
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4749-4762 | https://dx.doi.org/10.21037/qims-23-1744

Original Article

Brain metastasis magnetic resonance imaging-based deep 
learning for predicting epidermal growth factor receptor (EGFR) 
mutation and subtypes in metastatic non-small cell lung cancer 

Ran Cao1,2#, Langyuan Fu1#, Bo Huang3#, Yan Liu1, Xiaoyu Wang4, Jiani Liu4, Haotian Wang4, Xiran Jiang1, 
Zhiguang Yang5, Xianzheng Sha1, Nannan Zhao4

1School of Intelligent Medicine, China Medical University, Shenyang, China; 2Department of Biomedical Engineering, School of Information 

Science and Technology, Fudan University, Shanghai, China; 3Department of Pathology, Cancer Hospital of China Medical University, Liaoning 

Cancer Hospital and Institute, Shenyang, China; 4Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer 

Hospital and Institute, Shenyang, China; 5Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China

Contributions: (I) Conception and design: R Cao, N Zhao, L Fu; (II) Administrative support: N Zhao, X Sha, Z Yang; (III) Provision of study materials 

or patients: N Zhao, Z Yang, J Liu, X Wang, B Huang; (IV) Collection and assembly of data: R Cao, B Huang; (V) Data analysis and interpretation: 

R Cao, L Fu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

#These authors contributed equally to this work.

Correspondence to: Zhiguang Yang, PhD. Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping 

District, Shenyang 110004, China. Email: yangzg@sj-hospital.org; Xianzheng Sha, MS. School of Intelligent Medicine, China Medical University, 

No.77 Puhe Road, Shenbei New District, Shenyang 110122, China. Email: xzsha@cmu.edu.cn; Nannan Zhao, PhD. Department of Radiology, 

Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, 

China. Email: nanazhao888@outlook.com.

Background: The preoperative identification of epidermal growth factor receptor (EGFR) mutations 
and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to 
facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively 
detect EGFR mutations and identify the location of EGFR mutations in patients with non-small cell lung 
cancer (NSCLC) and BM.
Methods: We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and 
T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of 
China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. 
A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on 
different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. 
The external validation set from center 2 was used to assess the performance of MSF-Net and to compare 
it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, 
precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class 
activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model.
Results: The developed MSF-Net generated a better diagnostic performance than did the handcrafted 
radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and 
macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting EGFR mutations and subtypes.
Conclusions: This study provides an end-to-end and noninvasive imaging tool for the preoperative 
prediction of EGFR mutation status and subtypes based on BM, which may be helpful for facilitating 

individualized clinical treatment plans.
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Introduction

Non-small cell lung cancer (NSCLC) is the most common 
and lethal tumor worldwide (1), accounting for 85–90% 
of all lung cancer cases (2). The epidermal growth factor 
receptor (EGFR) gene mutation has been identified as a 
unique therapeutic target, with an incidence of 40–60% 
among patients with NSCLC (3). Tyrosine kinase inhibitors 
(TKIs) have been suggested as an effective therapy 
for patients harboring the EGFR mutation, resulting 
in satisfactory outcomes with increased survival rates  
(4-7). Therefore, early identification of the EGFR mutation 
is critical for appropriate decision-making regarding 
individualized treatment strategies (8).

EGFR mutation sites located in exons 19 and 21 are the 
most important subtypes, constituting approximately 90% 
of all EGFR mutations (9,10). Moreover, the prognostic 
value of mutations in EGFR exons 19 and 21 differ  
(11-14). Patients with the 19 or 21 EGFR mutation subtypes 
often show a higher radiographic response rate to EGFR-
TKIs (15) and exhibit longer progression-free survival 
(PFS) (16,17) and overall survival (OS) times (7) than do 
those with EGFR mutation sites located in exons 18 or 20. 
Reports have shown that the median PFS after first-line 
EGFR-TKI treatment is significantly higher in patients 
with the exon 19 mutation than in those with the exon 21 
mutation (16,18). Osimertinib or afatinib is recommended 
as the first-line treatment option for patients with the 
exon 19 mutation. However, dacomitinib or erlotinib in 
combination with bevacizumab is recommended as the first-
line option for patients with the exon 21 mutation (19). 
Therefore, determining the EGFR mutation site is critical 
to guiding the selection of a treatment plan.

Many patients with NSCLC present with brain 
metastasis (BM) from the primary lesion at the time of 
diagnosis, with an incidence of 30–50% (20,21). Puncture 
biopsy is the standard clinical procedure for detecting 
EGFR mutation (22). In the absence of primary tumor, BM 
is considered an important alternative. However, to prevent 
potential damage to cranial nerves and the risk of tumor 

spread, invasive puncture is not clinically recommended 
for patients with BM. Although brain magnetic resonance 
imaging (MRI) is the most widely used noninvasive method 
for evaluating BM (23), MRI lacks specific markers that 
can help radiologists detect EGFR mutations via visual 
inspection.

Radiomics  i s  an  emerging technique  that  can 
quantitatively analyze a large number of imaging features 
for diagnosis in the assessment of gene mutations (24-27). 
Previous exploratory studies have demonstrated the value of 
MRI-based radiomics in determining EGFR mutation status 
in those with BM (23,28). However, conventional radiomics 
have some limitations, including the manual segmentation 
of the tumor and the calculation of hard-coded features (29). 
In addition, given the diversity in shape and size of BM, it is 
difficult to respond to the variable and complex textures of 
tumors by relying solely on traditional handcrafted features. 
Deep learning algorithms can automatically extract high-
dimensional features from medical images and learn the 
most representative information from raw images; thus, they 
hold great promise for imaging-based diagnosis (30-35). Hu 
et al. proposed an effective data augmentation method that 
uses a generative adversarial network (GAN) to reconstruct 
missing positron emission tomography (PET) images (36).  
Additionally, Hu et al. proposed a novel end-to-end network 
called bidirectional GAN, in which image contexts and 
latent vectors are effectively used and jointly optimized 
for brain MR-to-PET synthesis (37). Lei et al. proposed a 
joint deep learning approach based on a model built using 
group lasso and correntropy combined with independently 
recurrent neural network (IndRNN) to predict the clinical 
scores of patients with Alzheimer disease from brain MRI 
data at multiple time points (38). Although several studies 
have shown that deep learning algorithms perform well in 
detecting EGFR mutation (39-45), all of these have focused 
on MRI of primary lung cancer and lacked the prediction 
of EGFR subtypes. Recent studies have predicted EGFR 
mutation subtypes based on distant metastases originating 
from primary lung cancer but have only used conventional 
hand-extracted features in machine learning (46-48). There 
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are challenges in directly applying existing deep learning 
models to learn representative features from BM owing to 
its irregular shape and size in MRI. This motivated us to 
develop a novel deep learning method based on BM for 
accurately predicting EGFR mutation subtypes. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-1744/rc).

Methods

Patients

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the institutional ethics board of Liaoning 
Cancer Hospital and Institute (No. 20200819YG), and the 
requirement for individual consent in this retrospective 
analysis was waived. The inclusion criteria were as follows: 
(I) pathologically confirmed BM from primary NSCLC, 
(II) gene-based sequencing analysis of pathological 
biopsy specimens to confirm the EGFR mutation status 
and location of EGFR mutation sites, and (III) complete 
preoperative BM MRI. The exclusion criteria were as 
follows: (I) presence of other tumors and (II) receiving 
radiochemotherapy. Finally, 160 from Liaoning Cancer 

Hospital and Institute (center 1) and 72 patients Shengjing 
Hospital of China Medical University (center 2) who met 
the inclusion criteria were enrolled between January 2018 
and December 2021. Center 2 data constituted the external 
validation set to validate the models. Clinical characteristics, 
including performance status (PS), sex, smoking status, age, 
serum carcinoembryonic antigen (CEA) levels, neuron-
specific enolase (NSE) levels, and cytokeratin (CYFRA) 
levels were retrieved from the electronic medical record 
systems for statistical analysis. In this study, we segmented 
lung cancer BM and constructed a deep learning multiscale 
feature fusion network (MSF-Net) model to predict EGFR 
mutations and subtypes. Gradient-weighted class activation 
mapping (Grad-CAM) was used to demonstrate the areas 
most affected by the MSF-Net model. A detailed flowchart 
of this process is shown in Figure 1. 

Acquisition of MRI and segmentation of the regions of 
interest (ROIs)

Patients from centers 1 and 2 were scanned using a 
MAGNETOM Trio 3.0 T MRI scanner, (Siemens 
Healthineers, Erlangen) or a 3.0 T MAGNETOM Skyra 
(Siemens Healthineers), respectively. The parameters for 
T1-weighted (T1w)-contrast enhanced (CE) MRI were as 
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Figure 1 Flowchart of this study. MRI, magnetic resonance imaging; EGFR, epidermal growth factor receptor; GAP, global average pooling; 
MLP, multilayer perceptron.
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follows: T1-CE [time to repetition (TR) =500 ms; time to 
echo [(TE) =9 ms], sagittal slice thickness =4 mm, and scan 
interval =4.4 mm. Gadolinium-diethylenetriamine penta-
acetic acid (Gd-DTPA) was used as the contrast medium 
for T1w-CE MRI. The parameters for T2w MRI were 
as follows: TR/TE =3,630/87 ms, slice thickness =5 mm,  
pixel spacing =0.359×0.359 mm, acquisition matrix 
=320×259, and field of view =576×640 mm. Brain MRI 
scans were saved in a Digital Imaging and Communications 
in Medicine (DICOM) format.

We invited a senior radiologist with 4 years of experience 
to manually segment the metastatic lesions in each MRI 
slice using ITK-Snap (v. 3.6.0), thus generating ROIs for 
extracting radiological features. All ROIs were validated by 
a senior clinician with 14 years of work experience to ensure 
that they were correct.

Establishment of the MSF-Net 

We developed MSF-Net using residual network (ResNet) 
50 (49) as the backbone network, which aggregates three 
types of feature information at various scales. We used the 
learning weights obtained from the fivefold cross-validation 
as our base model parameters because of the fast training 
speed and parameter efficiency of ResNet 50. The details of 
MSF-Net are as follows.

Single-scale feature refinement
MSF-Net divides feature mapping into various stages and 
forms a special single-scale feature processing branch for 
each stage. The feature processing branch is stacked with 
attention modules, introducing depthwise convolutions to 
reduce the number of network parameters. To identify the 
most discriminative and effective features of BM, the spatial 
attention module is composed of two pooling strategies 
(average and max pooling) (50). The operation of the spatial 
attention module is described in detail as follows.

( )  H W CX R × ×∈ , as the features, are input into the spatial 
attention module. The channel information of a feature map 
is aggregated using two pooling operations to generate two 
2D maps. The two generated maps are then concatenated 
and applied to a standard convolution, which is followed by 
sigmoid activation. This process can be expressed as follows:

( ) ( ) ( ) ( )( )( )7 7 ;M X f AvgPool X MaxPool Xσ ×=    [1]

where σ denotes the sigmoid function and 7 7  f ×  denotes a 
convolution operation with the filter size of 7×7. The map 

( )1  H WM R × ×∈ can be used to identify the informative regions 

by multiplying M and X point wise, as follows:

P MX=
 

[2]

where P is the final refined output.

Single-scale feature fusion
Adaptive pooling is applied for downsampling to ensure that 
each branch generates the same feature resolution. Single-
scale feature mappings are fused to form multiscale feature 
blocks via concatenation.

Multiscale feature selection
The channel attention module was introduced to distribute 
the importance of each branch so that MSF-Net can 
adaptively utilize multiscale information. It is composed 
of global average pooling (GAP), two consecutive fully 
connected (FC) layers followed by sigmoid activation, and a 
multiply layer. GAP is applied to squeeze the global spatial 
information and generate a channel-wise feature response. 

( )  H W Cu R × ×∈ , as the fused feature maps, are input into the 
channel attention module. The c-th element cz  is calculated 
as follows:

1 1

1 ( , )H W
c ci j

z u i j
H W = =

=
× ∑ ∑

 

 [3]

Subsequently, the two consecutive FC layers are used to 
recalibrate the vector z to   Cs R∈ :

( )( )2 1cs W W zσ δ= [4]

where δ denotes to the rectified linear unit (ReLU) 
function, and W1 and W2 denote the respective weights in 
the two FCs. The final output Xout of the block is obtained 
by rescaling u with activation s:

outX us=  [5]

Finally, the output features are reduced to one dimension 
using GAP to avoid overfitting (51). The architecture of the 
proposed MSF-Net is shown in Figure 2.

To tra in  MSF-Net ,  we conducted a  degree  of 
preprocessing on the image, and each image was shifted 
vertically and horizontally, rotated by –30° and +30°, and 
then scaled and cropped. The ROI of each MRI slice was 
adjusted to 224×224 pixels for input into the network. 
During training, the Adam algorithm optimized the model 
with a learning rate of 0.0001. To avoid overfitting, we 
added batch normalization layers after the convolution 
layers and dropped them out to the FC layers. We chose 
cross-entropy as the loss function:
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( ) ( )1
ˆ̂ log 1 log 1n

i i i ii
loss y y y y

=
= − + − −∑   

[6]

where ˆ  iy  denotes the prediction, and  iy  denotes the ground 
truth. The batch size and training epochs were 8 and 200, 
respectively. All networks were created and trained on a 
single graphics processing unit (GPU) (GeForce 3090 Ti, 
Nvidia Corporation, Santa Clara, CA, USA) workstation in 
Python v. 3.6 (Python Software Foundation, Wilmington, 
DE, USA).

Selection of handcrafted radiomics features and model 
construction

In total, 1976 radiomic candidate features were extracted 
from BM, and a handcrafted radiomic model was constructed 
using the Pyradiomics package (52). The feature types used 
were first-order, shape-based, and texture features. To identify 
the most predictive features, 30 randomly selected patients 
were used to evaluate the consistency of features expressed by 
the interclass correlation coefficient (ICC) (53). High ICC 
values (ICC >0.85) indicated that the results of independent 
evaluations by different observers were consistent. Next, the 
retained features were screened using the Mann-Whitney test 
with P<0.05, and those selected were used for the training 
set. Least absolute shrinkage and selection operator logistic 

regression (54) were applied to screen the remaining features 
to retain the nonzero coefficient features. Handcrafted 
radiomic models were constructed by incorporating the 
finally remaining features with logistic regression using the 
“rms” package in R v. 3.6 (available from URL: https://www.
r-project.org; The Foundation of Statistical Computing).

Statistical analysis

Statistical analysis was performed to assess the statistical 
differences in the clinical characteristics between the wild-
type EGFR and EGFR mutations in exon 19 and 21. The 
Mann-Whitney test and chi-square test were employed 
for continuous and discrete variables, respectively. The 
threshold for statistical significance was set at a two-sided 
P<0.05. Receiver operating characteristic (ROC) analysis 
was performed in R using the maximum Youden index (55) 
to assess the performance of the handcrafted radiomics- and 
deep learning-based models. Micro- and macroaveraged 
values were used to calculate the average performance of 
the ROC curves for the three EGFR mutation statuses. 
Precision, recall, and F1-score, together with their 
corresponding macro- and weighted-average values, were 
computed at the patient level. Grad-CAM was employed 
for visual interpretation of MSF-Net (56).

https://www.r-project.org
https://www.r-project.org


Cao et al. BM-based deep learning predicts EGFR mutation and subtypes 4754

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4749-4762 | https://dx.doi.org/10.21037/qims-23-1744

Table 1 Clinical characteristics of all patients in the training and external validation sets 

Characteristic
Training set (center 1) External validation set (center 2)

Wild-type (n=76) Exon 19 (n=41) Exon 21 (n=43) P Wild-type (n=30) Exon 19 (n=22) Exon 21 (n=20) P

Age (years),  
mean ± SD

60.39±7.64 55.51±8.68 63.27±10.11 0.001* 60.18±7.54 60.34±6.57 59.78±8.27 0.628

Gender, n (%) 0.032* 0.005*

Male 36 (47.37) 20 (48.78) 22 (51.16) 14 (46.67) 10 (45.45) 10 (50.00)

Female 40 (52.63) 21(51.22) 21 (48.84) 16 (53.33) 12 (54.55) 10 (50.00)

Smoking, n (%) 0.018* 0.023*

Yes 42 (55.26) 24 (58.54) 19 (44.19) 12(40.00) 9 (40.91） 9 (45.00)

No 34 (44.74) 17 (41.46) 24 (55.81) 18(60.00) 13 (59.09） 11(55.00)

PS score, n (%) 0.004* 0.185

0 13 (17.11) 5  (12.20) 6 (13.95) 5 (16.67) 3 (13.64) 2 (10.00)

1 58 (76.32) 36 (87.80) 34 (79.07) 21 (70.00) 18 (81.82) 16 (80.00)

2 5 (6.57) 0 (0.00) 3 (6.98) 4 (13.33) 1 (4.54) 2 (10.00)

KPS score, n (%) 0.051 0.324

70 8 (10.53) 6 (14.63) 7 (16.28) 2 (6.67) 2 (9.09) 1 ((5.00)

80 17 (22.37) 16 (39.03) 15 (34.88) 10 (33.33) 6 (27.27) 7 (35.00)

90 51 (67.10) 19 (46.34) 21 (48.84) 18 (60.00) 14 (63.64) 12 (60.00)

CEA, mean ± SD 138.24±367.22 97.23±267.22 88.65±198.24 0.167 151.89±211.90 99.28±131.19 87.27±99.31 0.213

CYFRA, mean ± SD 10.28±19.32 8.89±9.83 9.35±17.29 0.711 10.36±9.84 17.21±10.01 15.11±6.79 0.674

NSE, mean ± SD 29.26±29.84 30.28±16.76 26.73±18.99 0.384 24.58±6.22 22.89±5.88 20.16±12.63 0.380

*, P<0.05. Center 1, Liaoning Provincial Cancer Hospital; center 2, Shengjing Hospital of China Medical University. SD, standard deviation; 
PS, performance status; KPS, Karnofsky Performance Scale; CEA, carcinoembryonic antigen; CYFRA, cytokeratin; NSE, neuron-specific 
enolase. 

Results

Clinical characteristics

A total of 160 patients from center 1 were included in the 
training set. The number of patients with wild-type EGFR, 
exon 19 mutation, and exon 21 mutation was 76, 41, and 43, 
respectively. A total of 72 patients from center 2 were used 
as the external validation set, and the number of patients 
with wild-type EGFR, exon 19 mutation, and exon 21 
mutation was 30, 22, and 20, respectively. Table 1 shows the 
clinical characteristics of the patients.

Establishment and evaluation of MSF-Net

Figure 3 shows the loss curves for training and testing, in 
which the model rapidly converges. As shown in Figure 4, 

in the training set enrolled from center 1, our MSF-Net 
generated micro- and macroaveraged areas under the curve 
(AUCs) of 0.90 and 0.91, respectively. MSF-Net performed 
well in predicting EGFR mutations and generated the 
highest AUC (0.92). MSF-Net generated the lowest 
AUC (0.90) for predicting the EGFR mutation in exon 
21. At the patient level, our MSF-Net generated micro- 
and macroaveraged AUCs of 0.93 and 0.94, respectively. 
External validation results (Figure 5) showed slight decreases 
in the diagnostic performance of MSF-Net with AUCs of 
0.91, 0.91, and 0.89 for predicting EGFR mutations, exon 
19 mutation, and exon 21 mutation, respectively. The 
micro- and macroaveraged AUCs in the external set were 
0.90 and 0.91, respectively.

Figure 6 shows an example of the visual interpretation of 
MSF-Net, indicating the most affected regions. The first row 
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Figure 3 The loss curves for the training and testing set.

Figure 4 ROC curves of MSF-Net in the fivefold cross-validation. (A) ROC curves for predicting the EGFR mutation and subtypes.  
(B) ROC curves for the micro- and macro-average. AUC, area under the curve; ROC, receiver operating characteristic; MSF-Net, multiscale 
feature fusion network; EGFR, epidermal growth factor receptor.

Figure 5 ROC curves of MSF-Net in the (A) primary and (B) external set. AUC, area under the curve; ROC, receiver operating 
characteristic; MSF-Net, multiscale feature fusion network. 

In addition, relying only on fused features to predict the 
classification may result in a model that ignores more 
significant features at different scales and introduces more 
noise. Therefore, we attempted to input the features fused 
by each branch of the model into the channel attention 
module, which can adaptively learn the channel weights of 
these feature maps so that the model can recognize effective 
feature information at each stage (69). Our experimental 
results showed an improvement in AUC from 0.72 to 0.78 
for predicting EGFR mutations and subtypes when our 
model was added to the attention module. The predictive 
power of MSF-Net improved substantially when we 
incorporated multiscale features and attention modules, 
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Figure 6 Attention heatmaps on the BM MRI image for predicting the EGFR mutation and subtypes visualized by Grad-CAM (the first row 
shows the BM MRI, the second row of the heatmap shows the attention region, and the third row shows the ROI). EGFR, epidermal growth 
factor receptor; BM, brain metastases; MRI, magnetic resonance imaging; Grad-CAM, Gradient-weighted class activation mapping; ROI, 
region of interest. 

shows the BM MRI, the second row of the heatmap shows 
the attention region, and the third row shows the ROI. The 
rightmost color bar shows the focus of MSF-Net with a 
cutoff value set to 0.5 to reflect the ROI obtained from the 
heatmap. For each class of the EGFR-mutant subtype, the 
tumor regions were localized to some extent, suggesting that 
the tumor regions provided important information for the 
classification task performed using MSF-Net.

Ablation study

The novelty of our proposed MSF-Net is the multiscale 
feature fusion and the incorporation of spatial attention and 
channel attention mechanisms. Ablation experiments were 
conducted to evaluate the effect of multidimensional features 
and spatial attention mechanisms on the prediction of EGFR 
mutations and subtypes. As shown in Table 2, MSF-Net 
yielded the highest AUC and accuracy values. The ResNet 50 
model generated the lowest AUC, accuracy, specificity, and 
sensitivity among all models. The ablation analysis indicated 
that each module of MSF-Net contributed to improving the 
prediction of EGFR mutation and subtypes.

Comparison between MSF-Net and handcrafted radiomics

For comparison with the proposed MSF-Net, a handcrafted 

radiomics model was established based on logistic 
regression. As shown in Table 3, MSF-Net consistently 
outperformed the radiomics model in terms of precision, 
recall, F1-score, AUC, and accuracy for both the primary 
and external sets. In addition, MSF-Net exhibited a superior 
performance in dealing with multiclassification problems 
compared to the manually extracted radiomics features.

Discussion

Previous research has attempted to predict the EGFR 
mutation status in patients with lung cancer using deep 
learning (57-62). However, these studies were based on 
the chest computed tomography (CT) data of primary 
lesions. Shi et al. used a deep learning network to predict 
metastatic origins and EGFR or human epidermal growth 
factor receptor 2 (HER2) status in patients with BM (63). 
Haim et al. used a deep learning network to predict EGFR 
mutation status in lung cancer BM (64). However, these 
studies only used traditional deep learning networks, did 
not improve the model, and only predicted the EGFR 
mutation status but not the EGFR mutation subtypes. In 
addition, the amount of data in these studies was small, with 
only 60 and 59 patients included in the studies by Shi et al. 
and Haim et al., respectively. Jiang et al. proposed a new 
neural network for predicting EGFR mutation status and 
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Table 2 Performance comparisons of the ResNet 50 versus various strategies 

Task Model AUC ACC SPE SEN

EGFR wild-type vs. 
EGFR exon 19 vs. 
EGFR exon 21

Resnet 50 0.72 0.69 0.79 0.76

Resnet 50 + SA+ CA 0.78 0.70 0.81 0.84

Resnet 50 + MF 0.82 0.72 0.82 0.86

MSF-Net 0.91 0.75 0.87 0.90

ResNet, residual network; AUC, area under the curve; ACC, accuracy; SPE, specificity; SEN, sensitivity; EGFR, epidermal growth factor 
receptor; SA, spatial attention mechanism; CA, channel attention mechanism; MF, multiscale feature; MSF-Net, multiscale feature fusion 
network. 

Table 3 Evaluation indicators of the MSF-Net and handcrafted-based radiomics in the primary and external sets 

Performance evaluation
Training set External validation set

MSF-Net Radiomics MSF-Net Radiomics

Precision

Macro-average 0.81 0.72 0.78 0.61

Weighted-average 0.82 0.78 0.77 0.60

Recall

Macro-average 0.79 0.69 0.73 0.62

Weighted-average 0.81 0.73 0.74 0.60

F1-score

Macro-average 0.79 0.71 0.74 0.61

Weighted-average 0.81 0.72 0.74 0.60

AUC

Macro-average 0.93 0.82 0.91 0.81

Micro-average 0.94 0.83 0.9 0.80

Accuracy 0.81 0.72 0.75 0.60

MSF-Net, multiscale feature fusion network; AUC, area under the curve. 

mutation subtypes in BM from lung cancer, with an AUC 
of 0.69 (65). To our knowledge, this is the first proposal of 
a deep learning method that can perform multiclassification 
predictions of EGFR mutations and subtypes based on BM. 
The proposed MSF-Net involves the adaptive integration 
of multiscale features of different stages of ResNet 50. 
MSF-Net is divided into three stages, and the introduced 
spatial attention module in each stage can learn the feature 
maps specific to each scale to adapt to irregular brain MRI. 
Subsequently, the shallow and deep branch features are 
integrated to enable the model to learn more abundant 
and significant information for classification instead of 
relying on the previous layer of features (66). The fusion 

of multiscale features improved AUCs of the model for 
predicting the EGFR mutation and subtypes from 0.72 to 
0.82, which indicates that the fusion of shallow and deep 
features can improve the predictive capability of the model.

BM is usually irregular in size and has a complex 
environment containing edematous and necrotic regions (23), 
which may distract the attention of the network. To solve 
this problem, we integrated spatial attention and channel 
attention modules (67) into MSF-Net. The spatial attention 
module aims to enhance the feature representation of 
key regions so that important regions containing rich 
information regarding EGFR mutations can be fully 
explored and irrelevant background regions weakened (68).  
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with the AUC improving from 0.72 to 0.91.
In this study, we developed a traditional handcrafted 

radiomics model to predict EGFR mutation subtypes 
and generated an AUC and accuracy of 0.80 and 0.60, 
respectively. In comparison, our MSF-Net model achieved 
a significantly higher AUC and accuracy of 0.94 and 
0.81 in the training set and 0.90 and 0.75 in the external 
validation set, respectively. This discrepancy may be due 
to the fact that the features extracted using radiomics are 
low-dimensional features, such as shape and texture. These 
features contain limited information and are not sufficiently 
effective for multiclassification tasks; the model built using 
these features has poor generalization ability, making their 
use problematic for multicenter datasets (70). Our MSF-
Net model showed a slightly reduced performance in 
predicting EGFR mutation subtypes. This is consistent 
with previous handcrafted feature-based radiomics studies 
based on the BM of primary NSCLC, which also reported 
that the predictive ability of exons 19 and 21 of EGFR was 
significantly lower than that of EGFR mutations (28,65). 
It is possible that differences between EGFR subtype 
mutations are caused by changes in metastases at the 
molecular level, and such subtle differences are difficult 
to discern via MRI. In contrast, the differences between 
EGFR mutations and wild-type EGFR are mainly reflected 
in histomorphological changes, which may directly lead to 
the heterogeneity of metastases and significant changes in 
MRI. Our MSF-Net was externally evaluated, generated 
good performance in the detailed differentiation of EGFR 
mutations, and provided a basis for the establishment of the 
optimal personalized diagnosis and treatment strategies in 
patients with BM.

We applied Grad-CAM for visual interpretation of our 
MSF-Net. Grad-CAM can analyze and locate the areas 
of concern of the network for a given category (71). Our 
results showed that MSF-Net can provide distinct attention 
to various regions in the BM that are highly associated with 
the EGFR mutation status and sites. For the prediction of 
the EGFR wild type, intratumoral areas of metastases are 
considered important. A possible reason for this is that 
EGFR mutations can cause changes in tissue morphology 
that result in the heterogeneity of intratumoral areas (65). 
For EGFR mutations in exons 19 and 21, irregular tumor 
contours were considered as the high-response target areas. 
Therefore, MSF-Net can infer significant areas related to 
EGFR mutations and mutation subtypes to assist in clinical 
diagnosis.

This study involved certain limitations that should be 

mentioned. First, we used a 2D MRI slice as the input for 
our MSF-Net model because of the limited sample size, 
which might have led to the loss of spatial information. 
In future studies, adjacent tumor slices should be used as 
3D inputs to increase the spatial feature information of 
the tumor. Second, MSF-Net was only used with T1w-
CE and T2W MRI and lacked the inclusion of T2 fluid-
attenuated inversion recovery and diffusion-weighted 
imaging sequences, which will be included in our future 
work. Third, this study only predicted the EGFR gene 
mutations; in the future, we will incorporate more data to 
train the models [such as Kirsten rat sarcoma viral oncogene 
homologue (KRAS), anaplastic lymphoma kinase (ALK), 
ROS proto-oncogene 1, receptor tyrosine kinase (ROS1), 
and T790M]. Finally, automatic detection and segmentation 
of BM will be addressed in our future work.

Conclusions

We propose an effective MSF-Net for predicting EGFR 
mutations and subtypes in BM originating from primary 
NSCLC. In this model, low- and high-dimensional features 
are fused to improve the classification accuracy. MSF-Net is 
an end-to-end model that can be used as a noninvasive tool 
to identify the EGFR mutation status and subtypes, thus 
aiding clinicians in developing personalized treatment plans.
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