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CD8+ T cells are key factors mediating hepatitis B virus (HBV) clearance. However, these cells are killed through HBV-induced 
apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD) patients. Interferon-inducible 
protein 6 (IFI6) delays type I interferon-induced apoptosis in cells. We hypothesized that single nucleotide polymorphisms 
(SNPs) in the IFI6 could affect the chronicity of CLD. The present study included a discovery stage, in which 195 CLD patients, 
including chronic hepatitis B (HEP) and cirrhosis patients and 107 spontaneous recovery (SR) controls, were analyzed. The 
genotype distributions of rs2808426 (C ＞ T) and rs10902662 (C ＞ T) were significantly different between the SR and HEP 
groups (odds ratio [OR], 6.60; 95% confidence interval [CI], 1.64 to 26.52, p = 0.008 for both SNPs) and between the SR and 
CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). The 
distribution of diplotypes that contained these SNPs was significantly different between the SR and HEP groups (OR, 6.58; 
95% CI, 1.63 to 25.59; p = 0.008 and OR, 0.15; 95% CI, 0.04 to 0.61; p = 0.008, respectively) and between the SR and CLD 
groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). We were 
unable to replicate the association shown by secondary enrolled samples. A large-scale validation study should be performed 
to confirm the association between IFI6 and HBV clearance.
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Introduction

Between 350 and 400 million people worldwide are 
chronically infected with the hepatitis B virus (HBV) [1, 2]. 
In most HBV-infected patients, spontaneous recovery (SR) 
by the host immune system is common. However, 5% to 10% 
of patients fail to recover and remain as HBV-induced 
chronic liver disease (CLD) patients [3]. CLD, including 
HBV-induced chronic hepatitis B (HEP) and HBV-induced 
cirrhosis (CIR), is a major cause of hepatocellular carcinoma, 
which can lead to liver-related death [4]. The high mortality 
of CLD is a major problem in HBV-endemic countries [5]. In 
Korea, which is an HBV endemic area, more than 70% of 
CLD patients are infected by HBV [6, 7]. 

CD8+ T cells are key factors involved in the chronicity of 
CLD. The major roles of CD8+ T cells in HBV clearance are 

the production of interferon (IFN)-γ, which inhibits HBV 
gene expression and the assembly of HBV RNA-containing 
capsids, and the induction of apoptosis of virus-infected 
hepatocytes, which requires physical contact with CD8+ T 
cells [8-11]. However, the CD8+ T cells of CLD patients 
undergo activation-induced apoptosis instead of prolifera-
tion in the presence of antigen-presenting cells [12, 13]. 
Apoptosis of antigen-specific CD8+ T cells in CLD patients 
and lymphocytic choriomeningitis virus (LCMV)-infected 
type I IFN receptor-null mice is mediated by B-cell lym-
phoma (Bcl)-2 [12, 14-16], indicating that type I IFN is 
critical to the survival of antigen-specific CD8+ T cells 
during the transition from acute to chronic HBV infection. 
Kolumam et al. [16] reported that type I IFN acts directly on 
CD8+ T cells to allow clonal expansion and memory 
formation in response to LCMV infection. Type I IFN 
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receptor-null CD8+ T cells neither produce antiviral 
molecules, including IFN-γ, granzyme B, and tumor 
necrosis factor (TNF)-α nor show reduced survival after 
antigen- induced stimulation [16]. 

Type I IFN on CD8+ T cells is critical for survival, 
proliferation, and antiviral functions [16]. IFNs are a 
well-known family of cytokines with antiviral effects [17, 
18]. IFNs modulate cellular proliferation and stimulate 
immune responses through several IFN-stimulated genes 
(ISGs) [19]. IFN-α-inducible protein 6 (IFI6) is a type I ISG 
[20-22] that maps to chromosome 1p35 [23] and is regu-
lated by the Janus tyrosine kinase signal transducer and 
activator of transcription signaling pathway [24]. IFI6 is a 
mitochondria-targeted protein; it inhibits the release of 
cytochrome c from mitochondria and delays the apoptotic 
process initiated and transduced by the TNF-related apop-
tosis-inducing ligand/caspase 8 pathway [25]. The role of 
IFI6 is strongly associated with the immune system, but its 
antiviral effects are not well known [26].

In the present study, we hypothesized that IFI6 may be a 
survival-promoting factor for CD8+ T cells and therefore a 
determinant of the chronicity of HEP. The frequencies of IFI6 
polymorphisms in CLD patients and SR controls were 
compared using logistic regression.

Methods
Subjects for the case-control study

A discovery stage included 305 blood samples obtained 
from the outpatient clinic of the Gastroenterology Depart-
ment and from the Center for Health Promotion of Ajou 
University Hospital (Suwon, Korea) without gender or age 
restrictions between March 2002 and February 2006. 
Samples were derived from genetically unrelated Korean 
patients. The experimental protocol was approved by the 
institutional review board. Samples were divided into SR 
control (n = 107), HEP (n = 111), and CIR (n = 87) groups, 
according to serological markers and biopsy results. Three 
samples in the HEP group were not genotype-replicated and 
were excluded from the analysis. Finally, 107 SR control, 108 
HEP, and 87 CIR patients were analyzed.

In the replication stage, 736 blood samples were collected 
from Ajou University Hospital and Keiymung University 
(Daegu, Korea) between February 2006 and September 
2012. Samples were derived from genetically unrelated 
Korean patients. The experimental protocol was approved by 
the institutional review board. Samples were divided into 
two 205 SR controls, 437 HEP patients, and 94 CIR patients 
according to serological markers and biopsy results.

All samples were infected with HBV and classified into 
one of the three groups, according to their HBV infection 

status, clinical data, and serological profile, by a pathologist. 
Every 6 months for ＞12 months, the 218 patients were 
subjected to serological tests for serum levels of hepatitis B 
core antibody (Anti-HBc II Reagent Kit; Abbott Labora-
tories, South Pasadena, CA, USA), hepatitis B surface anti-
gen (HBsAg) (Anti-HBs; Abbott Laboratories), and hepatitis 
B surface antibody (HBsAb) (HBsAg; Abbott Laboratories). 
Liver function was evaluated by measuring aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), 
albumin, and bilirubin levels using commercially available 
assays. All samples showed elevated ALT at least once during 
the follow-up period and were positive for HBV DNA, 
irrespective of hepatitis B e antigen (HBeAg) positivity. 
Patients in the SR group were HBsAg-negative, HBeAg- 
negative, anti-HBs-positive, and anti-HBc-positive and had 
recovered from HBV infection. Patients in the CLD group, 
including those in the HEP and CIR groups, were HBsAg- 
positive for more than 6 months with elevated ALT and AST 
(≥2 times the normal upper limit). Samples that were 
positive for anti-hepatitis C virus (Genedia HCV ELISA 3.0; 
GreenCross, Yoingin, Korea) or anti-immunodeficiency 
virus antibodies (HIV Ag/Ab combo; Abbott Laboratories) 
were excluded.

Sample preparation

All blood samples were stored at ‒80°C for the handling of 
human genomic DNA. Genomic DNA was purified using 
G-DEX blood genomic DNA (gDNA) purification kits 
(Intron Biotechnology Inc., Seongnam, Korea). 

The gDNA for the discovery analysis was quantified using 
the picogreen dsDNA quantification reagent following a 
standard protocol (Molecular Probes, Eugene, OR, USA). 
The plates were read using a VICTOR3 1420 Multilabel 
counter (excitation 480 nm, emission 520 nm; PerkinElmer 
Inc., Waltham, MA, USA), and a standard curve for gDNA 
concentration was generated using known concentrations of 
lambda DNA.

The quality of the gDNA analyzed in the replication stage 
was determined using a NanoDrop ND-1000 UV-Vis 
Spectrophotometer (Thermo, Eugene, OR, USA). Genomic 
DNA was diluted to a concentration of 10 ng/μL in 96-well 
PCR plates.

Single nucleotide polymorphism (SNP) selection and 
genotyping

In the discovery stage, six SNPs were selected from a 
public SNP database (http://www.ncbi.nlm.nih.gov/snp/) 
for the genotyping assay: 1) polymorphic in Chinese and 
Japanese; 2) tag SNPs in Asian; 3) might have functionality 
in protein or expression level. The selected SNPs were 1) one 
SNP in the 5' flanking region (rs2808426); 2) three intronic 
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Table 1. Clinical characteristics of study subjects

Variable n
Sex Age HbsAg+ AST (U/L) ALT (U/L) ALB (g/dL) BIL (mg/dL)

Male/Female Mean ± SD % Mean ± SD Mean ± SD Mean ± SD Mean ± SD

1st SR 107  80/27 46.04 ± 8.40   0 30.62 ± 25.45 39.40 ± 29.40 4.40 ± 0.26 0.90 ± 0.35
CLD HEP 108  79/29 45.81 ± 9.38 100 50.68 ± 63.07 58.41 ± 95.14 4.09 ± 0.64 1.51 ± 2.36
CLD CIR  87  68/19 43.54 ± 8.82 100 69.76 ± 152.82 83.33 ± 145.58 4.27 ± 0.35 1.12 ± 1.85

2nd SR 205  77/128 50.90 ± 9.84   0 22.57 ± 12.25 24.36 ± 6.86 4.49 ± 0.23 0.97 ± 0.87
CLD HEP 437 323/114 49.51 ± 10.07 100 67.96 ± 52.70 60.16 ± 54.77 3.67 ± 0.76 2.12 ± 3.26
CLD CIR  94  68/26 42.53 ± 11.44 100 59.99 ± 89.21 83.47 ± 159.40 4.30 ± 0.44 1.18 ± 2.06

All SR 312 157/155 42.53 ± 11.44   0 30.62 ± 25.45 39.40 ± 29.40 4.40 ± 0.26 0.90 ± 0.35
CLD HEP 545 402/143 48.05 ± 9.96 100 56.32 ± 60.34 58.98 ± 84.02 3.95 ± 0.70 1.70 ± 2.69
CLD CIR 181 136/343 42.78 ± 10.85 100 63.22 ± 114.21 83.43 ± 154.86 4.29 ± 0.41 1.16 ± 1.99

Age, aspartate aminotransferase, alanine aminotransferase, albumin, and bilirubin are summarized and expressed as the mean ±
standard deviation (SD).
HbsAg+, hepatitis B surface antigen positive; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALB, albumin; BIL, 
bilirubin; SR, spontaneous recovery; CLD, chronic liver disease; HEP, chronic hepatitis B; CIR, liver cirrhosis.

SNPs (rs10902662, rs1316896, and rs4908351); 3) one SNP 
in the untranslated region (rs1141747); and 4) one SNP in 
the 3′ flanking region (rs2808430). The genotyping was 
performed using the GoldenGate kit according to a standard 
protocol (Illumina Inc., San Diego, CA, USA). Oligos were 
amplified by allele-specific primer extension. After hybri-
dization to a sentrix array matrix, signal intensities were 
read by BeadArray Reader (Illumina Inc.). Genotyping 
analysis was performed using GenomeStudio software 
(version 1.5.16; Illumina Inc.). 

In the replication stage, rs2808426, which was identified 
in the discovery stage, was genotyped using Taqman 
technology. The probes were labeled with FAM or VIC dye at 
the 5' end and a minor groove binder and nonfluorescent 
quencher at the 3' end. All reactions were performed 
following the supplier’s protocol. SNP genotyping reactions 
were performed on the ABI PRISM 7900HT real-time PCR 
system (Applied Biosystems, Foster City, CA, USA). After 
the PCR amplification, allelic discrimination was performed 
on the ABI PRISM 7900HT. Allele calls were made with SDS 
v2.4 software (Applied Biosystems). 

Statistical analysis 

The genetic models for the association test were divided 
according to additive (AA vs. Aa vs. aa), dominant (AA vs. Aa 
plus aa), and recessive (AA plus Aa vs. aa) models. The χ2 
test was used to assess the Hardy-Weinberg equilibrium 
(HWE) in the SR, HEP, CIR, and CLD groups. The difference 
between groups was determined by the odds ratio (OR). 
ORs were presented with 95% confidence intervals (95% 
CIs) and adjusted for age and sex. Each individual haplotype 
was inferred from the EM algorithm using the SAS haplotype 
procedure (version 9.1; SAS Institute Inc., Cary, NC, USA). 

Linkage disequilibrium (LD) blocks were checked by the 
Gabriel method using Haploview software (version 4.2; 
Broad Institute, Cambridge, MA, USA). All statistical tests 
were performed using SAS software, and the significance 
level was set at p ＜ 0.05. The probability values obtained 
were corrected for multiple testing by using Bonferroni’s 
correction and permutation test. Bonferroni’s p-value for 
reaching significance was 0.025 (0.05/2). The Plink program 
was used to confirm the results and permutation test (n = 
100,000; http://pngu.mgh.harvard.edu/~purcell/plink/).

Results

The fate of the patients infected with HBV was determined 
by several factors, including host immune reactions. Type I 
IFNs play a key role in the defense against HBV infection and 
therefore in the prevention of chronic hepatitis. IFI6 is 
induced by type I IFN. To test the effect of IFI6 poly-
morphisms on the chronicity of HEP, samples were collected 
from SR controls (HBsAg－), who recovered from HBV 
infection without any treatment, and CLD patients, inclu-
ding HEP and CIR groups (HBsAg+), who were at risk of 
HBV infection. To analyze first whether variations in the IFI6 
gene were associated with the susceptibility to HEP in the 
Korean population, 107 controls in the SR group, 108 
patients in the HEP group, and 95 patients in the CIR group 
were analyzed for six SNPs of IFI6 (n = 302). The charac-
teristics of the study subjects are summarized in Table 1. 

In the first phase or discovery stage, four out of six SNPs 
(rs1316896, rs4908351, rs1141747, and rs2808430) were 
monomorphic. Genetic variants of rs2808426 and rs10902662 
did not show evidence of departure from minor allele 
frequency and HWE in either of the groups (p ＞ 0.05). Two 
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Table 2. Genotype frequencies and associations between SR and CLD in IFI6 SNPs

SNP
genotype 
location

Group
n (%)

Model OR (95% CI) p-valuea p-valueb p-valuec

CC CT TT

rs2808426
C > T
5' near gene

SR  69 (64.5)  35 (32.7)  3 (2.8) ADD 1.37 (0.92–2.02) 0.118

CLD 118 (60.5)  58 (29.7) 19 (9.7)
DOM 1.19 (0.73–1.93) 0.499
REC 4.38 (1.25–15.26) 0.021 0.019 0.042

SR  69 (64.5)  35 (32.7)  3 (2.8) ADD 1.45 (0.92–2.28) 0.110

HEP  65 (60.2)  31 (28.7) 12 (11.1)
DOM 1.17 (0.66–2.08) 0.589
REC 6.60 (1.64–26.52) 0.008 0.001 0.016

SR  69 (64.5)  35 (32.7)  3 (2.8) ADD 1.33 (0.83–2.13) 0.242

CIR  53 (60.9)  27 (31.0)  7 (8.0)
DOM 1.18 (0.66–2.11) 0.570
REC 3.44 (0.87–13.51) 0.077

rs10902662
C > T
Intron

SR 115 (59.0)  60 (30.8) 20 (10.3) ADD 1.37 (0.92–2.03) 0.121

CLD  67 (62.6)  37 (34.6)  3 (2.8)
DOM 1.21 (0.73–1.98) 0.459
REC 4.12 (1.18–14.44) 0.027 0.026

SR  64 (59.3)  32 (29.6) 12 (11.1) ADD 1.48 (0.94–2.34) 0.091

HEP  67 (62.6)  37 (34.6)  3 (2.8)
DOM 1.22 (0.68–2.17) 0.506
REC 6.60 (1.64–26.52) 0.008 0.001 0.016

SR  51 (58.6)  28 (32.2)  8 (9.2) ADD 1.28 (0.79–2.07) 0.318

CIR  67 (62.6)  37 (34.6)  3 (2.8)
DOM 1.16 (0.65–2.09) 0.618
REC 2.95 (0.73–11.91) 0.128

SR, spontaneous recovery; CLD, chronic liver disease; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; 
ADD, additive; DOM, dominant; REC, recessive; HEP, chronic hepatitis B; CIR, liver cirrhosis.
aThe p-values were obtained from logistic regression with additive, dominant, and recessive models; bThe p-values were calculated 
by Permutation test; cThe p-values were calculated by Bonferroni’s correction.

genotypes had minor allele frequencies greater than 1% 
(Table 2). The results of the genotype analysis showed that 
the CC genotype was the most common in the rs2808426 
and rs10902662 polymorphisms in all groups. To analyze the 
genetic association between IFI6 polymorphisms and clea-
rance from CLD, HEP, and CIR, multiple logistic regression 
analysis with adjustment for gender and age was performed. 

In the comparison between SR and CLD patients, 
rs2808426 was associated with CLD in a recessive model 
(OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021). In addition, 
rs10902662 showed significant differences between the SR 
and CLD groups in a recessive model (OR, 4.12; 95% CI, 
1.18 to 14.44; p = 0.027). After the permutation test, the 
rs2808426 and rs10902662 SNPs still had significant 
correlations (p ＜ 0.026). After Bonferroni’s correction, only 
rs2808426 had significant correlations (p = 0.042) (Table 2).

Comparison between the SR and HEP groups showed that 
the IFI6 SNPs rs2808426 and rs10902662 in the promoter 
region were associated with a higher risk that correlated with 
the homozygous variant TT genotype in a recessive model 
(OR, 6.60; 95% CI, 1.64 to 26.52; p = 0.008). After the 
permutation test, the rs2808426 and rs10902662 SNPs still 
had significant correlations (p = 0.001 in both genotype 
analyses), which were maintained after Bonferroni’s cor-
rection (p = 0.016 in both genotype analyses) (Table 2). 

The results of the multiple logistic regression analysis 
comparing the SR and CIR groups showed that the 
rs2808426 and rs10902662 SNPs were not associated in all 
genetic models (Table 2).

The possible genetic linkage between the rs2808426 and 
rs10902662 polymorphisms in the protection against chro-
nic HBV infection was examined. LD blocks were con-
structed by the Gabriel method using Haploview software. 
The complete LD block consisted of rs2808426 and 
rs10902662 and showed a pairwise |D'| = 1 and r2 = 0.942, 
which reflect strong LD. The variants across IFI6 consisted of 
a single LD block structure composed of two haplotypes 
(HTs). The diplotype consisted of HT1 C-C (C allele of 
rs2808426; C allele of rs10902662) and HT2 T-T (T allele of 
rs2808426; T allele of rs10902662). The results of the HT 
estimation showed that the CC and TT haplotypes accoun-
ted for over 99% distribution in all groups. According to 
three genetic models, estimated HTs were used for diplotype 
analysis by logistic regression, adjusting for age and sex. 

In the recessive model, HT1 frequency was significantly 
different between the SR and the CLD (OR, 0.021; 95% CI, 
1.25 to 15.26; p = 0.021) and HEP (OR, 6.67; 95% CI, 1.64 
to 26.52; p = 0.008) groups. Analysis of the HT2 diplotype 
showed a significant difference between the SR and HEP 
(OR, 0.15; 95% CI, 1.64 to 26.52; p = 0.008) and CLD (OR, 
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Table 3. Diplotype frequencies and associations between SR and CLD in IFI6 SNPs

Diplotype Group
n (%)

Model OR 
(95% CI) p-valuea p-valueb p-valuec

HT/HT HT/－ －/－

HT1
C-C

SR  67 (62.6) 37 (34.6)  3 (2.8) ADD 1.37 (0.92–2.02) 0.118
DOM 1.19 (0.73–1.93) 0.499

CLD 115 (59.0) 60 (30.8) 20 (10.3) REC 4.38 (1.25–15.26) 0.021 0.016 0.042

SR  67 (62.6) 37 (34.6)  3 (2.8) ADD 1.45 (0.92-–2.28) 0.110
DOM 1.17 (0.66–2.08) 0.589

HEP  64 (59.3) 32 (29.6) 12 (11.1) REC 6.60 (1.64–26.52) 0.008 0.001 0.016

SR  67 (62.6) 37 (34.6)  3 (2.8) ADD 1.33 (0.83–2.13) 0.242
DOM 1.18 (0.66–2.11) 0.570

CIR  51 (58.6) 28 (32.2)  8 (9.2) REC 3.44 (0.87–13.51) 0.077

HT2
T-T

SR  69 (64.5) 35 (32.7)  3 (2.8) ADD 0.73 (0.92–2.03) 0.121
DOM 0.24 (1.18–14.44) 0.027 0.022

CLD 118 (60.5) 58 (29.7) 19 (9.7) REC 0.83 (0.73–1.98) 0.459

SR  69 (64.5) 35 (32.7)  3 (2.8) ADD 0.68 (0.94–2.34) 0.091
DOM 0.15 (1.64–26.52) 0.008 0.001 0.016

HEP  65 (60.2) 31 (28.7) 12 (11.1) REC 0.82 (0.68–2.17) 0.506
SR  69 (64.5) 35 (32.7)  3 (2.8) ADD 0.78 (0.79–2.07) 0.318

DOM 0.86 (0.65–2.09) 0.618
CIR  53 (60.9) 27 (31.0)  7 (8.0) REC 0.34 (0.73–11.91) 0.128

SR, spontaneous recovery; CLD, chronic liver disease; SNP, single nucleotide polymorphism; HT, haplotype; OR, odds ratio; CI, 
confidence interval; ADD, additive; DOM, dominant; REC, recessive; HEP, chronic hepatitis B; CIR, liver cirrhosis.
aThe p-values were obtained from logistic regression with additive, dominant, and recessive models; bThe p-values were calculated 
by Permutation test; cThe p-values were calculated by Bonferroni’s correction.

0.24; 95% CI, 1.18 to 14.44; p = 0.027) groups in the 
dominant model (Table 3). All diplotype p-values remained 
significant after the permutation test (p ＜ 0.022), and with 
the exception of HT2 in the SR and CLD groups, almost all 
of the diplotype p-values remained significant after Bon-
ferroni’s correction (p ＜ 0.042).

To replicate the significant associations of the SNP 
rs2808426, 736 samples, consisting of 205 SR, 437 HEP, and 
94 CIR patients, were collected. The clinical information of 
the patients included in the analysis is summarized in Table 
1. The second-stage genotyping was performed using the 
Taqman assay. The association of rs2808426 with CLD was 
assessed using the three genetic models, and multiple 
logistic regression with adjustment for gender and age was 
used as the first-stage analysis. The results of the genotype 
analysis of the second set of samples in association with CLD 
are summarized in Table 4. 

The significance of the results of the first genotype 
analysis was not maintained in the second genotype analysis. 
Furthermore, no significant associations were detected in a 
meta-analysis of the first-stage and second-stage samples 
(Table 4). 

Discussion

The rs2808426 and rs10902662 SNPs are located in the 5' 

flanking region and the first intron of the IFI6 gene, 
respectively. These SNPs by themselves are known to 
regulate gene expression by causing alternative splicing or by 
changing the binding to a transcription factor or microRNA 
[21]. The presence of the rs2808426 SNP in the promoter 
region of IFI6 led us to screen for transcription factors with 
binding sites near or on rs2808426 (C ＞ T). The binding of 
several transcription factors, including isoforms of the 
glucocorticoid receptor α, STAT4, v-ets erythroblastosis 
virus E26 oncogene homolog 1 (ETS1), and ETS2, to the 
protective allele (C) was predicted by ALLGEN PROMO 
(version 3.0.2; http://alggen.lsi.upc.es/cgi-bin/promo_v3/ 
promo/promoinit.cgi?dirDB=TF_8.3) [27]. 

Interestingly, the binding of ETS1 to the region containing 
rs2808426 T was not predicted. Differential binding of ETS1 
according to the genotype of rs2808426 may affect the 
expression of IFI6. IFI6 expression by type I IFNs triggers the 
formation of IFN-stimulated gene factor 3 (ISGF3) com-
plexes containing activated STAT1/STAT2 and IFN regu-
latory factor 9 and their translocation into the nucleus, 
where they bind to the tandem IFN-stimulated regulatory 
element (ISRE) in the promoter of IFI6 [21, 28-31]. Tandem 
binding of ISGF3 to the ISRE is required for maximum 
expression of IFI6 [32], and the promoter region, including 
rs2808426, enhances IFI6 expression more than the ISRE 
region alone [21]. The ISGF3-binding site for the ISRE is 
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Table 4. Multistage genotype analysis of rs2808426 (C > T) in IFI6 gene

Stage Group
n (%)

HWE MAF Model OR (95% CI) p-value
CC CT TT

CLD 1st SR  69 (64.5)  35 (32.7)  3 (2.8)
0.550 0.216

ADD 1.37 (0.92–2.03) 0.121
DOM 1.21 (0.73–1.98) 0.459

CLD 118 (60.5)  58 (29.7) 19 (9.7) REC 4.12 (1.18–14.44) 0.027

2nd SR 133 (64.9)  61 (29.8) 11 (5.4)
0.550 0.216

ADD 1.03 (0.74–1.44) 0.845
DOM 1.15 (0.78–1.71) 0.480

CLD 324 (61.0) 182 (34.3) 25 (4.7) REC 0.60 (0.25–1.45) 0.259

All SR 202 (64.7)  96 (30.8) 14 (4.5)
0.550 0.218

ADD 1.14 (0.89–1.47) 0.295
DOM 1.15 (0.85–1.55) 0.369

CLD 442 (60.9) 240 (33.1) 44 (6.1) REC 1.35 (0.68–2.67) 0.393

HEP 1st SR  69 (64.5)  35 (32.7)  3 (2.8)
0.563 0.223

ADD 1.48 (0.94–2.34) 0.091
DOM 1.22 (0.68–2.17) 0.506

HEP  65 (60.2)  31 (28.7) 12 (11.1) REC 6.60 (1.64–26.52) 0.008

2nd SR 133 (64.9)  61 (29.8) 11 (5.4)
0.563 0.211

ADD 0.92 (0.64–1.31) 0.626
DOM 0.96 (0.63–1.48) 0.864

HEP 270 (61.8) 143 (32.7) 24 (5.5) REC 0.63 (0.25–1.62) 0.341

All SR 202 (64.7)  96 (30.8) 14 (4.5)
0.563 0.227

ADD 1.08 (0.82–1.42) 0.587
DOM 1.02 (0.73–1.42) 0.918

HEP 335 (61.5) 174 (31.9) 36 (6.6) REC 1.59 (0.75–3.39) 0.228

CIR 1st SR  69 (64.5)  35 (32.7)  3 (2.8)
0.261 0.213

ADD 1.28 (0.79–2.07) 0.318
DOM 1.16 (0.65–2.09) 0.618

CIR  53 (60.9)  27 (31.0)  7 (8.0) REC 2.95 (0.73–11.91) 0.128

2nd SR 133 (64.9)  61 (29.8) 11 (5.4)
0.261 0.207

ADD 1.20 (0.76–1.89) 0.446
DOM 1.53 (0.89–2.62) 0.124

CIR  54 (57.4)  39 (41.5)  1 (1.1) REC 0.20 (0.02–1.65) 0.135

All SR 202 (64.7)  96 (30.8) 14 (4.5)
0.261 0.214

ADD 1.02 (0.87–1.66) 0.270
DOM 1.32 (0.89–1.96) 0.161

CIR 107 (32.7)  66 (20.1)  8 (2.4) REC 0.92 (0.37–2.29) 0.852

HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; CLD, chronic liver disease; 
SR, spontaneous recovery; HEP, chronic hepatitis B; CIR, Chronic liver disease; ADD, Additive; DOM, Dominant; REC, Recessive.

separated from the ETS1-binding site by about 1.35 kb. The 
transcription factor ETS1 may regulate the expression of 
intracellular adhesion molecule-1 by protein-protein inter-
action with STAT1, which is a component of ISGF3 [33]. 
Overexpression of ETS1 in the MCF-7 breast cancer cell line 
enhances the expression of IFI6 up to 18.4-fold [34]. These 
data led us to speculate that the interaction between ETS1 
and STAT1 in the ISGF3 complex may increase the ex-
pression of IFI6.

The present study investigated the association between 
the rs2808426 and rs10902662 polymorphisms of the IFI6 
gene and the clearance of HBV in the Korean population by 
multistage comparison between the SR and CLD groups, 
including the HEP and CIR groups. 

In the first stage of the analysis, significant associations 
between the rs2808426 and rs10902662 polymorphism 
genotypes and diplotypes were detected. A risk that was 
associated with the TT genotype in rs2808426 and 
rs10902662 was detected in the comparison between the SR 

and the CLD and HEP groups. Strong LD was found between 
the SNPs rs2808426 and rs10902662, containing most of the 
promoter region. In addition, diplotype analysis showed that 
the C-C HT was associated with a higher chance of SR than 
the T-T/T-T diplotype and that the C-C HT had a protective 
effect. The results of the first-stage analysis suggested that 
rs2808426 and rs10902662 may serve as candidate genetic 
screening markers for HBV clearance or that causative va-
riants that are responsible for HBV clearance may be present 
in this LD block. 

The association between IFI6 polymorphisms and HBV- 
induced chronic disease suggest that these polymorphisms 
might change the expression level of IFI6 according to 
transcription factor binding. Therefore, an increase in IFI6 
expression that is associated with polymorphisms of the 
gene could inhibit the release of cytochrome c from mito-
chondria and block the transmission of the apoptosis signals 
through Bim in HBV-specific CD8+ T cells. HBV-specific 
CD8+ T cells would thus escape from antigen-induced 
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apoptosis, proliferate, and then differentiate into activated 
CD8+ T cells to eliminate HBV from the host.

The results of the first-stage analysis suggested that IFI6 
polymorphisms play a significant role. In previous studies, 
CD8+ T cell-related gene polymorphisms, such as those of 
secreted phosphoprotein 1, interleukin-18, and cyclin D2, 
were reported to affect the natural course of chronic HBV 
infections in the Korean population, but the effect of their 
genetic association is minor (OR, 0.69 to 1.44) [35, 36]. 
Furthermore, genomewide association studies of human 
leukocyte antigen (HLA) region polymorphisms, including 
HLA-DPA1, HLA-DPB1, and HLA-DQ, demonstrated their 
association with the chronicity of HBV [37-43]. In our 
first-stage analysis, the protective effect of the rs2808426 
and rs10902662 polymorphisms was stronger than that 
reported previously in studies addressing the association 
with HBV (OR, 6.60). The genotype and diplotype distri-
bution in both groups remained significant after multiple 
testing by Bonferroni’s correction and permutation test. 
These results might support that genetic variation in IFI6 
affects the clearance of HBV.

A second set of samples was used to replicate the results 
of the first-stage analysis. However, in the second asso-
ciation analysis, the comparison of the SR and the HEP and 
CIR groups did not yield significant results, even when 
merging the first- and second-stage samples in a meta- 
analysis. This could have been due to variation in the 
sampling cohort, environmental interactions, inadequate 
statistical power, or gene interactions [1, 44-49]. Further-
more, information on factors important for the progression 
of liver disease was lacking in the samples analyzed, such as 
data on alcohol consumption [50]. 

Although our data could not be reproduced, the results 
showing an association between IFI6 polymorphisms and 
HBV chronicity are significant. Our study is the first study to 
investigate the association between IFI6 polymorphisms and 
HBV clearance as an ISG. In addition, SR patients were used 
as controls instead of normal healthy subjects to show the 
effect of genomic background on the chronicity of HBV 
infection. Normal controls that never contracted HBV are 
not suitable to show the genetic effects. 

Future studies should include a larger sample size and 
additional information in the replication study to validate 
the significance of the results through epistasis and envi-
ronmental interactions. In addition, IFI6 promoter varia-
tions should be characterized using next-generation se-
quencing techniques, causal variants should be identified, 
and mechanisms underlying the effect of IFI6 on HBV 
clearance that is mediated by HBV antigen-specific CD8+ T 
cell survival need to be investigated. 

In the present study, an initial discovery stage showed that 

the rs2808426 and rs10902662 genotypes and the cor-
responding diplotype were associated with a higher pro-
bability of HBV clearance in a Korean population. However, 
the results could not be replicated in a second stage with a 
different patient sample. Further studies should be aimed at 
showing how IFI6 affects HBV clearance by promoting HBV 
antigen-specific CD8+ T cell survival. Moreover, identifi-
cation of causal variants in the IFI6 by including a large 
number of samples may help clarify the role of IFI6 on HBV 
clearance.
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