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Background: Myocardial infarction (MI) is a chronic cardiovascular disease. This study aims to discern potentially angiogenesis- and 
epithelial mesenchymal transition (EMT)-related genes as biomarkers for MI diagnosis through bioinformatics.
Methods: All datasets and angiogenesis- and EMT-related genes were collected from the public database. The differentially expressed 
genes (DEGs) of MI and MI-related genes were acquired. DEGs, MI-related genes, and angiogenesis- and EMT-related genes were 
intersected to obtain hub genes. Functional enrichment, immune microenvironment, and transcription factors (TFs)-hub genes 
regulatory network analysis were performed. The diagnostic markers and models were developed and validated. Drug prediction 
and molecular docking were performed. Finally, diagnostic markers expressions were validated using RT-qPCR.
Results: A total of 224 angiogenesis- and EMT-related genes, 2,897 DEGs, 1,217 MI-related genes, and 9 hub genes were acquired. 
The immune infiltration levels of plasma cells, T cells CD4 memory activated, monocytes, macrophages M0, mast cells resting, and 
neutrophils were higher in patients with MI. LRPAP1, COLGALT1, QSOX1, THBD, VCAN, PLOD1, and PLAUR as the diagnostic 
markers were identified and used to construct diagnostic models, which can distinguish MI from controls well. Then, 9 drugs were 
screened, and the binding energies ranged from −7.08 to −5.21 kcal/mol. RT-qPCR results showed that the expression of LRPAP1, 
PLAUR, and PLOD1 was significantly increased in the MI group.
Conclusion: The 7 diagnostic markers may play potential roles in MI and could contribute to improved future diagnostics.
Keywords: myocardial infarction, angiogenesis, epithelial mesenchymal transition, diagnostic markers

Introduction
Myocardial infarction (MI) represents the most severe form of coronary artery disease, characterized by ischemic 
necrosis of the myocardium due to the sudden interruption of blood flow.1,2 MI remains a predominant global cause 
of mortality and disability, posing a significant threat to human health.3 In China, the mortality rate of MI in 2020 was 
78.65/100,000 in rural areas and 60.29/100,000 in urban areas.4 According to the atherosclerosis risk in communities’ 
study, the annual incidence of MI is approximately 805,000.5 The gold standard of MI diagnosis is elevated serum 
cardiac troponin.6 Additionally, lactate dehydrogenase, creatine kinase (CK)-MB, myoglobin, and myosin-binding 
protein C can be considered biomarkers of MI.6 The prognosis of MI patients has significantly improved with 
advancements in percutaneous coronary intervention and antithrombotic therapy.7 However, the incidence of MI has 
not declined but increased in older individuals.8 Timely and effective revascularization of patients with MI reduces 
mortality and improves prognosis.9

MI induces substantial damage to coronary microcirculation, resulting in vascular disintegration and capillary 
thinning within the infarcted area.10 Cardiac repair consists of two phases: an inflammatory phase and a repair phase. 
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Starting with sterile inflammation and immune cell infiltration, it is followed by inflammatory regression, fibroblast 
proliferation, scar formation, and angiogenic response.11 These responses coordinate to achieve efficient microvascular 
perfusion in cardiac remodeling, ensuring subsequent repair and function recovery.12 Angiogenesis is mainly accom-
plished by endothelial cells (ECs).13 Additionally, cardiomyocytes, macrophages, fibroblasts, and monocytes are also 
involved in the process of angiogenesis.13 In mice after MI, the capillary network was markedly expanded on day 7.14 

Furthermore, epicardium participates in cardiac remodeling and angiogenesis after MI through epithelial mesenchymal 
transition (EMT), converting endocardial cells to fibroblasts.15,16 In the heart failure model, cardiomyocytes exhibited an 
EMT-like regenerative response that promotes cardiac regeneration.17 Single-cell RNA sequencing demonstrated that 
ECs transiently displayed a mesenchymal gene expression state from days 3 to 7, returning to baseline levels at day 14.18 

Although both EMT and angiogenesis play important roles in MI, the pathophysiology among MI, EMT, and angiogen-
esis remains unknown.

In this study, the differentially expressed genes (DEGs), angiogenesis- and EMT-related genes, and MI-related genes 
were acquired, followed by overlapping to acquire hub genes. Then, functional enrichment, immune infiltrated analysis, 
and regulatory network construction were performed. Additionally, the diagnostic markers and models were obtained, 
and the performance of models was evaluated. Furthermore, potential target drugs were predicted. Finally, the blood 
samples were collected to validate the expression of diagnostic markers. This work may provide new directions in the 
diagnosis and treatment of MI.

Materials and Methods
Data Collection and Processing
MI is defined as the death of myocardial cells due to prolonged ischemia.19 In clinical settings, elevated levels of cardiac 
troponin or CK-MB are diagnostic indicators of MI.20 The keywords “myocardial infarction” and “homo sapiens” were 
searched in the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/GEO/), and four datasets, 
GSE59867, GSE62646, GSE123342, and GSE28454, were included in this study. Among these, GSE59867 (46 controls 
and 111 MI samples) and GSE62646 (14 controls and 28 MI samples) datasets were utilized as the training set, while 
GSE123342 (22 controls and 67 MI samples) and GSE28454 (76 MI samples) datasets were employed as the validation 
set. The samples in the training set were peripheral blood mononuclear cells (PBMC), whereas the GSE123342 and 
GSE28454 datasets comprised whole blood samples and monocytes, respectively. Then, the GSE59867 and GSE62646 
datasets were merged, and the batch effects were removed using the “combat” function from the “sva” package in 
R software (version 3.5.3). Additionally, angiogenesis- and EMT-related genes were obtained from the MSigDB (https:// 
www.gsea-msigdb.org/gsea/msigdb/).

DEGs Analysis
The “limma” package in R was used to acquire the DEGs between controls and MI patients. The DEGs with false 
discovery rate (FDR) <0.01 were considered statistically significant. The volcano plot and heatmap were generated to 
visualize the results through the “ggplot” and “pheatmap” packages in R, respectively.

Weighted Gene Co-Expression Network Analysis (WGCNA)
To construct a scale-free gene co-expression network, the top 25% of genes were selected for subsequent analysis using 
the “WGCNA” package in R. First, the “hclust” function was employed to cluster samples to remove abnormal samples. 
Subsequently, the “pickSoftThreshold” function was utilized to select an optimal soft thresholding power to construct 
a scale-free topology. The degree was set as 0.90. Then, the adjacency matrix was generated based on the eigengene and 
followed by its transformation into a topological overlap matrix (TOM) and its corresponding 1-TOM. Genes were 
clustered according to their expression patterns. Next, modules were divided using the default “cutreeDynamic” function. 
The modules with a dissimilarity degree of less than 0.25 were combined. Subsequently, the module eigengene (ME) was 
calculated using the “moduleEigengenes” function, and the correlation between modules and MI was analyzed using the 
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Pearson analysis. Finally, modules related to MI were identified as hub modules, and MI-related genes were selected 
based on the following criteria: |gene significance (GS)| >0.4 and |module membership (MM)| >0.6.

Identification of Hub Genes and Functional Enrichment Analysis
The DEGs in patients with MI, MI-related genes in WGCNA analysis, and angiogenesis- and EMT-related genes were 
intersected to obtain the intersection genes. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis were conducted for intersection genes using the David database (https://david. 
ncifcrf.gov/).21,22 The terms with p-value <0.05 were considered statistically significant. The distribution of intersection 
genes on chromosomes was explored using the “Rcircos” package in R. Following this, the regulatory relationships 
among intersection genes were explored using the STRING database (https://cn.string-db.org/), and the hub genes were 
identified based on their expression levels in both training sets and the GSE123342 dataset.23

Immune Microenvironment Analysis
The immune infiltration levels of 22 immune cells were calculated based on their gene expression matrix using the 
“CIBERSORT” algorithm.24 The difference in 22 immune cells between controls and MI patients was assessed using the 
Wilcoxon test, and the results were visualized through the bar plot. Then, the correlation between hub genes and 
differential immune cells was investigated through the Pearson analysis.

Construction of Transcription Factors (TFs)-Hub Genes Regulatory Network
The TFs associated with hub genes were predicted using the Cistrome DataBase (Cistrome DB, http://genemania. 
org).25,26 The top 20 TFs were selected based on their regulatory potential scores. Then, the MI-related TFs were 
determined after intersecting between the top 20 TFs and DEGs. Finally, the TFs-hub genes network was constructed 
using Cytoscape software.

Construction of Diagnostic Models Using Machine Learning
Firstly, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to select feature genes 
from hub genes through the “glmnet” package in R in the training set. Secondly, feature genes were ranked according to 
their mean decrease accuracy using the “randomForest” package in R. Using the random forest (RF) algorithm and 10- 
fold cross-validation, the optimal number of genes was determined. Finally, RF and support vector machine (SVM) 
classification models were created using the “randomForest” and “e1071” packages in R, respectively. The diagnostic 
ability of two classification models was evaluated in both the training set and the GSE123342 dataset using the receiver 
operating characteristic (ROC) curve generated via the “pROC” package in R. The area under the curve (AUC) value was 
used to quantify the performance of models.

Drug Prediction and Molecular Docking
The DGIdb database (https://dgidb.org/) was utilized to select candidate drugs associated with genes in diagnostic 
models. The binding activity was calculated through molecular docking. The 3D structures of target proteins were 
obtained from the RCSB PDB (http://www.rcsb.org/pdb/home/home.do), while 3D structures of drugs were downloaded 
from the PubChem (https://pubchem.ncbi.nlm.nih.gov/).27,28 Hydrogenation and other pre-processing of proteins and 
drugs were performed using AutoDockTools, followed by molecular docking.29 In this study, the binding energies with 
<-5.0 kJ/mol indicated strong binding activity.30 The molecular docking results were visualized by the PyMol software.31

Real-Time qPCR (RT-qPCR) Analysis
A total of 11 blood samples were collected from 6 patients with stable coronary artery disease (CAD) served as controls 
and 5 patients with MI for RT-qPCR. The clinical information and disease history of all samples are displayed in 
Supplementary Table 1. Total RNA was extracted using HiPure Liquid RNA/miRNA Kit (Magen) following the 
manufacturer’s instructions. Then, FastQuant cDNA First Strand cDNA Synthesis Kit (Tiangen) was used to perform 
mRNA reverse transcription. SuperReal PreMix Plus (SYBB Green, Tiangen) was utilized for qRT-PCR according to the 
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manufacturer’s instructions. Finally, the results were measured using the ABI 7300 real-time PCR instrument (BIOER), 
and the relative mRNA expression levels were calculated by the 2−ΔΔCt method with GAPDH and β-actin as the internal 
references. The synthesis of primers was completed by Biomed, and the sequences are shown in Supplementary Table 2.

Results
Data Processing and GSEA Analysis
After removing the batch effect, 60 controls and 139 MI samples in the training sets were obtained. A total of 24 
angiogenesis-related genes, 188 EMT-related genes, and 12 common genes were acquired. To assess expression levels of 
angiogenesis- and EMT-related genes in MI, the gene set enrichment analysis (GSEA) was conducted using GSEA 
software. The Results showed that angiogenesis- and EMT-related genes were significantly enriched in patients with MI 
(Figure 1A and B).

Identification of DEGs and MI-Related Genes
Compared with controls, a total of 2,897 DEGs, including 1,279 up-regulated and 1,618 down-regulated, were identified 
in MI patients (Figure 2A and B). WGCNA was carried out to identify the MI-related genes in the training sets. The 
power β = 22 was used to construct the scale-free network (Figure 2C). A total of 7 modules were clustered with gene 
count in each module ≥50 and divergence ≥0.25 (Figure 2D and E). Six modules were significantly associated with MI, 
and modules with |correlation| ≥0.5 were used for further analysis, including blue, green, magenta, brown, and grey 
models (Figure 2F). With |GS| >0.4 and |MM| >0.6, a total of 1,217 MI-related genes were obtained: 207 genes were 
identified in the blue module, 295 in the green module, 63 in the magenta module, 542 in the brown module, and 110 in 
the grey module. (Figure 2G–K).

Identification of Hub Genes and Function Analysis
The 2,897 DEGs, 36 angiogenesis-related genes, 200 EMT-related genes, and 1,217 MI-related genes were intersected to 
obtain 16 intersection genes, including LRPAP1, THBD, TIMP1, VCAN, CAPG, FSTL3, ITGB1, LGALS1, LRP1, 
PLAUR, PLOD1, PLOD3, QSOX1, TGFBI, TGFBR3, and COLGALT1 (Figure 3A). GO analysis revealed that these 16 
intersection genes were involved in various processes, including negative regulation of metallopeptidase activity, positive 

Figure 1 GSEA analysis. GSEA analysis showed that angiogenesis- (A) and EMT-related genes (B) were up-regulated in MI samples.
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Figure 2 WGCNA. (A and B) Volcano plot (A) and heatmap (B) of DEGs between MI and control samples. (C) Scale Independence and mean connectivity analysis. (D) 
A cluster dendrogram of 7 modules. (E) Clustering of module eigengene. (F) The module trait relationship. (G–K) Scatter plots of gene significance for MI vs the module 
membership in the blue (G), green (H), magenta (I), brown (J), and grey (K) modules.
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regulation of beta-amyloid clearance, peptidyl-lysine hydroxylation, myoblast differentiation, positive regulation of 
neuroblast proliferation, receptor internalization, and positive regulation of protein localization to the plasma membrane 
(Figure 3B). KEGG analysis indicated that PLOD3, PLOD1, and COLGALT1 were mainly involved in the lysine 
degradation and other types of O-glycan biosynthesis pathways, and the lysine degradation was displayed in Figure 3C.

Figure 3 Identification of intersection genes. (A) Venn analysis of intersection genes among DEGs, angiogenesis- and EMT-related genes, and MI-related genes. (B) GO 
analysis of intersection genes. (C) Lysine degradation pathway.
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The locations of 16 intersection genes on chromosomes are displayed in Figure 4A. PPI results showed that the 
degree of TIMP1 was the highest, interacting with 6 genes, among 19 interacting pairs (Figure 4B). There are 4 gene 
pairs with interaction scores above 0.95 in all interaction relationships, including LRP1 and LRPAP1, COLGALT1 and 
PLOD3, COLGALT1 and PLOD1, and PLOD1 and PLOD3 (Figure 4B). Considering that TIMP1 was located on the 
X chromosome and has the highest degree in the PPI network, the relationship between TIMP1 and gender in MI was 
explored in the GSE28454 dataset, which included monocyte samples from patients with MI at 6 h, 72 h, and 90 days. 
We found that the expression of TIMP1 was significantly increased in females at 6h and 72 h compared to male patients 
(Figure 4C). Furthermore, the expression levels of 16 intersection genes in the training sets and GSE123342 dataset were 
displayed in Figure 4D–E. The expression of CAPG, COLGALT1, LRPAP1, PLAUR, PLOD1, QSOX1, THBD, TIMP1, 
and VCAN was significantly up-regulated in MI samples compared with the control group in both two datasets. Hence, 
the above 9 genes were identified as the hub genes.

Correlation Analysis Between Immune Cells and Hub Genes
The results showed that patients with MI had higher immune infiltration levels of plasma cells, T cells CD4 memory 
activated, monocytes, macrophages M0, mast cells resting, and neutrophils, while T cells CD8, T cells CD4 native, 
T cells CD4 memory resting, NK cells resting, T cells regulatory (Tregs), macrophages M2, and eosinophil were enriched 
in the control group (Figure 5A). Next, the correlation between 13 immune cells and 9 hub genes was analyzed 
(Figure 5B). Plasma cells, monocytes, and neutrophils were significantly correlated with all hub genes. VCAN showed 
the highest positive correlation with monocytes at 0.76, followed by PLAUR and monocytes at 0.7. In addition, the 
highest negative correlation was observed between T cells CD8 and VCAN, which was −0.59.

Construction of TFs-Hub Genes Regulated Network
A total of 118 TFs associated with 9 hub genes were obtained, and then they were intersected with the DEGs to acquire 
22 MI-related TFs (Figure 6A). The expression of 22 MI-related TFs was exhibited in Figure 6B. Then, the TFs-hub 
genes regulated network was constructed (Figure 6C). Among 37 regulatory relationship pairs, THBD and TIMP1 were 
regulated by 6 different TFs, while RELA TF regulated 6 hub genes.

Construction of Diagnostic Model for Predicting MI
A total of 7 diagnostic genes were acquired in the training set using LASSO regression analysis (Figure 7A). The results 
of mean decreasing precision and 10-fold cross-validation showed that the highest accuracy was achieved when the 
number of genes was seven (Figure 7B–D), including LRPAP1, COLGALT1, QSOX1, THBD, VCAN, PLOD1, and 
PLAUR. The heatmaps were used to visualize the expression levels of these genes (Figure 7E). The correlation results 
indicated that seven diagnostic genes were significantly correlated with each other, with COLGALT1 and QSOX1 having 
the strongest correlation of 0.89 (Figure 7F). Then, the SVM and RF classification models were constructed based on 7 
diagnostic genes. The AUC of SVM and RF were 0.952 and 0.928, respectively in the training set (Figure 7G and H). In 
the SVM model, sensitivity and specificity were 87.8% and 96.7%, respectively, while the RF model showed 84.9% and 
91.7% for sensitivity and specificity. In the GSE123342 dataset, these two classification models also distinguished 
patients with MI from the control group (Supplementary Figure 1).

Drugs Predicting and Molecular Docking
A total of 9 drugs for seven diagnostic genes were obtained from the DGIdb database (Figure 8A). Among these drugs, 5 
drugs may target THBD gene, 3 drugs may target PLAUR gene, and 1 drug may target VCAN gene. However, other 
genes were not matched to the drug. The lowest binding energy of THBD and cilostazol was −7.08 kcal/mol by binding 
THR-17 amino acid residues with 2 hydrogen bonds (Figure 8B). The binding energy of THBD and simvastatin was 
−6.01 kcal/mol by binding TYR-27 and GLY-26 amino acid residues with 2 hydrogen bonds (Figure 8C). The binding 
energy of THBD and warfarin was −5.44 kcal/mol by binding THR-17 and GLN-1 amino acid residues with 3 hydrogen 
bonds (Figure 8D). The binding energy of THBD and curcumins was −6.35 kcal/mol by binding THR-17, GLN-1, PRO- 
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Figure 4 Identification of hub genes. (A) The locations of intersection genes on the chromosome. (B) The PPI network of intersection genes. (C) The expression levels of 
TIMP1 gene at three time points in the GSE28454 dataset between MI and control samples. (D and E) The expression of intersection gene in the training sets (D) and 
GSE123342 dataset (E) between MI and control samples. *p <0.05; **p <0.01; ****p <0.0001; ns, no significance.
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24, and LEU-29 amino acid residues with 4 hydrogen bonds (Figure 8E). The binding energy of PLAUR and urokinase 
was −5.21 kcal/mol by binding THR-8, VAL-41, and GLU-39 amino acid residues with 5 hydrogen bonds (Figure 8F).

RT-qPCR Validation
The expression levels of 7 diagnostic genes were validated by RT-qPCR (Figure 9). Compared with the control group, the 
expression of all diagnostic genes was increased in the MI group. Remarkably, the expression of LRPAP1, PLAUR, and 
PLOD1 was significantly increased in the MI group (Figure 9B–D).

Discussion
MI is pathologically characterized by the death of myocardial cells resulting from prolonged ischemia, which is related to high 
mortality.20,32 Angiogenesis and EMT participate in the repair process after MI by rebuilding microvascular circulation.33,34 

However, the molecular mechanism between MI, angiogenesis, and EMT is not clear. Chen et al reported that PI3K/Akt/mTOR, 
Notch, Wnt/β-catenin, Hippo, Sonic Hedgehog, and JAK/STAT signaling pathways are key targets for post-MI angiogenesis 
regulation.35 HIF-1α, eNOS, VEGF-A, and FOXO, as the downstream effectors for PI3K/Akt/mTOR signaling pathway, 
participated in generation and maintenance of blood vessels in post-MI.35 In MI model rats, the overexpression of notch 

Figure 5 Microenvironment analysis. (A) The abundance of each immune infiltration cell in MI and control samples. (B) Heatmap of the correlation between immune cells 
and hub genes. *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001; ns, no significance.
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intracellular domain, which serves as a core component of the Notch signaling pathway, promoted angiogenesis.36 In addition, 
activated Notch enhanced PI3K/Akt signaling in adult myocardium after MI.37 In MI, the Wnt/β-catenin pathway is activated in 
endothelial cells, leading to their mesenchymal transformation and the generation of bipotential mesenchymal cells, which may 
be involved in angiogenesis.38 In a mouse model of ischemic heart failure post-MI, knock out Hippo pathway component 
Salvador induced angiogenesis.39 Elevated expression of Sonic hedgehog during myocardial ischemia activates endothelial 
progenitor cells and induces angiogenesis and expression of angiogenic factors.40 In mice with cardiomyocyte-specific deletion 
of STAT3, the reduced myocardial capillary density was observed at four months of age.41 Additionally, these mice showed 
increased susceptibility to myocardial infarction and larger infarct sizes.41 Hence, establishing a multi-gene risk model for MI 
based on angiogenesis and EMT can facilitate timely and targeted therapeutic interventions in clinical practice for MI patients.

In this study, we aimed to explore angiogenesis- and EMT-related diagnostic biomarkers in patients with MI through 
bioinformatics analysis. A total of 9 hub genes were identified and then the diagnostic models consisting of 7 hub genes 
were constructed and validated, which can distinguish patients with MI from control group.

Figure 6 Construction of TFs-hub genes network. (A) The intersection between the DEGs and TFs. (B) The expression levels of MI-related TFs between MI and control 
groups. (C) TFs-hub genes network. Orange and blue represent hub genes and TFs, respectively. ****p <0.0001.
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COLGACT1 is a member of the collagen beta (1-O) galactosyltransferase family, and their variants might be 
responsible for cerebral small vessel disease.42 Gelsolin-like actin-capping protein (CAPG), belonging to the gelsolin 
superfamily, plays a role in cell migration.43 In the post-ischemic heart, decellularized extracellular matrix (dECM) 
hydrogels therapy could promote cardiomyocyte vascularization through down-regulating CAPG expression.44 LRPAP1 
is a molecular chaperone protein that regulates low-density lipoprotein receptor (LDLR) function.45 Yu et al reported that 
LDLR variants could reduce the risk of premature MI in Han Chinese.46 Additionally, MI showed a linear correlation 
with the number of “cholesterol-years”, as an indicator of cumulative exposure to low-density lipoprotein cholesterol.47 

The urokinase plasminogen activator receptor (PLAUR) is a member of the plasminogen activation system and serves as 
a valuable diagnostic indicator for atherosclerosis, which is the cause of MI.48,49 Procollagen-lysine, 2-oxoglutarate 
5-dioxygenase 1 (PLOD1) encodes a lysyl hydroxylase 1 (LH1) and is vital for maintaining stability in collagen fibrils by 

Figure 7 Construction of diagnostic model. (A) The optimal lambda value was acquired by LASSO regression analysis. (B) Accuracy values at different gene numbers. (C) 
The AUC values at different gene numbers. (D) The mean decrease accuracy of 7 diagnostic genes. (E) Heatmap of 7 diagnostic genes in training set. (F) The correlation 
analysis among 7 diagnostic genes. (G and H) ROC analysis of SVM (G) and RF (H) diagnostic models in training datasets. ***p <0.001.
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supporting intermolecular cross-links.50 In the abdominal aortic aneurysm model, knock-out PLOD1 exacerbated the 
inflammatory response and vascular smooth muscle cell apoptosis.51 Quiescin sulfhydryl oxidase 1 (QSOX1), as 
a sulfhydry1 oxidase, plays a role in cellular growth and extracellular matrix remodeling and could act as a new 
independent marker of left ventricular dysfunction after MI.52 Thrombomodulin (THBD) acts as an anticoagulant 
transmembrane factor, reducing the formation of thrombin.53 Wenzel et al showed that endogenous THBD played 
a protective role in the ischemic brain through mediating angiogenesis.54 In heart failure, Xin-shu-bao, 

Figure 8 Drugs predicting and molecular docking. (A) Sankey diagram of predicted drugs. (B–E) THBD and cilostazol (B), simvastatin (C), warfarin (D), and curcumins (E) 
molecular docking, respectively. (F) PLAUR and urokinase molecular docking.
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a cardioprotective drug, alleviated heart failure through THBD/ARRB1/FGF1/STIM1 signaling.55 Tissue inhibitor of 
metalloproteinases 1 (TIMP1) had been related to maintain the homeostatic balance of the myocardial extracellular 
matrix (ECM).56 The expression of TIMP1 was increased after MI in pigs in the treatment of extracorporeal cardiac 
shock, along with up-regulation of angiogenesis and angiogenic factor.57 Versican (VCAN) is a chondroitin sulfate 
proteoglycan, constituting a component of the ECM originating from cardiac fibroblasts.58 In adult mice after MI, the 
increasing of VCAN facilitated cardiomyocyte proliferation and cardiac recovery.59 In our study, the 9 hub genes (CAPG, 
COLGALT1, LRPAP1, PLAUR, PLOD1, QSOX1, THBD, TIMP1, and VCAN) were obtained, and their expression was 
increased in patients with MI. Except for CAPG and TIMP1, diagnostic model consisting of other genes could 
distinguish MIs from controls well. Hence, we speculated that these genes may play a potential role in cardiac recovery 
after MI and may be candidate biomarkers.

After MI, the innate and adaptive immune responses were activated, and T and B cells were recruited.60 B cells have 
an impact on inflammation and repair following MI.61 Kyaw et al reported that dying cardiomyocytes could release 
a signal to activate B cells, leading to an increase in plasma cells, which secreted IgG and accelerated recurrent MI.61 

Activated CD4 T cells enhanced wound healing and heart recovering in mice after MI.62 Monocytes, macrophages, and 
neutrophils play key roles in regulating myocardial healing.62 Monocytes are precursor cells to macrophages.63 In the 
early phase of MI, the number of cardiac monocyte and macrophage cells with a proinflammatory phenotype increases 

Figure 9 RT-qPCR analysis. (A–G) The expression levels of COLGALT1 (A), LRPAP1 (B), PLAUR (C), PLOD1 (D), QSOX1 (E), THBD (F), and VCAN (G). *P <0.05.
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rapidly, followed by a shift to a reparative phenotype involved in the deposition of scar tissue.63 Neutrophils were 
recruited within hours after the onset of MI, leading to acute tissue injury, whereas, during the process of infarct healing, 
they promoted cardiac recovery by influencing macrophage polarization.64 Consistent with previous studies, our data 
suggested that the immune infiltration levels of plasma cells, T cells CD4 memory activated, monocytes, macrophages 
M0, mast cells resting, and neutrophils were higher in patients with MI than controls, indicating that these cells may exert 
a potential role in cardiac repair after MI.

Urokinase is a widely used intravenous thrombolytic in clinical practice.65 Administering intravenous urokinase for 
coronary artery thrombolysis in patients with MI contributes to reducing infarct size.66 Triple antiplatelet therapy with 
cilostazol demonstrates superior early clinical outcomes compared to P2Y12 inhibitor dual antiplatelet therapy, recom-
mended in guidelines for treating ischemic events in MI.67 Curcumin, derived from curcuma longa, is a phenolic 
compound.68 Curcumin could prompt angiogenesis through enhancing endothelial progenitor cell function in hindlimb 
ischemia mice with diabetes.69 Rahnavard et al reported cardioprotective effect of curcumin in rats after MI.70 

Simvastatin improves ventricular remodeling through the TGF β1 signaling pathway in post-MI rats.71 Long-term 
therapy with warfarin can decrease the risk of death and reinfarction followed with MI.72 In our study, a total of 9 
drugs were acquired for THBD, PLAUR, and VCAN genes, and molecular docking results showed that THBD has low 
binding energies with cilostazol, curcumin, simvastatin, and warfarin. The binding energy between PLAUR and 
urokinase was −5.21 kcal/mol. All these results indicated that these genes may be potentially therapeutic targets in MI.

However, some limitations in this study should be noticed. First, all data were downloaded from public databases, 
lacking larger-sample datasets to validate. Second, experiments in vitro and in vivo need to be performed to validate 
these results in this study. Finally, the small size of MI samples was collected for RT-qPCR of diagnostic genes, which 
may affect the accuracy of the results.

Conclusion
In summary, we obtained 7 diagnostic biomarkers (COLGALT1, LRPAP1, PLAUR, PLOD1, QSOX1, THBD, and 
VCAN) in patients with MI based on the angiogenesis- and EMT-related genes using bioinformatic analysis. 
Microenvironment analysis showed that these genes were correlated with the immune response. Additionally, diagnostic 
models were constructed and exhibited good diagnostic performance. Finally, therapeutic drugs were predicted, indicated 
that these genes may be potentially therapeutic targets in MI. Our findings could provide candidate biomarkers and offer 
potential treatment targets for MI.
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