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Abstract
Background. Hyperglycemia has been associated with worse survival in glioblastoma. Attempts to lower glucose 
yielded mixed responses which could be due to molecularly distinct GBM subclasses.
Methods. Clinical, laboratory, and molecular data on 89 IDH-wt GBMs profiled by clinical next-generation 
sequencing and treated with Stupp protocol were reviewed. IDH-wt GBMs were sub-classified into RTK I (Proneural), 
RTK II (Classical) and Mesenchymal subtypes using whole-genome DNA methylation. Average glucose was calcu-
lated by time-weighting glucose measurements between diagnosis and last follow-up.
Results. Patients were stratified into three groups using average glucose: tertile one (<100  mg/dL), tertile two 
(100–115 mg/dL), and tertile three (>115 mg/dL). Comparison across glucose tertiles revealed no differences in per-
formance status (KPS), dexamethasone dose, MGMT methylation, or methylation subclass. Overall survival (OS) 
was not affected by methylation subclass (P =  .9) but decreased with higher glucose (P =  .015). Higher glucose 
tertiles were associated with poorer OS among RTK I (P = .08) and mesenchymal tumors (P = .05), but not RTK II 
(P = .99). After controlling for age, KPS, dexamethasone, and MGMT status, glucose remained significantly asso-
ciated with OS (aHR = 5.2, P = .02). Methylation clustering did not identify unique signatures associated with high 
or low glucose levels. Metabolomic analysis of 23 tumors showed minimal variation across metabolites without 
differences between molecular subclasses.
Conclusion. Higher average glucose values were associated with poorer OS in RTKI and Mesenchymal IDH-wt GBM, 
but not RTKII. There were no discernible epigenetic or metabolomic differences between tumors in different glucose 
environments, suggesting a potential survival benefit to lowering systemic glucose in selected molecular subtypes.

Key Points

• High glucose is associated with shorter OS in GBM.

• The effect of hyperglycemia is molecular subtype dependent.

• Future trials targeting glucose levels in GBM should incorporate molecular 
sub-classification.

Association of hyperglycemia and molecular subclass 
on survival in IDH-wildtype glioblastoma
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Glioblastoma (GBM) is the most common malignant pri-
mary brain tumor and, despite aggressive multimodal 
therapies, has poor prognosis with an average survival of 
16 months.1 Despite success in early-phase investigations, 
standard of care has remained the same since adoption 
of the Stupp protocol in 2005, with minimal impact of pre-
cision medicine advances on patient outcomes.2 While 
two new therapies have been FDA-approved for recurrent 
GBM,3,4 few factors have been associated with improved pa-
tient outcomes.

While hyperglycemia has been associated with in-
creased morbidity and mortality in a variety of cancers, the 
role of hyperglycemia and utility of lowering serum glu-
cose in GBM patients is controversial. Most studies sug-
gest that hyperglycemia is an independent poor prognostic 
marker for overall survival (OS).5–7 However, investigations 
on glucose-lowering agents, notably the anti-diabetic drug 
metformin, have yielded mixed results.8,9 Ketogenic diets, 
similarly motivated by the seemingly detrimental effect of 
hyperglycemia, have also yet to demonstrate convincing 
survival benefit, possibly related to the minimal effect of 
low-carbohydrate diets on serum glucose.10,11 Despite a 
multitude of literature describing the poor prognosis car-
ried by hyperglycemia, there lacks a consensus on how 
oncologists may leverage this finding to improve patient 
outcomes.

Recent advances and application of genome-wide pro-
filing have highlighted molecular heterogeneity of GBM. 
Transcriptomic profiling on The Cancer Genome Atlas 
(TCGA) datasets revealed three main molecular GBM sub-
groups (Classical, Proneural, Mesenchymal) with distinct 
patterns of genomic aberrations and tumor evolution.12 
Epigenomic profiling offers a complementary way of un-
derstanding tumor heterogeneity and classification using 
smaller samples of variable quality, thus proving to be a 
widely-utilized classification tool for CNS cancers.13 In 
GBM, methylation profiling classifies GBM into six distinct 
subgroups which correlate to TCGA subgroups including 
RTK II “Classic”, RTK I “Proneural”, and Mesenchymal sub-
classes. However, despite the improved understanding of 
tumor biology, the clinical relevance of these classifica-
tions remain debated.14,15

In our study, we sought to investigate the role of serum 
glucose on isocitrate dehydrogenase (IDH)-wildtype gli-
oblastoma survival in a methylation subclass-specific 
manner. We hypothesized that glucose has a different role 
in different tumor subclasses which may have confounded 
prior investigations on the effect of lowering glucose. 

We further sought to characterize phenotypic differences 
of tumor subtypes associated with varying glucose en-
vironments by comparing methylation landscape and 
intratumoral metabolite levels.

Methods

Patient Cohort

Newly diagnosed patients operated and followed for GBM 
at NYU Langone Health between 2014 and 2020 were in-
cluded in the study. As part of their clinical care, all tumors 
underwent clinically validated next-generation sequencing 
(NGS), and clinically validated whole-genome DNA methyl-
ation profiling as described previously13,16 and mutational 
and DNA methylation class results were obtained from the 
medical record. MGMT promoter status was obtained from 
the clinical records and was assessed as part of the clin-
ical care by clinically validated pyrosequencing (Qiagen). 
The study was approved by the NYU Institutional Review 
Board.

Data Assembly

Patient clinical and laboratory records classified as IDH-
wild type glioblastoma based on NGS and CNS Tumor 
DNA methylation classifier were identified.13 Records were 
excluded due to either insufficient clinical follow-up or in-
sufficient molecular results. Only patients who received 
standard of care chemoradiation per Stupp protocol were 
included in the analysis cohort. Cohort selection is shown 
in Supplement 1.

Average glucose was calculated using a time-weighted 
approach using all plasma glucose measurements be-
tween tissue diagnosis and date of death (or last follow-up, 
at which survival is censored). Each random glucose meas-
urement was weighted by the length of time between it and 
the next record or censor date and normalized by the total 
length of follow-up. A similar approach was used to calcu-
late average daily dexamethasone dosage. Steroid dosing 
documented in the medical record were verified against 
inpatient medication administrations and prescription 
records as available. Patients were grouped into tertiles 
based on the time-weighted average glucose values. When 
comparing progression free survival, average glucose and 
daily dexamethasone dose were calculated based only 

Importance of the Study

Glioblastoma is a heterogenous disease entity 
with poor outcomes. While analysis of the meth-
ylation and transcriptomic landscape has re-
vealed distinct tumor subclasses, the prognostic 
value of the subclasses remains unknown. Prior 
studies have investigated the role of glucose and 
glucose-lowering agents with mixed results. 

We demonstrate the role of hyperglycemia on 
glioblastoma survival in a subclass-specific 
manner, with RTK I  and Mesenchymal tumors 
demonstrating worse outcomes with higher 
glucose. Future studies examining the role of 
glucose-lowering agents may incorporate meth-
ylation profiling for patient stratification.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac163#supplementary-data
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on values between diagnosis and progression. Additional 
clinical variables acquired included age, sex, Karnofsky 
performance score (KPS), prior diabetes, and prior car-
diovascular risk factors defined as a history of hyperten-
sion (HTN), hyperlipidemia (HLD), coronary artery disease 
(CAD), or cerebrovascular accident (CVA).

Survival Analysis

Continuous and categorical baseline attributes were com-
pared using Wilcox rank sum and Chi-square tests, re-
spectively. Univariate survival differences were compared 
using log-rank tests. Differences in overall and progres-
sion free survival were further interrogated using mul-
tivariate cox proportional hazard analyses. All P-values 
reflect two-sided tests with significance defined at P < .05. 
Statistical analyses and visualizations were performed 
using R software package (version 3.6.1) and GraphPad 
Prism 8.

DNA Methylation Analysis

DNA methylation profiling was performed on all cases 
using Illumina EPIC array or 450K array. Raw IDATs gen-
erated from iScan were processed and analyzed using 
Bioconductor R package Minfi.17 Since samples were pro-
filed on two different arrays, the data was combined to 
analyze overlapping probes that were present on both 
the arrays. Samples were checked for their quality using 
mean detection P-values (det P < .05). The probes were 
normalized using quantile normalization and corrected for 
background signal. Sex probes and SNPs were removed as 
part of normalization. Batch effects were corrected across 
the samples using ComBat function from sva R package.18 
Beta values were obtained and differential methylation 
analysis was performed across all the three subclasses of 
GBM (RTK I, RTK II, Mesenchymal) using dmpFinder func-
tion from Minfi package. Probes with FDR cutoff (q < 0.05) 
were considered as most significantly variable probes. 
Beta value < 0.2 means Hypomethylation and Beta value > 
0.8 means Hypermethylation.

The 10 000 most significant variable probes were used 
to generate a supervised heatmap using ComplexHeatmap 
package.19 Euclidean distance method was used for 
generating the distance matrix since it is the best method 
for continuous data and ward. D2 method was used for hi-
erarchical clustering since it minimizes the within cluster 
variances resulting in compact clusters. Both these 
methods were used together to generate supervised 
heatmap. To have a clear visualization of these cluster sub-
groups in the heatmap, K-means of three clusters was ap-
plied to identify each subgroup clearly on the heatmap.

Functional Pathway Enrichment Analysis

To find the most enriched signaling pathways in RTK I and 
Mesenchymal groups, the most significant differentially 
methylated probes (top 10 000) between High vs Low glu-
cose patients were passed through the ClusterProfiler R 
package for KEGG enrichment.20 The dot plots represent 

ratio of genes (x-axis) involved in each signaling pathway 
(y-axis) of KEGG database.21 Size of the dots corresponds 
to gene counts and the color denotes the significance level.

Metabolite Profiling

Approximately 10–20  mg of each sample were collected 
and placed in individual micro-centrifuge tubes on dry 
ice. For each sample, 600  µL of LC/MS grade methanol 
containing internal standards was added, followed by 
300 µL of LC/MS grade water, and lastly 400 µL of chloro-
form. Bead-based homogenization was then performed 
using the Bertin Precellys 24 homogenizer. The samples 
were microcentrifuged at max speed for 10 min at 4°C, and 
the two subsequent layers were collected separately and 
SpeedVac dried. Metabolite samples were stored at −80°C 
prior to analysis.

Data preprocessing, batch correction and differ-
ential metabolomic analysis were performed using 
MetaboAnalyst (version 3.2.0) R package.22 Median nor-
malization and log-transformation was applied to the pro-
cessed peak intensities across the samples. This normalized 
data was then subjected to batch correction to remove any 
unwanted batch effects in the cohort. EigenMS batch effect 
correction method was applied to remove the batch effects 
since it aims at preserving the original differences between 
groups while removing the bias from the data.23 Missing 
values were imputed using limit of detection (LOD) values. 
Unsupervised PCA was generated using the normalized 
batch corrected data to look for any variances. To identify 
differences between binary low or high glucose samples, 
differential metabolomic analysis was carried out. Volcano 
plot was generated using the differentially significant me-
tabolites (P value < .0.5). To generate the heatmap, Z-score 
was calculated using the normalized batch corrected data 
and the plots were generated using ComplexHeatmap R 
package.19

Results

Cohort Characteristics

A total of 89 patients with IDH-wildtype GBM diag-
nosed between 2014 and 2020 met the inclusion criteria 
(Supplement 1). Median age of patients in the cohort was 
64 (range 29–86, Table 1). The cohort had slightly more pa-
tients with tumors that were MGMT unmethylated and 
EGFR-amplified (64% and 59%, respectively). While tumors 
were distributed among various methylation classifier 
subclasses, RTK II was the most common tumor subclass 
(36%). Median overall survival (OS) and progression free 
survival (PFS) were 18.0 and 17.6  months, respectively. 
No patients were diagnosed with new-onset diabetes or 
started on long-term anti-hyperglycemic treatments during 
follow-up. All patients succumbed to progressive disease 
except two. One patient passed away from a subdural hem-
orrhage after a traumatic fall and a second patient passed 
away after developing a massive pulmonary embolism.

For survival analyses, patients were divided into 
three equal groups for comparison based on average 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac163#supplementary-data
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time-weighted glucose derived using random plasma glu-
cose values between date of pathology and last follow-up: 
tertile one (<100 mg/dL), tertile two (100–115 mg/dL), and 
tertile three [>115  mg/dL (Supplement 2)]. Frequency 
of glucose measurements were similar across glucose 
tertiles, with averages of 11.7–13.0  days between each 
random plasma glucose value.

Comparison of clinical characteristics across glucose level 
tertiles revealed no significant differences with regards to 
KPS, average time-weighted dexamethasone dose, EGFR 
amplification, MGMT methylation, or methylation classifier 
subclass distribution (Table 2). Average age was higher in 
tertile three (P = .008, Table 2). While the number of patients 
with a pre-GBM diagnosis of diabetes was slightly higher in 
tertile three, these patients represent a small portion of the 
clinical cohort with only 7 out of 89 patients (7.9%).

Impact of Hyperglycemia on Survival is 
Associated With Tumor Subclass

Overall survival (OS) decreased with higher average glu-
cose values, with median OS decreasing from 21.2 to 
14.1 months in tertile one to tertile three (log-rank P = .015, 
Figure 1B). In contrast, OS was not different between dif-
ferent methylation subclasses (log-rank P = .9, Figure 1A). 
In contrast, when analyzing serum glucose in specific mo-
lecular subtypes, higher glucose tertiles were showed 
strong trend towards worse OS in RTK I (log-rank P = .08, 
Figure 1C) and mesenchymal subclass (log-rank P  =  .05, 
Figure 1D), but not RTK II (log-rank P = .99, Figure 1E). From 
tertile one to three, median OS decreased from 35.5 to 
15.8 months in RTK I tumors and decreased from 35.0 to 
17.8 months in Mesenchymal tumors. Our cohort did not 
contain sufficient numbers of GBM RTK III and Midline sub-
type GBMs for analysis of the survival.

  
Table 2. Cohort characteristics by glucose groups

 Average time-weighted glucose

<100 mg/dL 100–115 mg/dL >115 mg/dL P-val 

n 30 29 30  

Age (per year) 60 (50–66) 58 (49–71) 69 (61–75) 0.008

Time-weighted glucose (before 1st progression) 94 (87–97) 106 (101–112) 127 (119–141) 1e−12

KPS 90 (80–90) 90 (80–90) 80 (70–90) 0.35

Time-weighted dexamethasone dose (mg/day) 1.3 (0.6–1.5) 1.3 (0.4–1.4) 2.5 (1.5–4.7) 0.12

EGFR amplification by FISH 14 17 16 0.65

MGMT methylated 12 10 10 0.55

Subclass

 RTK I 8 8 10 0.83

 RTK II 14 11 7 0.16

 RTK III 0 0 1 0.37

 Mesenchymal 7 9 10 0.67

 Midline 1 1 2 0.78

Median OS (mo) 21.2 17.1 14.1 0.015

Median PFS (mo) 7.0 7.1 9.3 0.41

Average number of days between glucose 
 measurements

13.0 (9.8–22.5) 12.8 (11.3–21.5) 11.7 (7.0–18.6) 0.24

Pre-diagnosis cardiovascular risk factors (HTN, HLD, 
CAD, CVA)

12 20 21 0.03

Pre-diagnosis diabetes 0 2 5 0.05

P-values less than 0.05 are bolded.

  

  
Table 1. Clinical cohort characteristics

 Median (range) or % 

Age 64 (29–86)

Sex (% male) 67.4%

MGMT methylated 36%

EGFR-amplified 59%

RTK I 29.2%

RTK II 36%

RTK III 1.1%

Mesenchymal 29.2%

Midline 4.5%

Gross or near total resection 49%

Median OS (mo) 18.0

Median PFS (mo) 7.6

  

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac163#supplementary-data
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To further elucidate the role of blood glucose on sur-
vival, a multivariate cox model was employed to adjust for 
the effects of age, KPS, dexamethasone dose, and MGMT 
status. Higher glucose remained significantly associated 
with poorer survival (adjusted hazard ratio [aHR]  =  5.2, 
P  =  .02, Table 3). Higher age, lower KPS, higher average 
dexamethasone dose, MGMT non-methylation, and meth-
ylation classifier subclass were also significantly associ-
ated with survival. The interaction of methylation subclass 
with glucose was significant (analysis of deviance, P = .03).

No Discernible Epigenetic or Metabolomic 
Differences Between GBMs in Patients With 
Different gGlucose Levels

To further understand the seemingly differential role of 
glucose across tumors of different methylation subclasses, 
methylation phenotype of 84 tumors classified as either 
mesenchymal, RTK I, or RTK II were further interrogated 
for tumor differences. Glucose groups were simplified into 
high vs low binary divisions to reduce comparator groups. 
Semi-supervised clustering by methylation classifier sub-
class showed no stratification by glucose levels groups, 
MGMT methylation, sex, or age (Figure 2).

Because of lack of DNA methylation clustering by glu-
cose levels, we next performed a supervised analysis of 
methylation subclasses that exhibited differential OS by 

glucose levels to elucidate the signaling differences be-
tween GBMs in high and low systemic levels of glucose. 
Pathways analysis using differentially methylated probes 
(DMPs) comparing high glucose RTKI and Mesenchymal 
vs low RTKI and Mesenchymal GBM demonstrated en-
richment in PI3K-AKT signaling, MAPK signaling, among 
others (Figure 3). Enrichment in MAPK signaling was also 
seen when comparing top variably methylated probes be-
tween high and low glucose among Mesenchymal and RTK 
I tumors separately (Supplement 3) suggesting that MAPK 
pathway is upregulated in tumors growing in high glucose 
macroenvironment.

To elucidate whether subgroup-specific differences in 
the role of glucose may be related to intratumoral metab-
olomics, bulk tumor levels were examined for 23 samples. 
Across 133 available metabolites, there were no metabolites 
that were significant based on FDR values (Supplement 4).

Discussion

Using institutional retrospective data with long-term fol-
low-up and detailed analysis of routine clinical laboratory 
glucose data, we found that that hyperglycemia was an 
independent factor portending poor prognoses in GBM. 
In a retrospective cohort treated with Stupp standard of 
care, higher blood glucose was associated with worse 
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Figure 1. Overall survival in GBM patients. (A) OS is not affected by methylation classifier subclass. (B) OS decreases with higher average glu-
cose values (21.2 to 17.1 to 14.1 months). (C, D) Glucose affects survival in RTK I and Mesenchymal tumors, but not RTK II tumors (E).
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survival even after controlling for known significant clin-
ical characteristics including: MGMT promoter methyl-
ation, clinical performance status (KPS), steroid use, and 
age. Furthermore, the role of hyperglycemia was different 
across three main molecular subtypes of GBM defined 
by methylation classifier. Higher average glucose values 
were associated with worse OS in RTK I and Mesenchymal 
IDH-wt GBM, but not in RTK II GBM. While HgbA1C levels, 
often interpreted as a rolling average of serum glucose, are 
not routinely measured in GBM patients, future studies on 
the role of serum glucose in GBM patients may incorporate 
HgbA1C measurements.

While there were no discernible differences between the 
overall methylation landscape of tumors in different glu-
cose environments, a supervised pathway analysis iden-
tified PI3K-AKT, MAPK, RAS signaling pathways in high 
glucose tumors. Interestingly there were no differences in 
tumor metabolite levels that may explain our observation, 
although that may be due to overall low number of tumors 
for metabolic analysis. However, the lack of intrinsic differ-
ences among GBMs in high and low level glucose environ-
ments suggests a systemic lowering of glucose to improve 
survival.

There are numerous mechanisms by which glucose 
may affect patient survival. One series of explanations are 
centered on the direct role of glucose on tumor prolifer-
ation via increased substrate for glycolytic metabolism. 

Glioblastoma, similar to many other solid tumors, are 
able to exploit glucose-dependent metabolism even in 
the presence of oxygen to promote cell proliferation.24 As 
intracerebral glucose concentrations increase with rising 
plasma glucose, a finding that is exaggerated in patients 
without prior history of hyperglycemia, tumors in patients 
with high systemic blood glucose may have greater up-
take of metabolic substrates and thus proliferation.25–27 
A  second possibility is that hyperglycemia influences 
survival in GBM through increased insulin levels. GBM 
cells expresses the same insulin receptors to those seen 
in peripheral tissues, therefore hyperglycemia-induced 
hyperinsulinemia may increase insulin signaling in cancer 
cells to have an effect that is independent of tumor metab-
olism.28 Hyperinsulinemia itself has been shown to also 
facilitate tumor growth via stimulation of the insulin-like 
growth factor cascade.29,30 This would be consistent with 
the upregulation of PI3K-AKT and MAPK signaling path-
ways observed, which would also be enhanced by insulin 
signaling.31 This possibility would also be consistent with 
the lack of correlation between glucose level and survival 
in the RTK II subclass, where EGFR amplification would 
serve a similar function to increased insulin signaling. 
While we were unable to elucidate variations in tumor 
metabolite levels, limitations of our approach include the 
lack of tissue after initial treatment, the use of bulk tumors 
without an infiltrating edge, and low number of tumors. 
It is possible that during the course of disease, more dif-
ferences in tumor metabolite levels emerge as the tumor 
interacts with the surrounding glucose environments.

The adverse effects of hyperglycemia on patient sur-
vival may have non-tumor dependent effects. Patients 
with more aggressive tumors may require higher doses 
of steroids to alleviate symptoms of cerebral edema and 
thus develop steroid-induced hyperglycemia, especially 
in the palliative therapy scenario.32 However, our analysis 
demonstrates that average glucose is an independent risk 
factor for poor survival even after controlling for the av-
erage time-weighted steroid dose.33,34 Hyperglycemia or 
a history of diabetes may also increase the risk of other 
complications, such as infections, that affect mortality.35,36 
However, only a small minority (7.9%) patients had a pre-
GBM diagnosis of diabetes. The vast majority of patients 
had average blood glucose levels within the range of what 
is considered normal.37 The two patients in our cohort that 
succumbed to reasons not directly related to progressive 
intracranial disease passed away from a traumatic fall and 
pulmonary embolism, which are not highly associated 
with hyperglycemia. Therefore, it is unlikely that the in-
creased mortality associated with hyperglycemia is related 
to non-tumor effects.

While we were unable to explain differences in tumor 
subclasses that relate to glucose outcomes, our results 
suggest several possibilities. The lack of overall methyl-
ation phenotype differences between tumors in different 
glucose environments suggest a differences in how dif-
ferent subclasses utilize glucose utility rather than in-
trinsic features specific to a subclass phenotype. When 
focusing on tumors that did exhibit differential responses 
to glucose environments, we noted an enrichment of 
high-level signaling pathways such as MAP-Kinase, PI3K, 
and Ras signaling, suggesting increased activity of these 

  
Table 3. Multivariate regression identifies significant associ-
ations between OS and average blood glucose after adjusting for 
confounders

 aHR 95% CI P-val 

Age (per year) 1.07 1.03–1.10 8.5e−5

KPS 0.95 0.93–0.98 4.8e−4

Average dexamethasone 
(per mg/day)

1.57 1.33–1.85 1.2e−7

MGMT unmethylated 4.55 2.03–10.1 2.2e−3

Average glucose

 <100 mg/dL 1 Ref –

 100–115 mg/dL 16.8 4.15–67.9 7.6e−5

 >115 mg/dL 5.2 1.34–20.5 0.02

Methylation classifier subclass

 RTK I 1 Ref –

 RTK II 12.4 3.17–48.3 3.0e−4

 Mesenchymal 10.9 2.06–57.2 4.9e−3

 Other 11.6 1.14–118.2 0.04

Subclass * glucose interaction

 RTK II * 100–115 mg/dL 0.06 0.009–0.39 0.003

 RTK II * >115 mg/dL 0.19 0.02–0.84 0.033

  Mesenchymal * 
100–115 mg/dL

0.07 0.008–0.57 0.01

  Mesenchymal * 
>115 mg/dL

0.44 0.06–3.28 0.43

 Other * 100–115 mg/dL 0.13 0.005–3.0 0.20

 Other * >115 mg/dL 1.17 0.07–18.9 0.91
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pathways in tumors within high glucose environments. 
RTK II tumors demonstrate greater enrichment for EGFR 
amplification,12 which, in other cancers, has been shown 
to maintain intracellular glucose levels through interac-
tion with sodium glucose transporters.38,39 A similar fea-
ture may be seen in EGFR-amplified GBM tumors which 
may preferentially allow RTK II tumors to overcome rel-
atively low ambient glucose levels by actively pumping 
the substrate into cells. In comparison, other subclasses 
may predominantly rely on passive glucose transporters, 

rendering these cells more dependent on the concentra-
tion of glucose available.

The differential role of hyperglycemia among dif-
ferent tumor subclasses may explain why prior studies 
on lowering blood glucose have yielded mixed effects on 
survival. Given that RTK II tumors, which are most sim-
ilar to “Classical tumors” in TCGA datasets, do not ex-
hibit differential survival based on glucose environments, 
and are the most common molecular subtype, studies 
with high proportions of RTK II tumors may be unable to 
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Glucose
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MGMT

1

0.8

0.6

RTK I
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Unmeth
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0.4
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Figure 2. DNA methylation clustering shows subgroups based on methylation subclass but not glucose groups. Tumors arising in high circulating 
glucose environments do not form a unique DNA methylation subgroup. Methylation clusters exhibit heterogeneous distribution of MGMT methyla-
tion, sex, and patient age. lt63, age less than 63; gt63, age greater than 63.
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detect the differences in survival by glucose.40 Our data 
further highlights the heterogeneity of GBM and the need 
to interpret clinical findings in the context of tumor spe-
cific molecular attributes. As GBM treatment becomes 
increasingly personalized and guided by molecular char-
acteristics, rather than excluding RTK II tumors from 
trials investigating the effect of lowering glucose, DNA 
methylation sub-classification may be incorporated as an 
additional stratification variable to better understand if 
and how glucose-lowering benefits patients. While prior 
studies have not been able to demonstrate a prognostic 
role of tumor subclass, the differential role of glucose in 
various methylation classifier-determined subclasses may 
offer insight into a patient’s disease course. Given the rel-
ative ease and accessibility of DNA methylation profiling 
over other methods, wide-spread adoption of methylation 
profiling represents a more feasible option for personal-
ized treatment decision-making.

Conclusion

Higher average glucose values were associated with 
worse OS in RTK I and Mesenchymal IDH-wildtype GBM, 
but not RTK II. There were no discernible epigenetic or 
metabolomic differences between tumors in different glu-
cose environments, suggesting a potential survival ben-
efit with systemic glucose-lowering in selected molecular 

subtypes. The high proportion of RTK II tumors in GBM co-
horts may conceal the detrimental effect of high glucose or 
benefit of lowering glucose and GBM clinical trials should 
incorporate molecular stratification by reproducible and 
widely adopted method such as DNA methylation.

Supplementary material

Supplementary material is available at Neuro-Oncology 
Advances online.
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environments among tumors identifies enrichment of PI3K, MAPK, and Ras signaling pathways in high glucose tumors.
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