 10], and the volume of WMLs is associated 

with cognitive decline in older adults independent of 

brain atrophy [11, 12]. Not surprisingly, resent work 

indicates that the cognitive impairment reflects not only 

the volume of WMLs but also their location. For 
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ABSTRACT 
 

The purposes of this study were to explore the association between cognitive performance and white matter 
lesions (WMLs), and to investigate whether it is possible to predict cognitive impairment using spatial maps of 
WMLs. These WML maps were produced for 263 elders from the OASIS-3 dataset, and a relevance vector 
regression (RVR) model was applied to predict neuropsychological performance based on the maps. The 
association between the spatial distribution of WMLs and cognitive function was examined using diffusion 
tensor imaging data. WML burden significantly associated with increasing age (r=0.318, p<0.001) and cognitive 
decline. Eight of 15 neuropsychological measures could be accurately predicted, and the mini-mental state 
examination (MMSE) test achieved the highest predictive accuracy (CORR=0.28, p<0.003). WMLs located in 
bilateral tapetum, posterior corona radiata, and thalamic radiation contributed the most prediction power. 
Diffusion indexes in these regions associated significantly with cognitive performance (axial diffusivity>radial 
diffusivity>mean diffusivity>fractional anisotropy). These results show that the combination of the extent and 
location of WMLs exhibit great potential to serve as a generalizable marker of multidomain neurocognitive 
decline in the aging population. The results may also shed light on the mechanism underlying white matter 
changes during the progression of cognitive decline and aging. 
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example, declines in complex processing speed correlates 

mainly with anterior WML progression, while declines in 

visual-construction functions tend to correlate of 

posterior WML progression [13]. In addition, increased 

WML volume in the parietal lobes associates with an 

increased risk of incident dementia [14]. Still, the 

relationship between the anatomical location of WMLs 

and cognitive decline is poorly understood. 

Consequently, there is a need to better understand the 

mechanisms underlying the cognitive impairment 

associated with vascular risk factors and WMLs, and to 

improve diagnoses and interventions into vascular 

cognitive impairment and dementia in older subjects [15].  

 

Over the last decades, rapid improvements in medical 

imaging and machine learning technology and greater 

availability of neuroimaging datasets have provided 

opportunities for automatic detection and early prediction 

of cognitive decline [16, 17]. In the present study, we 

investigated the association between spatial maps of 

WMLs and multidomain cognitive performance in 

elderly adults, using MRI (structural MRI and diffusion 

tensor imaging/DTI) and various neuropsychological 

assessments of cognition (nonimpaired, mild cognitive 

impairment/MCI and dementia) with participants in the 

Open Access Series of Imaging Studies-3 (OASIS-3) 

[18]. We also explored whether it is possible to predict 

individual differences in cognitive function using the 

spatial probability maps of WMLs. 

 

RESULTS 
 

Behavioral performance and WML burden 
 

A total of 263 elderly subjects (aged 62-80 years), 

including 122 (46.39%) women, participated in this 

study. The demographic and neuropsychological 

features of the participants are summarized in Table 1. 

Among them, 207 subjects (78.71%) were cognitively 

normal; that is, their scores on the mini-mental state 

examination (MMSE) were within the normal range and 

their clinical dementia rating scores (CDRs) were equal 

to zero. The remaining 56 subjects (21.29%) were 

diagnosed with MCI or Alzheimer’s dementia. The 

volumes of white matter lesions extracted using the 

brain intensity abnormality classification algorithm 

(BIANCA) ranged from 1.21 ml to 41.63 ml (mean: 

7.89 ml). Lesion maps of WMLs segmented by 

BIANCA overlapped well with the manually segmented 

lesion mask. Statistical results revealed that WML 

volume was significantly related to age (Pearson’s 

correlation coefficient r=0.318, p<0.001). Poor 

neuropsychological performance was associated with 

both age and lesion volume. With increasing age and 

WML volume, cognitive performance tended to decline. 

In addition, the correlation between cognition and 

WML volume was more significant than the correlation 

between cognition and age. 

 

Spatial maps of WMLs were predictive of cognitive 

performance  

 

The results of predictions with voxel-level features 

derived from probability maps of WMLs are reported in 

Table 2. In 8 of the 15 neuropsychological testing scores, 

the predicted scores correlated highly with the actual 

scores (p<0.05). The predicted and actual scores from  

the MMSE showed the most significant correlations.  

The RVR model achieved a correlation coefficient  

(CORR) of 0.28 (p=0.003) and a normalized mean square 

error (norm MSE) of 0.38 (p=0.007). In addition, the 

predicted Category Fluency scores of ANIMALS and 

VEG also strongly correlated with the observed scores 

(ANIMALS: CORR=0.26, norm MSE=1.2, p<0.05; 

VEG: COOR=0.26, norm MSE= 0.61, p<0.05). The 

corresponding scatter plots illustrated in Figure 1 show 

the predicated clinical scores from the RVR model plotted 

against the observed scores. 

 

Weights in the RVR model and the association 

between diffusion metrics in the corresponding 

regions and cognition 
 

The top five regions contributing most to the RVR 

model for prediction of different measures of cognitive 

function are listed in Table 3 along with their weights, 

which are arranged from largest to smallest. The 

distributions of model weights were similar. White 

matter regions with large contributions to the RVR 

model mainly included the bilateral tapetum, posterior 

corona radiation, posterior thalamic radiation, and 

anterior limb of the internal capsule. Voxel-level weight 

maps of the RVR model predicting scores in ANIMALS 

is presented in Figure 2, where only voxels overlapping 

the JHU white-matter atlas are displayed. Overall, when 

compared to the anterior WMLs located in the frontal 

lobe, posterior WMLs located in the parietal and 

occipital lobes tended to have higher weights in the 

RVR model predicting cognition in the elderly subjects. 

The top five white matter regions with the highest 

weights in the prediction of cognitive performance are 

shown in Figure 3. 

 

Table 4 summarizes the results of a multivariate linear 

regression analysis of the relation between eight cognitive 

test scores and the mean values of the diffusion metrics in 

the top five white matter regions with the maximum 

weights in the RVR model. For the cognitive test 

ANIMALS, four different types of diffusion indexes in 

the top five weight regions were all significantly related to 

the observed scores (fractional anisotropy /FA: F=4.760, 

p=0.001; mean diffusivity/MD: F=5.135, p=0.0003; axial 
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Table 1. Subject demographics and neuropsychological performance (from the OASIS3 dataset). 

 
Subjects (N=263) Correlation with age Correlation with WMLs  

Demographics 
 

 
 

Age 72.78±4.23 - 0.318** 

Gender (F/M) 122/141 - - 

Education 14.89±1.20 - - 

APOE ε4 status (n%) 109 (41.44) - - 

WMLs volume (mL) 7.89±6.16 0.318** - 

Level 1 249 (94.68) - - 

Level 2 9 (3.42) - - 

Level 3 5 (1.90) - - 

Neuropsychological tests 
 

  

CDR 0.10±0.37 - - 

MMSE 28.36±2.58 -0.062 -0.102 

LOGIMEM 13.86±4.38 0.041 -0.195** 

DIGIF 8.48±2.00 -0.035 -0.104 

DIGIFLEN 6.70±1.11 -0.023 -0.074 

DIGIB 6.55±2.25 -0.034 -0.107 

DIGIBLEN 4.78±1.29 0.018 -0.083 

MEMUNITS 12.69±4.88 0.022 -0.195** 

MEMTIME 14.69±4.88 0.056** 0.033 

ANIMALS 20.59±6.16 -0.175** -0.192** 

VEG 14.10±4.34 -0.138* -0.168** 

TRAILA 32.44±11.77 0.043 0.166** 

TRAILB 88.03±49.69 0.124* 0.069 

TRALIB-A 55.59±43.85 0.128* 0.034 

WAIS 53.49±11.62  -0.129* -0.285** 

BOSTON 27.38±3.16 -0.075 -0.063 

APOE= apolipoprotein E. Level of independence: 1 = Able to live independently, 2 = Requires some assistance with complex 
activities, 3 = Requires some assistance with basic activities. MMSE= mini-mental state examination; LOGIMEM=logical 
memory; DIGIF= digit span forward; DIGIFLEN= digit span forward length; DIGIFB= digit span backward; DIGIFBLEN= digit span 
backward length; VEG=vegetables; TRAILA=trail making A; TRAILB=trail making B; TRAIL B-A=TRAILB-TRAILA; WAIS= Wechsler 
Adult Intelligence Scale; BOSTON=Boston naming test. Pearson’s correlations, controlled for gender and education, were 
used to assess how cognitive performance related to age and volume of WMLs (White matter lesions). *p < 0.05, ** p < 0.01. 
 

diffusivity/AD: F=4.538, p=0.001; radial diffusivity/RD: 

F=5.049, p=0.0003). With the exception of the scores in 

the TRAIL B-A test, AD and RD correlated linearly with 

all the other seven items in the cognitive tests, which were 

predicted with the RVR model. The FA in the top five 

white matter regions was significantly related only to the 

scores of MMSE and ANIMALS tests. 

DISCUSSION 
 

In the present study of 263 elderly individuals, we 

detected significant associations between increasing 

WML burden and declines across multiple cognitive 

functions. Using a multivariate modelling approach, we 

were able to predict multidomain cognitive performance 
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Table 2. RVR model predictions of cognitive functions based on WMLs segmented using BIANCA. 

Neuropsychological tests CORR p MSE p Norm MSE p 

MMSE 0.28 0.003 8.05 0.007  0.38  0.007  

ANIMALS 0.26 0.001 38.34 0.003  1.20  0.003  

VEG 0.26 0.001 18.54 0.001  0.64  0.001  

LOGIMEM 0.25 0.001 19.15 0.001  0.80  0.001  

WAIS 0.25 0.001 135.42 0.006  1.81  0.006  

TRAILB 0.20 0.002 2540.06 0.015  9.48  0.015  

TRALIB-A 0.18 0.003 2016.58 0.030  7.52  0.030  

MEMUNITS 0.17 0.003 24.94 0.040  1.08  0.040  

in elders based on spatial probability maps of WMLs. 

We therefore suggest that variation in WMLs (extent 

and location) contributes to differences in cognitive 

dysfunctions in different domains. 

 

Poor neuropsychological performance was 

significantly associated with larger WML volumes in 

elderly participants, which is generally in agreement 

with earlier studies [19]. Lesion volume correlated 

positively with increasing age and correlated 

negatively with cognitive function, especially 

language intelligence and memory. This association 

between WML burden and cognition was consistently 

found in both normally aging individuals and those 

with cognitive impairment, such as MCI and 

Alzheimer’s dementia [20–22]. Like medial temporal 

atrophy, apolipoprotein E (APOE) ε4 allele genotype, 

and β-amyloid burden, WML burden is a potentially 

useful surrogate biomarker with which to monitor 

cognitive performance and assess cognitive decline 

[23, 24]. Results from several studies support the 

hypothesis that this correlation between WMLs, 

especially periventricular lesions, and impaired 

cognition reflects a cholinergic deficiency [25–27]. 

 

 
 

Figure 1. Scatter plots relating cognitive performance predicted using a RVR model based on lesion probability maps of 
WMLs to observed performance in elderly individuals. (A) RVR-MMSE; (B) RVR-ANIMALS; (C) RVR-VEG; (D) RVR-LOGIMEM; (E) RVR-
WAIS; (F) RVR-TRAILB; (G) RVR-TRAIL B-A; (H) RVR-MEMUNITS. Scores of participants with cognitive impairment: participants with mild 
cognitive impairment (MCI) are colored orange, those clinically diagnosed with Alzheimer’s dementia (AD) are colored yellow. Cognitively 
healthy participants with WMLs are colored blue. 
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Table 3. Top five most relevant regions for prediction of cognitive performance based on the JHU white-matter atlas. 

Neuropsychological 
test 

Hemisphere Region description Contribution (%) ER 

R Tapetum 14.949  0.857  

L Tapetum 10.453  1.714  

R Posterior corona radiata 8.747  2.571  

R 
Posterior thalamic radiation  

(include optic radiation) 
7.837  4.143  

L Posterior corona radiata 7.577  3.714  

R Tapetum 13.042  0.857  

L Tapetum 11.389  1.857  

R Posterior corona radiata 9.290  2.429  

L 
Posterior thalamic radiation 

(include optic radiation)  
7.933  3.571  

R Posterior thalamic radiation 6.366  4.429  

R Tapetum 19.474  0.857  

L Tapetum 9.938  1.714  

L Posterior thalamic radiation 7.496  3.714  

R Posterior corona radiata 7.158  3.143  

L 
Superior fronto-occipital fasciculus (could be 

a part of anterior internal capsule) 
6.383  4.571  

R Tapetum 13.760  0.857  

L Tapetum 10.637  1.714  

R Posterior corona radiata 8.071  2.714  

L Posterior corona radiata 7.703  3.286  

L Superior fronto-occipital fasciculus 6.496  4.857  

R Tapetum 13.155  1.000  

L Tapetum 9.753  1.857  

R Posterior corona radiata 7.332  3.143  

R Posterior thalamic radiation 6.955  4.143  

L Posterior corona radiata 6.493  4.000  

R Tapetum 14.602  0.857  

L Tapetum 12.290  1.714  

L Posterior corona radiata 7.631  2.857  

R Posterior thalamic radiation 7.051  3.571  

L Superior fronto-occipital fasciculus 6.096  4.571  

R Tapetum  15.360  0.857  

L Tapetum  12.307  1.714  

L Posterior thalamic radiation 7.545  3.000  

R Posterior thalamic radiation 7.252  3.286  

R Posterior corona radiata 6.083  4.286  

R Tapetum 13.135  0.857  

L Tapetum 10.157  1.714  
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R Posterior corona radiata 8.934  2.571  

L Posterior thalamic radiation 7.518  3.714  

R Posterior thalamic radiation 6.813  4.429  

ER=Expected ranking. The region of the posterior thalamic radiation, including the optic radiation and the superior fronto-
occipital fasciculus, could be part of the anterior internal capsule. 
 

A number of studies have focused on early prediction of 

cognitive impairment – i.e., the conversion from healthy 

cognition to MCI or from MCI to dementia. By 

combining large sample MRI data and machine learning 

models, several studies have achieved fairly high 

predictive accuracy [28–30]. Here, using a nonlinear 

multivariate regression model, RVR, we demonstrated 

that spatial probability maps of WMLs are predictive of 

multidomain cognitive performance by elderly 

individuals in tests of memory, language, intelligence, 

and executive functions (Table 2). Although recent 

evidence suggests the WML distribution may be a

 

 

 

Figure 2. Weight maps in the RVR-ANIMALS model. Only voxels with positive weights and overlapping with JHU white-matter atlas are 
presented. The redder the color, the larger the weight of the voxel. 

 

 

 

Figure 3. White matter fiber tracts in which WMLs made a higher contribution to the prediction of cognitive performances 
than lesions located in other brain areas. For each test, only the top 5 white matter tracts are displayed. 
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Table 4. Results of multivariate linear regression relating cognitive performance and diffusion metrics. 

Cognitive tests 
F 

FA MD AD RD 

MMSE 2.594* 4.106** 3.578** 4.275** 

ANIMALS 4.760** 5.135** 4.538** 5.049** 

VEG 1.280 5.572** 6.246** 5.069** 

LOGMEM 0.444 2.925* 3.232** 2.770* 

WAIS 2.273 2.904* 2.543* 2.962* 

TRAILB 1.677 2.273 2.638* 2.931* 

TRAIL B-A 1.929 1.833 1.630 1.938 

MEMUNITS 0.587 1.929 3.824** 2.710* 

 

predictor of cognitive impairment, those results were 

controversial [31]. Some investigators were unable to 

detect an association between overall WML volume and 

a higher risk of dementia, but did find an association 

between lesions in specific brain regions (e.g., the 

parietal lobe) and the risk of dementia [14, 32, 33]. 

Indeed, in elderly individuals, WMLs were predictive of 

adverse cognitive outcomes reflecting changes in 

executive functions, memory, language and processing 

speed, as measured with the MMSE, trail making, 

Boston naming, and various other neuropsychological 

tests [34–36]. Our results with the RVR model are 

consistent with those earlier studies and further confirm 

that spatial maps of WMLs are predictive of many 

aspects of cognition in both healthy and cognitively 

impaired older people at the level of individuals. 

 

Several specific regions, including the bilateral tapetum, 

posterior corona radiata, and posterior thalamic 

radiation (include optic radiation), showed strong 

associations with the prediction of cognitive 

performance, and these correlations were verified in 

DTI images. The tapetum is located on either side of the 

corpus callosum with fibers connecting the posterior 

corpus callosum and medial temporal lobe and covering 

the central part of the lateral ventricle. It has been 

reported that subjects with a family history of 

Alzheimer’s disease have a lower FA in the left tapetum 

[37], and that patients with Alzheimer’s disease have a 

lower FA and higher MD in these white matter regions 

[38, 39]. These regions were also associated with 

cognitive flexibility in young and middle-aged adults 

with dyskinetic cerebral palsy, a disease resulted from 

damage to the basal ganglia [40]. In addition, the 

bilateral posterior thalamic radiations, posterior corona 

radiata, and thalamocortical and corticocortical 

connections, which widely connect among the thalamus, 

parietal and occipital lobes, also appear to contribute 

greatly in the prediction of cognitive performance. This 

result is consistent with the significant association 

between thalamic pathology and memory loss in early 

Alzheimer’s disease, especially episodic memory, 

which is one of the earliest cognitive deficits in 

dementia [41, 42]. When predicting performance in 

neuropsychological tests, including the Wechsler 

Memory Scale-Revised, Category Fluency, and Trail 

Making Test (score: VEG, LOGIMEM and TRAILB), 

the superior fronto-occipital fasciculus, an association 

fiber tract connecting the frontal, occipital, parietal and 

temporal lobes, also exhibited high weight [43]. The 

superior fronto-occipital fasciculus is the only 

association fiber tract that projects medially to the 

thalamus and along the ventricle, and it is widely 

recognized to be an important connection between the 

insula and the parieto-frontal circuit, which are involved 

in crucial cerebral functions such as memory, language, 

emotion, and behavior [44]. 

 

In our results, WMLs located in posterior brain regions 

showed a slightly closer relation to  cognitive 

impairment than other regions, which is consistent with 

several studies indicating that parietal and occipital 

lobes were the regions where WMLs preferentially 

occurred [45–49].  

 

There are several limitations to the present study. A 

larger sample of participants will be needed verify the 

generalizability of our findings, especially the 

longitudinal data, which will be key to determining the 

predictive ability of WMLs for cognitive outcomes in 

elders. In addition, other modalities of neuroimaging, 

such as functional MRI (resting state and task driven) 

and positron emission tomography (PET), should also 

be examined. In future studies, combining WMLs with 

the other risk factors for cognitive decline in the elderly 

could further improve the predictive performance of our 

model and shed new light on the mechanism underlying 

WMLs in aging. 
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CONCLUSIONS 
 

In sum, both the volume and spatial distribution of WMLs 

are significantly associated with neuropsychological 

performance in elderly participants from a general 

population cohort. Multidomain cognitive performance 

could be predicted with the information on the intensity 

and spatial probability maps of WMLs. This may provide 

a basis from which to investigate the mechanisms 

underlying cognitive decline in aging, and help clinicians 

to identify elderly individuals at higher potential risk of 

early cognitive impairment. 

 

MATERIALS AND METHODS 
 

Participants 
 

The participants in the current study are a cohort of 

elderly individuals from an ongoing project, known as the 

OASIS-3 study, which is an ongoing longitudinal 

neuroimaging, clinical, cognitive, and biomarker dataset 

for normal aging and Alzheimer’s Disease [18]. This 

dataset consists of >1000 participants aged 18-96, 

including cognitively normal adults and individuals at 

various stages of cognitive decline. A total of 263 subjects 

ranging in age from 55 to 80 years were included in the 

present study. These participants are from both genders 

and are all right-handed. Individuals with major 

psychiatric disorders or disease that could affect cognitive 

abilities were excluded. All participants completed a 

battery of neuropsychological test at the Alzheimer 

Disease Research Center (ADRC). These included the 

MMSE, Wechsler Memory Scale-Revised, Category 

Fluency, Boston Naming, Trail Making, Digit Span and 

Wechsler Adult Intelligence Scale-Revised [50]. A total 

of fifteen neuropsychological scores were included in this 

study. The participants’ clinical information, including 

education, APOE ε4 allele genotype, and level of 

independence were also included. Combined with the 

CDR scale and clinical dementia diagnoses collected in 

accordance with National Alzheimer’s Coordinating 

Center Uniform Data Set (UDS), 43 of the 263 available 

subjects had been diagnosed with MCI (CDR=0.5) and 13 

were diagnosed with Alzheimer’s dementia (CDR>0.5) 

[51]. For each participant, T1 weighted (voxel size: 

1.2×1.0547×1.0547 mm3) and T2 weighted FLAIR (voxel 

size: 0.8594×0.8594×5/6 mm3) were obtained. In 

addition, DTI images (voxel size: 2.5×2.5×2.5mm3, 65 

directions, b0=1, b value=1000) were obtained from 124 

of the subjects. MRI images were obtained using 3-T 

Siemens scanners. 

 

MRI imaging process 
 

Identical imaging processing procedures were used for 

all subjects. The data was preprocessed using Statistical 

Parametric Mapping 12 (SPM12) (https://www.fil.ion. 

ucl.ac.uk/spm/software/spm12) running on MATLAB 

version 2016b, the PANDA toolbox (https://www.nitrc. 

org/projects/panda/), and the FMRIB software library 

v6.0 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). 

Structural brain images as well as T1 and FLAIR 

images were stripped followed by bias field correction 

using FSL BET and FAST [52, 53]. FLAIR images 

were registered to the base modality T1 using linear-

registration. The transformation between an individual’s 

native space and the standard Montreal Neurological 

Institute space coordinates was calculated as spatial 

features. After eddy current corrections, brain 

extraction, DTI index images, including FA, RD, AD, 

and MD, were calculated and normalized to the MNI 

standard space for further analysis. 

 

White matter lesions segmentation 

 

We applied the segmentation algorithm BIANCA, a free 

FSL package, to automatically quantify the WMLs of 

our participants (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 

BIANCA). BIANCA is a fully automated machine 

learning-based pipeline for detecting WMLs based on 

the k-nearest neighbor (KNN) classification algorithm, 

which offers highly flexible options for setting 

parameters such as modalities and location of training 

points [54]. In this study, we used T1 and FLAIR as 

features. T1 was set as the base space, and the training 

set consisted of 10 of the 263 subjects’ WML masks 

marked manually by an experienced neuroradiologist. 

Other options we used in BIANCA: spatial 

weighting=1; no patch; location of training points, any 

location for non-WMLs training points; number of 

training points, Fixed + unbalanced 2000 lesion points 

and 10000 non-lesion points. After segmentation, the 

probability maps of WMLs in T1 native space were 

extracted and volume of lesions was calculated. The 

intensity of each voxel was the probability that the 

voxel belongs to a WML and ranged from 0 to 1. Only 

voxels whose intensity exceeding 0.9 were retained; the 

others were set to zero. This threshold for the 

probability maps was set to obtain the best balance 

between false positive and false negative for the 

segmentation of WMLs, and was also suggested to be 

the optimal threshold for BIANCA [55]. Then lesion 

maps were spatially normalized to the standard space of 

2×2×2 mm3. All registration steps were visually 

inspected. 

 

Prediction of cognitive performance using relevance 

vector regression  
 

To investigate whether the spatial probability maps of 

WMLs were predictive of cognitive performance in 

elderly individuals, the relevance vector regression 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://www.nitrc.org/projects/panda/
https://www.nitrc.org/projects/panda/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA
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(RVR) model was applied.  RVR is a sparse kernel 

method based on a probabilistic Bayesian framework 

with zero-mean Gaussian priors for the model weights, 

which are governed by hyperparameters [56, 57]. 

Specifically, the RVR model took the computed lesion 

maps of WMLs, excluding voxels locating in the 

cerebellum, as input vectors and the performances on a 

given neuropsychological test as targets. The posterior 

distributions of many of the model weights were sharply 

peaked at zero estimated with the training data, and the 

non-zero weights were “relevance vectors,” which were 

then used as the weighted relevance vectors to predict 

the target. The reliability of the WML-based predictive 

RVR model was measured using a 7-cross validation 

approach.  

 

The RVR model provided a prediction of the clinical 

scores in a given test based on WML probability maps. 

The significance of the prediction performance was 

assessed using CORR, the MSE, and the norm MSE. 

 

CORR provides a measure of the linear dependence 

between the targets and predictions; the higher the 

correlation, the more accurate the prediction. CORR 

was determined using the following formula: 

 

2 2

( )( ( ) )
CORR

{ ( ) ( ( ) ) }

n n y n f

n n y n n f

y f x

y f x

 

 

  


   
 (1) 

 

MSE is a standard measure to assess goodness-of-fit for 

regression models, and different clinical scores have 

different scales. The higher the MSE, the less accurate 

are the predictions. MSE was calculated as:  

21
MSE ( ( ))n n ny f x

N
    (2) 

 

To minimize the effect of the scale of y on the MSE, we 

calculated the norm MSE: 

 

norm MSE
( )max min

MSE

y y



 (3) 

 

yn and f (xn) denote the observed and estimated scores 

corresponding to the input predictors. xn, µy and µf are 

the sample means of yn and f (xn), respectively. N is the 

total number of subjects in the test sample. ymax and ymin 

are the maximum and minimum y, respectively. 

 

Association between diffusion indexes and the 

distribution of RVR weights 

 

The model weights represent the contributions of each 

feature for the RVR predictive model. In this study, the 

region-level weight maps were respectively calculated 

based on the JHU white-matter label atlas containing 48 

white matter regions in the brain and the weights of 

voxels in the same brain region averaged to display the 

decision functions of the predictive models [58]. These 

regions were ranked in ascending order based on their 

weights. The expected ranking (ER) of each region is 

the ranking averaged across folds. Additionally, to 

examine the association between cognitive functions 

and the weight distribution of the corresponding RVR 

prediction model, we first calculated the mean diffusion 

indexes in top five white matter regions with largest 

weights in the RVR model, including FA, AD, RD and 

MD. We then applied multivariate linear regression to

 

 
 

Figure 4. Flow chart for analysis in the present study. First, FLAIR images were registered to the corresponding individual’s T1 space. 
Then, the k-nearest neighbor (KNN) classification algorithm was used to segment the white matter lesions (WMLs) automatically. Finally, a 
machine learning model, relevance vector regression (RVR), was used to predict cognitive performance based on the spatial probability maps 
of the WMLs. 
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assess how each type of diffusion measure in the five 

white matter regions was related to the corresponding 

scores in the cognitive performance tests. 

 

Statistics 

 

Partial Pearson’s correlations, controlled for gender and 

education, were used to assess how cognitive tests 

related to age and to the volume of WMLs detected by 

BIANCA. For the machine learning models used, 

permutation testing was performed to assess the 

models’ statistical significance. Specifically, each 

model was retrained 1000 times and P-values for 

CORR, MSE and norm MSE were calculated. Values of 

P < 0.05 were considered statistically significant. The 

overall procedure is shown in Figure 4. 
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