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We conducted an ecological analysis of the dynamics of Delta 
and Omicron establishment and dominance in US states. 
Omicron became the dominant circulating variant later in 
states with higher population-level immunity. By contrast, 
population immunity did not impact the maximum rate of 
takeover by Delta or Omicron from prior variants.
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The pandemic of severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) has been characterized by the 
emergence of variants with competitive advantages in trans
missibility and/or the capacity to evade pre-existing immunity 
[1]. A quantitative framework to understand how new variants 
displace circulating strains and the impact of population im
munity on these dynamics is critical to inform public health 
preparedness for future waves.

Two recent variants of concern, Delta and Omicron, became 
the dominant variants in all areas of the world, including those 
with high rates of previous vaccination or infection [2]. 
However, these variants became dominant under relatively dif
ferent circumstances of competition with previously circulating 
strains. Whereas the Delta variant was slightly more immune 
evasive than its predecessor, the Alpha variant, the Omicron 
variant is considerably more immune evasive than Delta [1]. 
In the United States, SARS-CoV-2 population immunity has 
historically varied considerably by state due to different rates 

of prior infection and vaccine uptake [3]. Yet, it remains un
clear how this variability impacts the timing of establishment 
and dominance of variants with different immune evasiveness 
characteristics.

We performed an ecological study using publicly available 
data to assess the relationship between population immunity 
to SARS-CoV-2 and the rate, date, and timing of variant take
over at a state level in the United States. Although population 
immunity is challenging to assess, we estimated it using a met
ric comprising a combination of vaccine uptake, which is well 
defined, and prior infections, which are incompletely captured. 
We used publicly reported seroprevalence measures of anti
bodies to both nucleocapsid (virus exposure) and spike (virus 
or vaccination) to cross-check these metrics, and given the in
herent uncertainty in these estimates, we performed sensitivity 
analyses to assess the impact of different plausible ranges on the 
conclusions reached. We hypothesized that if immune evasion 
was a major driver of variant dominance dynamics, then both 
variants would become dominant sooner and faster in states 
with higher levels of pre-existing immunity, with a greater ef
fect during Omicron takeover.

METHODS

Severe Acute Respiratory Syndrome Coronavirus 2 Variant Data Sources 
and Definitions

We accessed SARS-CoV-2 genomic sequence data submitted to 
the Global Initiative on Sharing Avian Influenza Data 
(GISAID) from all 50 US states between January 1 and 
August 31, 2021 and between November 24, 2021 and 
February 8, 2022 [4]. These periods spanned from the first de
tections of Delta and Omicron, respectively, to a time when 
each consistently represented >99% of all sequenced genomes. 
For each period, we extracted the proportion of the emerging 
variant among total SARS-CoV-2 sequences, computed as 
7-day averages. We identified the initial week during which a 
variant was first sequenced and designated it as the week of var
iant emergence if at least 1 additional isolate of the variant was 
identified within the subsequent 3 weeks. This constraint was 
implemented to avoid misclassifying stochastic introductions 
of a variant without subsequent sustained transmission as the 
true emergence of a new variant, a phenomenon that can be ob
served on occasion with overdispersed spread [5]. It affected 7 
states during Delta emergence, and no states during Omicron 
emergence.

Modeling/Statistical Methods to Evaluate Variant Takeover

We fit asymmetric logistic growth curves to changes in variant 
proportion over time and obtained curve-fit estimates for (1) 
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maximum slope; (2) inflection point, that is, the time at which 
variant proportion was 50%; and (3) time at which variant pro
portion was 10% [6]. In line with epidemiological reality, the 
lower and upper asymptotes of the curves were fixed at 0% 
and 100%, respectively. Using these data, we derived 3 outcome 
measures of variant takeover: (1) takeover rate, defined as the 
maximum slope of the logistic curve; (2) calendar date of var
iant dominance, estimated as the date variant proportion ex
ceeded 50%; and (3) time from establishment to dominance, 
computed as the time taken for variant proportion to increase 
from 10% to 50%. We estimated the calendar date of domi
nance to mitigate against the effect of variation in fractions of 
sequenced cases in different states impacting the likelihood of 
variant discovery, which would in turn alter the observed 
time to dominance. Ten percent variant fraction was chosen 
to define variant establishment to minimize the effect of sto
chastic fluctuations at lower variant fractions [7].

Population Immunity Data Sources and Definitions

Using US Centers for Disease Control (CDC) data of cumula
tive SARS-CoV-2 cases and vaccinations in each state [8], we 
estimated immunity to coronavirus disease 2019 using 3 defini
tions: (1) proportion immune from vaccination; (2) proportion 
immune from infection with an earlier variant; and (3) propor
tion immune from either prior vaccination or infection. We es
timated the proportion with prior infection by comparing 
anti-nucleocapsid (anti-N) antibody seroprevalence (elicited 
by infection) [9] with reported cases to compute case underre
porting multipliers for each state, then we used the multipliers 
to estimate daily case incidence [3]. We computed the fraction 
of the population that had either received a primary vaccine se
ries only or been boosted. Assuming a 2-week delay between 
exposure and attainment of immunity [10], we used efficacy es
timates for vaccine-induced and infection-induced immunity 
to separately estimate the proportion of individuals immune 
from infection or vaccination. We incorporated the effect of 
waning immunity by adjusting the efficacy of immunity based 
on time since exposure [11–13], using parameters summarized 
in Supplementary Table S1. We approximated combined im
munity from infection or vaccination by estimating the fraction 
of the population without immunity as w = (1-p) × (1-v), where 
p and v are the previously infected and vaccinated proportions, 
respectively, then computing the total proportion immune as 
1-w [14]. We also collated anti-spike (anti-S) antibody seropre
valence (elicited by either infection or vaccination) during var
iant takeover [15]. These data are reported by geographic 
region, and we retrieved estimates for 46 states that corre
sponded to the geographic regions.

For each measure of variant takeover, we fit linear regression 
models to estimate the relationship with estimates of popula
tion immunity across different states. Code for the analysis 

and collated datasets (Supplementary Table S2) are available 
at github.com/pankomah/variant_immunity.

Patient Consent Statement

All data were taken from aggregated public repositories, with
out any patient identifiers, and thus are not human subjects 
research.

RESULTS

We fit logistic curves to estimate the proportion of SARS-CoV-2 
infections attributable to Delta or Omicron variants in each state 
during the transition (1) from Alpha and other circulating vari
ants to Delta and (2) from Delta to Omicron (Supplementary 
Figure S1). The GISAID estimates of variant proportions used 
to fit these logistic curves closely matched variant proportion 
data from the US CDC [8] (Supplementary Table S3). By incor
porating vaccinations (including primary series and boosters) 
and estimates of prior infections, adjusted by estimates of waning 
based on time since vaccination or infection, we computed esti
mated effective population immunity for each variant in each 
state over time.

In Figure 1, we graphically depict the relationship between 
variant takeover and this estimated effective population immuni
ty. There was no statistically significant relationship between var
iant takeover rates and immunity for Delta (R = −0.11, P = .461) 
(Figure 1A) or Omicron (R = −0.14, P = .335) (Figure 1B). 
Takeover for Omicron occurred at later dates in states with 
more immune populations (R = 0.45, P = .001) (Figure 1D), 
but not for Delta (R = 0.04, P = .761) (Figure 1C). There was 
also a statistically significant difference in time from establish
ment (10%) to dominance (50%) for Omicron (R = 0.32, P = 
.021) (Figure 1F), occurring over a longer period in states with 
higher population immunity, but not for Delta (R = 0.08, P = 
.589) (Figure 1E).

Given substantial uncertainty in estimating effective popula
tion immunity, we conducted 3 sensitivity analyses: (1) substi
tuting seroprevalence for our combined immunity metric; (2) 
assessing vaccination alone, as the measure of immunity that 
can be most precisely captured and for which efficacy against 
each variant over time has been most systematically studied; 
and (3) analyzing the time from initial detection of each variant 
to its establishment (10%) in each state. We found that adult se
roprevalence estimates did not demonstrate any significant re
lationship with takeover metrics (Supplementary Figure S2). 
When we compared variant takeover to estimated immunity 
from vaccination alone, there was no relationship between im
munity and takeover rates, a statistically significant delay in 
Delta takeover date (P = .01) and time from establishment to 
dominance (P = .011) for Omicron in states with higher 
vaccine-induced immunity, and a nonsignificant trend to de
layed takeover date for Omicron in more vaccinated states 
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Figure 1. Delta and Omicron variant takeover and immunity in different US states. Maximum takeover rates of (A) Delta and (B) Omicron in different states. Estimated 
calendar dates at which (C) Delta and (D) Omicron reached 50% of sequenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes in different states 
(date of takeover). Estimated time taken for proportion of (E) Delta and (F) Omicron to increase from 10% to 50% of sequenced SARS-CoV-2 genomes in different states. 
States are identified by standard 2-letter abbreviations; states in the same census geographic region are plotted with the same color. Error bars for takeover rates were 
limited to maxima and minima of 100 and 0, respectively. Immunity is estimated by the combined proportion of the state’s population immune from SARS-CoV-2 infection 
with an earlier variant or vaccination before variant proportion exceeding 50%. Linear regressions are shown in black with 95% confidence intervals in gray shading. Pearson 
correlation coefficient (R) and P value test results are shown for each plot.
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(P = .074) (Supplementary Figure S3). We also evaluated the re
lationship between immunity and the time from first detection 
to establishment for both variants. In states with higher immu
nity, it took longer for Delta to establish, whereas for Omicron, 
there was a nonstatistically significant trend towards later date 
of establishment (Supplementary Figure S4).

DISCUSSION

In this ecological study, we tested the hypothesis that novel 
immune-evasive SARS-CoV-2 variants would become domi
nant faster in states with higher levels of population immunity. 
Contrary to our hypothesis, we found no statistically significant 
association between takeover rates of Delta or Omicron and 
state-level immunity. Instead, we observed later takeover for 
Omicron in more immune states.

These results suggest that either population-level immunity 
did not affect the rates at which the Delta or Omicron variants 
took over, or that other properties affecting transmission by 
state either counterbalanced or outweighed any such effects. 
Although immune-evasive variants are expected to transmit 
better among immune individuals than less-evasive variants 
[16], we speculate that this might have been offset by decreased 
rates of secondary transmission in these same immune subpop
ulations. For example, longitudinal cohort studies have demon
strated that full vaccination and boosting decrease the 
secondary attack rate among contacts of individuals infected 
with Delta or Omicron, respectively, and accelerate the rate 
of viral clearance, thereby decreasing potential subsequent 
transmission events [17–19]. The observation of a statistically 
significant delay in date of and time to Omicron, but not 
Delta takeover, may then stem from the relatively greater ability 
of Omicron to infect immune subpopulations during its com
petitive circulation with Delta, more so than for Delta with 
Alpha. Although a trend towards later date of establishment 
could have contributed to the delayed takeover of Omicron, 
substantial uncertainty in variant detection at low fractions 
makes evaluation of variant establishment periods challenging. 
In addition, other explanations, either based on differences be
tween states (eg, behavioral differences) or inherent to the viral 
variants (eg, relative transmissibility), may also contribute to 
the observed trends.

Important caveats to our observations include limitations as
sociated with use of publicly available data, including case un
derreporting and sequence data whose depth and 
representativeness may vary by state. Population immunity es
timates from infection and vaccination are challenging due to 
multiple factors, including case underreporting, inherent un
certainty around the overlap between vaccinated and infected 
subpopulations, and consequent difficulty with accurately 
computing frequency of and protection from hybrid immunity. 
However, alternative seroprevalence data reflect exposure but 

not necessarily effective immunity. In addition, unmeasured 
confounders such as public health mitigation policies, behav
iors, or population density may systematically vary by state 
and concurrently affect both vaccination rates and variant 
transmission.

CONCLUSIONS

Nevertheless, our results suggest that population-level data on 
vaccination and infection rates alongside assessments of chang
ing variant proportion may provide a useful framework to un
derstand how population immunity affects circulating 
SARS-CoV-2 variants. This may be particularly important as 
Omicron sublineages successively displace prior ones, leading 
regulatory and public health agencies to consider strategies 
for deploying updated vaccines. Our findings do not support 
theoretical concerns about enhanced selection for 
immune-evasive variants as a drawback of widespread vaccina
tion campaigns, since states with more measured immunity 
saw similar maximum takeover rates and similar or later time 
to dominance of emerging variants. Updated vaccines may 
thus improve protection against currently circulating lineages 
without hastening the takeover of future variants. Given their 
remarkable efficacy against severe or fatal disease [20], and 
lack of discernible difference in takeover rates of 
immune-evasive variants, vaccines remain a cornerstone of 
pandemic mitigation.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 

online. Consisting of data provided by the authors to benefit the reader, the 
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authors, so questions or comments should be addressed to the correspond
ing author.
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