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Abstract 

Background:  To develop a machine learning model for predicting acute respiratory distress syndrome (ARDS) events 
through commonly available parameters, including baseline characteristics and clinical and laboratory parameters.

Methods:  A secondary analysis of a multi-centre prospective observational cohort study from five hospitals in 
Beijing, China, was conducted from January 1, 2011, to August 31, 2014. A total of 296 patients at risk for developing 
ARDS admitted to medical intensive care units (ICUs) were included. We applied a random forest approach to identify 
the best set of predictors out of 42 variables measured on day 1 of admission.

Results:  All patients were randomly divided into training (80%) and testing (20%) sets. Additionally, these patients 
were followed daily and assessed according to the Berlin definition. The model obtained an average area under the 
receiver operating characteristic (ROC) curve (AUC) of 0.82 and yielded a predictive accuracy of 83%. For the first 
time, four new biomarkers were included in the model: decreased minimum haematocrit, glucose, and sodium and 
increased minimum white blood cell (WBC) count.

Conclusions:  This newly established machine learning-based model shows good predictive ability in Chinese 
patients with ARDS. External validation studies are necessary to confirm the generalisability of our approach across 
populations and treatment practices.

Keywords:  Acute respiratory distress syndrome, Machine learning, Predictive model

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Acute respiratory distress syndrome (ARDS) is a clinical 
syndrome characterised by tachypnoea, severe hypox-
emia, decreased respiratory compliance, and lung tis-
sue damage evident on chest radiographs [1]. Although 

diffuse alveolar damage is the core pathological process 
[2], the diagnoses of ARDS and its milder form, acute 
lung injury (ALI), are based on clinical characterisation. 
The clinical standards for ALI/ARDS were revised in 
2012 and are known as the “Berlin definition” [3]. ARDS 
is responsible for more than 2 million critical care days 
and 75,000 deaths in the USA yearly [4] and is associated 
with an overall mortality ranging from 35 to 50% [5]. Spe-
cific and sensitive means of diagnosing ALI/ARDS early 
are missing, and once diagnosed, it tends to progress 
quickly. A large number of basic and clinical studies have 
demonstrated that early diagnosis and intervention are 
key to improving the survival rate of patients with ARDS 
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[6]. Although it is equally important to predict ARDS 
events, so far, there have been no reports of models for 
predicting such cases. Therefore, there is a pressing need 
for the development and clinical testing of a predictive 
model for ARDS events, which might improve the clini-
cal diagnosis of ARDS.

According to the 2001 National Institutes of Health 
definition, a biomarker is “a characteristic that is objec-
tively measured and evaluated as an indicator of normal 
biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention” [7]. Bio-
markers reflect pathophysiological mechanisms and, as 
such, may help in the recognition of ARDS. Combining 
existing clinical definitions with reliable biomarkers may 
therefore enhance the diagnosis of ARDS. In addition to 
the recognition of ARDS, biomarkers may contribute to 
risk stratification and the prediction of outcomes or serve 
as surrogate endpoints to monitor interventions [8]. The 
proposed advantages of biomarkers [8], together with the 
limited reliability and validity of the American–European 
Consensus Criteria (AECC) criteria [9, 10], have spurred 
the search for reliable ARDS biomarkers during the last 
two decades. Many biomarkers for the diagnosis of ARDS 
have been found, such as the receptor for advanced gly-
cation end-products (RAGE), angiopoietin-2 (Ang-2), 
surfactant protein D (SP-D) and inflammatory factors 
[interleukin (IL)-6, IL-8, and tumour necrosis factor-α 
(TNF-α)] [11, 12]. However, no sensitive and specific 
clinical biomarkers for ARDS have been found [13].

In this secondary analysis of a prospective and inde-
pendent cohort study, the primary goal was to find sev-
eral new biomarkers that differ from the previously 
studied biomarkers for ARDS and to establish a reliable 
predictive model for ARDS events that includes these 
new biomarkers.

Methods
Study population and ARDS definition
This study was a secondary analysis of a prospective 
observational study [14] conducted from January 1, 2011, 
to August 31, 2014, in five intensive care units (ICUs) in 
the Beijing metropolitan area: Peking University Third 
Hospital northwest of Beijing, Beijing Friendship Hos-
pital to the south, Beijing Shijitan Hospital in the center, 
Beijing Xiyuan Hospital to the west, and China–Japan 
Friendship Hospital in the northeast (Clinicaltrials.gov 
Identifier: NCT02944279).

Each ICU admission was screened for eligible partici-
pants. The exclusion criteria were age < 18 years; history 
of chronic lung diseases, such as pulmonary fibrosis or 
bronchiolitis; history of pneumonectomy; treatment 
with immunomodulating therapy other than corticos-
teroids, such as granulocyte colony stimulating factor, 

cyclophosphamide, cyclosporine, interferon, or TNFα 
antagonists; presence of other immunodeficient condi-
tions, such as HIV infection, leukaemia, or neutropenia 
(absolute neutrophil count < 1000/mL); history of organ 
or bone marrow transplants other than an autologous 
bone marrow transplant; directive to withhold intuba-
tion; ICU stay duration < 72 h; or development of ARDS 
before ICU admission. Patients at risk for developing 
ARDS were defined as critically ill patients with at least 
one of the following conditions predisposing them to 
developing ARDS: sepsis; septic shock; trauma; pneumo-
nia; aspiration (indicated inhalation of gastric juice, fresh 
water, seawater, amniotic fluid, etc.); massive transfusion 
of packed red blood cells (PRBCs; defined as > 8 PRBC 
units in the 24-h period prior to admission); or severe 
pancreatitis. After selection, patients at risk for develop-
ing ARDS were followed daily and assessed according to 
the Berlin definition [3]. All patients were followed until 
hospital discharge or death within 60 days from the first 
day of study enrolment. The full methodological details 
of this cohort study have been previously published [14]. 
In this secondary analysis, we used only the variables 
from the first day of admission before the patient devel-
oped ARDS to build this prediction model. In addition, 
for several variables, such as heart rate, respiratory rate, 
temperature, glucose, haematocrit, and sodium, we used 
only the minimum or maximum value from multiple 
measurements. The ensemble model was written in the 
Python scripting language (version 3.6.5, Python Soft-
ware Foundation, Wilmington, DE, USA, https​://www.
pytho​n.org).

Statistical analysis
The binary variables are described as counts and percent-
ages and were evaluated by the Chi-squared test or Fish-
er’s exact test. Continuous variables of each group are 
presented as the mean ± SEM. Student’s t-test was used 
to compare the normally distributed continuous vari-
ables; otherwise, the Mann–Whitney U test was used. 
P < 0.05 was considered statistically significant. All analy-
ses were performed using SPSS 21.0 (SPSS, Chicago, IL).

Predictive model development
In this study, we aimed to construct an ensemble model 
called a random forest model that consisted of a popula-
tion of decision-tree classifiers. In the forest, each decision-
tree classifier was built with a bootstrap sample of features 
and independent observations. As a result, random forests 
can avoid overfitting and yield an overall improved model 
with a high predictive accuracy because the randomness 
makes the model less sensitive to variation [15]. Notably, 
the implementation of the combination used in this study 
replaces voting on each decision-tree classifier by averaging 
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their probabilistic prediction to decrease the variance 
[16–18]. In general, there are two key parameters used in 
the design of random forests: (i) the number of decision 
trees and (ii) the size of the random subsets of features. In 
most cases, more trees in the forest produce more robust 
predictive accuracy but require a longer computation time. 
The latter controls the trade-off between variance and 
bias. From empirical and clinical research, the number of 
decision trees and the size of the random subset are set to 
100 and the square root of the number of features, respec-
tively. The whole process of constructing a random forest 
algorithm can be described briefly by the following steps: 
(i) select “k” features from the training set as a subset; (ii) 
calculate the node by using the best split among the “k” 
features; (iii) create child nodes by using the best split; (iv) 
repeat from step (i) to step (iii) until the iteration ending 
conditions (the iteration of the above process repeated 1000 
times) are met; and (iv) repeat from step (i) to step (iv) until 
100 decision trees are archived. After building the random 
forest, the predictions are made with testing data by using 
the average of these individual tree outputs. The ensemble 
model was written in the Python scripting language (ver-
sion 3.6.5, Python Software Foundation, Wilmington, DE, 
USA, https​://www.pytho​n.org). The 296 selected patients 
were randomly divided into training (ARDS = 76 and non-
ARDS = 160) and testing (ARDS = 15 and non-ARDS = 45) 
sets at a ratio of 4:1. The training set was used to build the 
ensemble model, while the testing set was used to evaluate 
the predictive performance of the model. In this study, the 
ensemble random forest algorithm was also used to predict 
the accuracy of the models based on different subsets of 
features. Because the relative rank of each feature could be 
used to reflect the relative importance of features to the rat-
ings of overall prediction performance [16–18], we applied 
a random forest algorithm to rank the contribution of each 
feature, constructed models on the feature subspaces and 
provided a comparison of the corresponding model qual-
ity scores using testing data. In addition to the classification 
accuracy and the area under the receiver operating char-
acteristic (ROC) curve (AUC), the Matthews correlation 
coefficient (MCC) and F-measure ( F1 ) were also used to 
evaluate the performance of the constructed model.

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

F1 = 2 ·
precision · recall
precision+ recall

precision =
TP

TP + FP
and recall =

TP

TP + FN

Here, TP , TP , TN  and FN  indicate the number of cor-
rectly identified ARDS patients (true positive; TP ), the 
number of non-ARDS patients who were identified as 
having ARDS (false positive; FP ), the number of non-
ARDS patients who were identified as having non-ARDS 
(true negative; TN  ) and the number of ARDS patients 
who were identified as having non-ARDS (false negative; 
FN).

Patient and public involvement
In this study, we used deidentified data from the original 
cohort study with no direct involvement of or interaction 
with participants in the design, recruitment or conduct 
of this study.

Results
Patient characteristics
A total of 11,829 patients were admitted to the ICU, 
and 296 patients (203 men, 93 women; mean age, 
65.40 ± 18.13 years) were included in this study. Among 
them, 91 (30.74%) developed ARDS. Table  1 shows the 
baseline characteristics and clinical/laboratory param-
eters in the training set. A total of 42 variables, including 
baseline characteristics, clinical/laboratory parameters, 
and predisposing conditions, were collected for each 
patient; many other variables with several missing values 
were omitted. The basic information compared between 
the training and validation sets is shown in Table 2. Fig-
ure 1 shows the process of cohort selection.

Key features and classification results
In most cases, an ensemble model with a greater num-
ber of variables will provide a more accurate prediction 
than a model with fewer variables. However, it is more 
cost-effective and efficient to obtain similar or even the 
same improvement by using prominent features, which 
can thus benefit clinical practice. Based on the fact that 
features built on the top of trees contribute more to pre-
dicting ARDS in at-risk patients, the relative importance 
of each feature is provided in Fig. 2.

Next, we performed random forest classification with 
the same parameters (to make the comparison possible 
and remove the effect of the parameters) with different 
subsets of features to calculate the changes in AUC val-
ues, as illustrated in Fig.  3. In this study, the AUC val-
ues of different feature combinations determined the 
importance of the input variables. As shown in Fig.  3, 
the classification error decreases as the number of fea-
tures gradually increases. The AUC value remains at a 
similar level after the number of features increases past 
11. Therefore, the following 11 features were included in 
the final model for the prediction of ARDS: minimum 
respiratory rate, maximum respiratory rate, minimum 
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Table 1  Baseline characteristics and clinical and laboratory parameters in the training dataset

The binary variables are described as counts and percentages and were evaluated by the Chi-squared test or Fisher’s exact test. Continuous variables of each group 
are presented as the mean ± SEM. Student’s t-test was used to compare the normally distributed continuous variables

ARDS acute respiratory distress syndrome, MAP mean arterial pressure, APACHE II Acute Physiology and Chronic Health Evaluation II

*P < 0.05, ARDS compared with non-ARDS
a  Vasopressor use before and 24 h after entering the ICU

Variable Non-ARDS (n = 160) ARDS (n = 76) P value

Age (year) 63.89 ± 18.00 68.07 ± 17.86 0.096

Sex (male) 108 (67.5%) 59 (77.6%) 0.127

Bacteraemia 2 (1.25%) 2 (2.63%) 0.596

Sepsis 127 (79.4%) 64 (84.2%) 0.479

Septic shock 55 (34.4%) 30 (39.5%) 0.470

Pneumonia 84 (52.5%) 43 (56.6%) 0.579

Vasopressora 69 (43.1%) 35 (46.1%) 0.677

Fracture 3 (1.88%) 1 (1.32%) 1.000

Pulmonary contusion 0 (0%) 3 (3.95%) 0.033*

Aspiration 5 (3.13%) 5 (6.58%) 0.299

Multiple transfusion 15 (9.38%) 9 (11.84%) 0.646

Previous ARDS 0 (0%) 2 (2.63%) 0.103

Autoimmune disease 0 (0%) 0 (0%) –

Diabetes 30 (18.75%) 12 (15.79%) 0.716

Previous sepsis 0 (0%) 1 (1.32%) 0.322

Tobacco 53 (33.13%) 32 (42.11%) 0.194

Familial diabetes mellitus 13 (8.13%) 3 (3.95%) 0.280

Leukaemia 0 (0%) 1 (1.32%) 0.322

Dialysis 3 (1.88%) 2 (2.63%) 0.658

Metastatic solid tumour 8 (5%) 2 (2.63%) 0.507

Immunosuppression 1 (0.63%) 0 (0%) 1.000

Hepatic encephalopathy 1 (0.63%) 0 (0%) 1.000

Hepatocirrhosis 2 (1.25%) 0 (0%) 1.000

Alcohol abuse for 12 months 18 (11.25%) 7 (9.21%) 0.821

APACHE II score 19.98 ± 5.77 19.92 ± 5.94 0.947

PH 7.38 ± 0.09 7.37 ± 0.11 0.509

Minimum systolic pressure 102.45 ± 20.62 92.97 ± 18.70 0.001*

Maximum systolic pressure 140.76 ± 23.17 138.20 ± 26.63 0.450

Minimum MAP 78.25 ± 72.22 69.20 ± 14.88 0.281

Maximum MAP 98.21 ± 16.92 97.53 ± 17.76 0.777

Minimum heart rate 91.41 ± 16.80 87.04 ± 18.85 0.074

Maximum heart rate 122.19 ± 20.30 122.62 ± 23.18 0.886

Minimum respiratory rate 22.22 ± 4.65 25.08 ± 4.40 0.000*

Maximum respiratory rate 31.08 ± 5.70 34.50 ± 6.23 0.000*

Minimum temperature 36.73 ± 0.92 36.63 ± 0.79 0.412

Minimum creatinine 1.44 ± 1.43 1.36 ± 0.98 0.655

Maximum creatinine 1.56 ± 1.49 1.50 ± 1.07 0.754

Minimum glucose 140.32 ± 104.32 123.79 ± 58.33 0.199

Minimum haematocrit 30.13 ± 6.37 29.13 ± 7.10 0.282

Minimum white blood cell count 11.55 ± 5.72 12.63 ± 7.20 0.253

Minimum sodium 140.67 ± 6.34 138.80 ± 6.25 0.034*

Minimum potassium 3.97 ± 0.68 3.89 ± 0.55 0.366



Page 5 of 10Ding et al. J Transl Med          (2019) 17:326 

haematocrit, minimum systolic blood pressure, mini-
mum mean arterial pressure (MAP), maximum heart 
rate, minimum glucose, minimum white blood cell 
(WBC) count, minimum heart rate, minimum tempera-
ture, and minimum sodium level. With the testing set, 
the final predictive model achieved an AUC of 0.87 (ROC 
curve illustrated in Fig. 4), an accuracy of 82%, an MCC 
of 0.64 and an F1 of 0.73; these results are sufficient to 
predict which patients will develop ARDS. To demon-
strate the robustness of the predictions of the model, the 
final ensemble model with 11 features included 200 boot-
strap replicates [19–21] and achieved an average AUC of 
0.82 (with an average accuracy of 0.83, an average MCC 
of 0.50 and an average F1 of 0.57) in the testing set. The 
prediction results suggest that the ensemble model with 
11 key features is feasible and practical.

Discussion
This study presents the first predictive model including 
11 predictors for ARDS events. Specifically, the 11 pre-
dictors included the following: maximum and minimum 
respiratory rate and heart rate as well as minimum sys-
tolic blood pressure, MAP, temperature, WBC count and 
the levels of glucose, haematocrit, and sodium. Further-
more, the maximum and minimum respiratory rate and 
the minimum systolic blood pressure on the first day 

of admission were significantly associated with ARDS 
events. In addition, for the first time, four new biomark-
ers were included in the predictive model for ARDS 
events: decreased minimum haematocrit, glucose, and 
sodium levels as well as increased minimum WBC count.

Acute respiratory distress syndrome is a life-threaten-
ing inflammatory disease of the lungs [22, 23]. Although 
a mechanical ventilation strategy has been shown to 
influence mortality in this syndrome, there is currently 
no proven pharmacologic treatment despite more than 
30 completed or ongoing clinical trials [22]. However, 
many studies [24–28] have reported different predictive 
models for in-hospital mortality in ARDS patients, and 
several studies [22, 29–33] have also shown that there 
are many predictors of mortality in ARDS patients. Terp-
stra et al. [12] reported 20 biomarkers for the diagnosis 
of ARDS and 19 biomarkers for predicting mortality in 
ARDS patients. In addition, some studies [34, 35] have 
shown that combining multiple biomarkers can enhance 
diagnostic accuracy. In the present study, we established 
a predictive model for ARDS events in ICU patients.

In our study, we selected 11 prominent predictors 
from 42 variables for the predictive model of ARDS 
events. Previous studies [36–38] have reported that a 
majority of predictors of mortality or factors involved 
in diagnosis in ARDS patients are inflammatory factors 
or lung surface proteins; however, the predictors that 

Table 2  Baseline characteristics and clinical/laboratory parameters in the training and testing cohorts

The binary variables are described as counts and percentages and were evaluated by the Chi-squared test or Fisher’s exact test. Continuous variables of each group 
are presented as the mean ± SEM. Student’s t-test was used to compare the normally distributed continuous variables. *P < 0.05, ARDS compared with non-ARDS

MAP mean arterial pressure, APACHE II Acute Physiology and Chronic Health Evaluation II

Variable Training cohorts (n = 236) Testing cohorts (n = 60) P value

Sex (male) 167 (70.8%) 36 (60%) 0.121

Age (year) 65.23 ± 18.02 66.03 ± 18.68 0.761

Minimum respiratory rate 23.14 ± 4.75 23.62 ± 5.08 0.494

Maximum respiratory rate 32.18 ± 6.08 31.65 ± 6.25 0.551

Minimum haematocrit 29.81 ± 6.62 30.52 ± 6.72 0.461

Minimum systolic pressure 99.40 ± 20.47 91.82 ± 19.50 0.010*

Minimum MAP 75.33 ± 60.14 67.25 ± 15.10 0.303

Maximum heart rate 122.33 ± 21.22 126.18 ± 21.37 0.211

Minimum glucose 135.00 ± 92.24 124.03 ± 54.68 0.378

Minimum white blood cell count 11.90 ± 6.24 12.88 ± 7.29 0.295

Minimum heart rate 90.00 ± 17.57 93.88 ± 17.85 0.129

Minimum temperature 36.70 ± 0.88 36.66 ± 0.84 0.738

Minimum sodium 140.06 ± 6.35 139.87 ± 6.82 0.834

APACHE II 19.96 ± 5.81 20.78 ± 5.51 0.322

PH 7.38 ± 0.10 7.37 ± 0.10 0.283

Bacteraemia 4 (1.69%) 3 (5%) 0.150

Diabetes 42 (17.8%) 17 (28.3%) 0.073

Tobacco 85 (36.0%) 24 (40%) 0.653
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we selected are biochemical indicators of ARDS events. 
Moreover, we included four basic vital signs in the pre-
dictive model for ARDS events and found that the mini-
mum and maximum respiratory rates were increased in 
critical patients with ARDS or non-ARDS compared with 
healthy patients and were higher in ARDS patients than 
in non-ARDS patients. In addition, the minimum systolic 
pressure and MAP were lower in critical patients with 

ARDS or non-ARDS than in healthy patients and lower 
in ARDS patients than in non-ARDS patients, which is 
consistent with the clinical manifestations of ARDS [39]. 
Furthermore, this is the first model to include four new 
biomarkers as predictors of ARDS events. First, the mini-
mum glucose level was tested in our model for ARDS 
patients; glucose levels were higher in critical patients 
with ARDS or non-ARDS than in healthy people and 

Fig. 1  Flow chart of the study selection
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Fig. 2  Importance of the 11 variables included in the predictive model for ARDS events. ARDS acute respiratory distress syndrome, MAP mean 
arterial pressure, APACHE II Acute Physiology and Chronic Health Evaluation II

Fig. 3  Relationship between the number of variables and classification error
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lower in ARDS patients than non-ARDS patients. Inflam-
mation plays a vital role in ARDS events [40], and many 
studies [41, 42] have shown a protective effect of hyper-
glycaemia against ARDS due to inhibition of the protein 
nuclear factor-kappa-B (NF-κB) inhibitor alpha (IκB-α) 
and the p56 subunit and the impairment of NF-κB acti-
vation in sepsis-induced ALI/ARDS; on the other hand, 
high glucose levels are associated with decreased neu-
trophil migration, decreased inflammatory factor secre-
tion, and a reduced inflammatory response. Moreover, 
a meta-analysis [43] also reported that the risk of death 
was decreased in adult ARDS patients with pre-existing 
diabetes, supporting the protective effect of hypergly-
caemia against ARDS; this finding was in line with the 
results of the lung injury prediction score (LIPS) [44, 
45]. All of the aforementioned research supports the 
results of our study. Second, the minimum sodium level 
was within the normal range but was lower in ARDS 
patients than in non-ARDS patients. This result may be 
associated with inhibited lung epithelial sodium chan-
nels (ENaCs) in ARDS patients. Several studies [46–50] 
have reported that inflammation alters the functions 
of ENaC and ATPase, inhibiting the active transport of 
Na+ from the alveoli to the interstitium, increasing the 
exchange of sodium in the vasculature and lung inter-
stitium, and ultimately reducing the sodium concentra-
tion in the vasculature. In addition, another study [51] 
showed that pharmacological inhibitors of lung apical 
Na+ channels can reduce the rate at which fluid is cleared 
and form a positive feedback loop with inflammation in 
the lung, which may also explain the results of our study. 
Third, the minimum WBC count was within the normal 
range but was higher in ARDS patients than non-ARDS 
patients. WBCs may be regarded as the most important 
effector cells involved in acute inflammation during the 

pathogenesis of ARDS. In the case of trauma, sepsis, 
acute pancreatitis, physical and chemical stimulation, 
or extracorporeal circulation, as a result of the effects of 
lipopolysaccharide, complement component 5a receptor, 
and IL-8, WBCs are concentrated in pulmonary capillar-
ies. Furthermore, WBCs can adhere to endothelial cells 
and migrate across the endothelium and then enter the 
lung interstitium, which leads to WBC movement to 
the alveolar cavity from the alveolar epithelium. Fur-
thermore, there are many types of adhesion molecules 
involved in this process. Finally, stimulated alveolar mac-
rophages (AMS) release IL-1, TNF-α and IL-8, which 
promote the chemotaxis and aggregation of WBCs in 
the lung and may promote ALI; this finding is consist-
ent with the fact that ARDS is associated with an inflam-
matory environment in the lung [52–54]. The evidence 
from the above studies is insufficient, although they pro-
vide insight into the mechanism underlying ARDS. Most 
importantly, some recent studies [55, 56] have developed 
a model of ARDS sub-phenotypes that not only reflects 
the developmental tendency of ARDS but also plays a 
decisive role in clinical treatment. Fourth, the minimum 
haematocrit level was within the normal range but was 
lower in ARDS patients than in non-ARDS patients. The 
mechanism underlying this result may be explained by a 
study [57] showing that the systemic blood flow rate per 
unit body surface decreases significantly from baseline 
following the induction of ARDS and that the haemato-
crit level increased as the systemic blood flow decreased, 
effectively increasing the systemic oxygen delivery within 
a certain range in ARDS patients; this process is in 
accordance with our study results. In sum, we believe that 
the biomarkers newly discovered in this study provide 
guidance for future interventional research on ARDS.

In addition, this secondary analysis has several limita-
tions. First, we defined ARDS based only on the Berlin 
Definition, which varies from the definition of the AECC 
[3], which may increase the difficulty of diagnosis and the 
omission of some patients who developed ARDS dur-
ing the study. Second, this study is a secondary analysis 
of data from a prospective observational study that was 
not recorded and indicated when the patients developed 
ARDS. Third, this prediction model may lack generalis-
ability because the 42 included variables are still too few 
and because many other variables with too many miss-
ing values were omitted. The greater the number of 
included variables, the higher the predictive accuracy of 
this model. However, we hope that we can include more 
patients and variables in future prospective research. 
Fourth, the robustness of this study cannot be con-
firmed without an external validation cohort. We hope to 
accomplish this aim in future prospective research.

Fig. 4  ROC curve (of the testing set) for predicting ARDS events 
using the predictive model. ROC receiver operating characteristic
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Conclusions
A model with 11 key features was successfully established 
for predicting ARDS events in Chinese patients. This 
model can be applied to predict ARDS events by using 
biomarkers, such as minimum WBC count and glucose, 
haematocrit and sodium levels. Four new biomarkers 
were included in this model: decreased minimum sodium 
concentration, haematocrit, and glucose levels and 
increased minimum WBC count.
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