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Abstract

Protoglobin from Methanosarcina acetivorans C2A (MaPgb), a strictly anaerobic methanogenic Archaea, is a dimeric haem-
protein whose biological role is still unknown. As other globins, protoglobin can bind O2, CO and NO reversibly in vitro, but
it displays specific functional and structural properties within members of the hemoglobin superfamily. CO binding to and
dissociation from the haem occurs through biphasic kinetics, which arise from binding to (and dissociation from) two
distinct tertiary states in a ligation-dependent equilibrium. From the structural viewpoint, protoglobin-specific loops and a
N-terminal extension of 20 residues completely bury the haem within the protein matrix. Thus, access of small ligand
molecules to the haem is granted by two apolar tunnels, not common to other globins, which reach the haem distal site
from locations at the B/G and B/E helix interfaces. Here, the roles played by residues Trp(60)B9, Tyr(61)B10 and Phe(93)E11 in
ligand recognition and stabilization are analyzed, through crystallographic investigations on the ferric protein and on
selected mutants. Specifically, protein structures are reported for protoglobin complexes with cyanide, with azide (also in
the presence of Xenon), and with more bulky ligands, such as imidazole and nicotinamide. Values of the rate constant for
cyanide dissociation from ferric MaPgb-cyanide complexes have been correlated to hydrogen bonds provided by Trp(60)B9
and Tyr(61)B10 that stabilize the haem-Fe(III)-bound cyanide. We show that protoglobin can strikingly reshape, in a ligand-
dependent way, the haem distal site, where Phe(93)E11 acts as ligand sensor and controls accessibility to the haem through
the tunnel system by modifying the conformation of Trp(60)B9.

Citation: Pesce A, Tilleman L, Donné J, Aste E, Ascenzi P, et al. (2013) Structure and Haem-Distal Site Plasticity in Methanosarcina acetivorans Protoglobin. PLoS
ONE 8(6): e66144. doi:10.1371/journal.pone.0066144

Editor: Danilo Roccatano, Jacobs University Bremen, Germany

Received January 24, 2013; Accepted May 1, 2013; Published June 12, 2013

Copyright: � 2013 Pesce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2008, 2008BFJ34R, and Azioni Integrate Italia Spagna
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Introduction

Protoglobin (Pgb) is a recently discovered haem-protein with

distinct structural and functional features that make it unique

within the globin superfamily. All globins probably evolved from a

common flavo-haemoglobin-like single-domain ancestral protein,

and they can be classified phylogenetically along three main

lineages [1]. Two of the lineages contain the chimeric flavohae-

moglobins and related 3-on-3 globins (such as myglobin (Mb) and

haemoglobin (Hb)), and the 2/2 globins, respectively, whereas Pgb

belongs to a third lineage together with the globin coupled sensors

(GCS) and the single domain sensor globins. However, within this

lineage, while GCSs are chimeric haem-proteins, tentatively

classified either as aerotactic or gene regulating, which couple a

globin-like sensor domain to a transmitter domain of variable

structure and function [2], Pgbs are instead single-domain variants

without the transmitter domain. Up to now, more than nine Pgbs

have been identified in both Archaea and Bacteria [1,3–5]. Only two

Pgbs have been characterized, from the obligate aerobic

hyperthermophile Aeropyrum pernix [4], and from the strictly

anaerobic methanogen Methanosarcina acetivorans [4,6]. It is

interesting to note that, despite the strict anaerobic nature of M.

acetivorans, its genome hosts genes, such as Pgb, that can be related

to the O2 metabolism. Methanosarcinae are metabolically and

physiologically the most versatile methanogens, being able to

exploit acetate, methanol, CO2 and CO as carbon sources for

methanogenesis. This pathway is surprisingly simple and has been

proposed to be the first metabolic pathway used by primordial

microbes [7,8]. In this context, Pgb could play a yet undisclosed

role in the CO metabolism of these ancient organisms.

The only Pgb crystal structure reported so far is from M.

acetivorans, (bearing the Cys(101)E20RSer mutation, produced for
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crystallization purposes, hereafter termed simply MaPgb*) [6].

MaPgb* is similar, both in terms of tertiary structure and

quaternary dimeric assembly, to the globin domain of the haem-

based O2 sensor responsible for aerotaxis in aerobic Bacillus subtilis

[9], and of GCS from the strictly anaerobic d-Proteobacteria

Geobacter sulfurreducens [10]. The MaPgb* structure can be

considered as an expanded version of the 3/3 helical sandwich

typical of ‘‘classical’’ globins (i.e. Mb), with an additional N-

terminal extension, built by a 20-residue loop, followed by the Z-

helix, which precedes the globin-fold conserved A-helix. Residues

belonging to the Z-helix contribute to formation of the Pgb

homodimer, which is centered on the intermolecular four-helix

bundle built by the G- and H-helices of the two subunits [6]. The

20-residue N-terminal loop, together with other extended loops

connecting the C-helix with the E-helix and the F-helix with the

G-helix (which all are longer than in classical globins and

conserved in Pgbs), completely bury the haem within the protein

matrix, such that the haem propionates are solvent inaccessible

(Figure S1). This structural feature, which is particularly unusual

within the globin family structures, wherefore approximately 30%

of the haem surface is normally solvent accessible, plays important

role in ligand binding [11]. Thus, in Pgb the access of diatomic

ligands, such as O2, CO, and NO, to the haem is granted by two

orthogonal apolar tunnels that reach the haem distal region from

entry sites at the B/G and B/E helix interfaces (Figure S1). These

tunnels have no structural homologs within the globin family and

are lined with residues highly conserved in all known Pgb

sequences, suggesting functional implications for ligand diffusion

to/from the haem cavity, for multi-ligand storage and/or for

(pseudo-)enzymatic actions [6].

Other unusual trends in MaPgb* are the low O2 dissociation

rate and a large structural distortion of the haem moiety [6].

Although it is generally accepted that the ligand dissociation rate

constant is mainly determined by the interactions that stabilize the

haem-bound ligand [12], in ferrous oxygenated MaPgb* (MaPg-

b*(II)-O2), the haem-bound O2 was found not to be stabilized by

any hydrogen bond [6]. Remarkably, the unusually slow O2

dissociation rate constant in MaPgb* has been correlated to the

large deviations from planarity of its porphyrin system [13]. The

main out-of-plane contribution to the MaPgb* haem distortion is

ruffling (which leaves opposite carbon atoms equally displaced and

alternatively above and below the mean porphyrin plane), while

the MaPgb* haem in-plane distortion is mainly ascribed to a strong

breathing mode, which involves the symmetric compression-

expansion of the porphyrin ring (with expansion associated to

destabilization of the O2 binding energy, whereas the opposite

trend is found for compression). Therefore, the haem compression

due to the restricted MaPgb* heam binding pocket (Figure S1A),

leads to a sizable stabilization of ligand binding, overcoming the

destabilization due to ruffling, thus resulting in stabilization of the

haem-bound O2, as compared to the ideal planar reference haem

model [13]. The O2 binding behaviour of MaPgb* suggests a

scenario where evolutionary events could subtly regulate the O2

affinity by shaping the haem cavity to favour out-of-plane

distortions in order to decrease ligand affinity, or to compress

the porphyrin ring to promote the reverse effect [13].

To shed light on the haem ligand binding mechanisms in such a

peculiar globin, we present here the results of a crystallographic

and kinetic investigation on ferric MaPgb* (MaPgb*(III)) and on

selected mutants. In particular, the crystallographic investigation

focuses on MaPgb*(III) complexed with cyanide, azide (both also

in the presence of Xenon), imidazole, and nicotinamide. In

parallel, kinetics show that, unlike what has been reported for O2

[6], the rate of cyanide dissociation is mainly determined by

hydrogen bonding interactions that stabilize the haem-Fe(III)-

cyanide complexes. A key conclusion, emerging from all exper-

imental evidences here reported, is that MaPgb* can reshape

strikingly the haem distal site structure, thus modulating accessi-

bility to the haem through the tunnel system, depending on its

(un)liganded state.

Materials and Methods

Expression and purification of MaPgb* and mutants
The MaPgb mutant bearing the Cys(101)E20Ser mutation

(hereafter termed simply MaPgb*) was produced for crystallization

purposes [14]. Mutations were introduced in MaPgb using the

QuickChangeTM site-directed mutagenesis method (Stratagene,

La Jolla, CA). MaPgb* as well as the Trp(60)B9Ala, Tyr(61)-

B10Ala, Phe(93)E11Leu, Leu(142)G4Ala, and Ile(149)G11Phe

mutants were expressed in Escherichia coli BL21(DE3)pLysS cells

(Invitrogen, La Jolla, CA), and collected as described previously

[14]. Refolding from inclusion bodies and purification of

recombinant proteins were performed as described previously

[6]. Briefly, the cells were exposed to three freeze-thaw steps and

sonicated until completely lysed. Inclusion bodies were washed

twice with 50 mM Tris-HCl (pH 8.0), 5 mM EDTA and 2%

sodium deoxycholate, washed once with pure water, and

solubilized by incubation in 100 mM Tris-NaOH (pH 12.0) and

2 M urea. After an incubation period of 30 min at room

temperature and centrifugation at 10,700 g for 20 min at 4uC,

proteins were refolded by adding 1.5 M of haemin. Then, after

incubation of 10 min at room temperature, the pH was adjusted to

8.5 with HCl. The solution was then diluted into 5 volumes of

distilled water and finally dialyzed at 4uC against the gel filtration

buffer (50 mM Tris-HCl pH 8.5, 150 mM NaCl and 0.5 mM

EDTA). Final purification was performed by gel filtration using a

Sephacryl S200 column (GE Healthcare Europe GmbH, Diegem,

Belgium) equilibrated with the gel filtration buffer.

Crystallization and structure determination
The cyanide derivative of MaPgb*(III) and of its mutants was

crystallized by vapor diffusion techniques (protein concentrations

,45 mg/ml) under conditions matching those for the ligand-free

MaPgb*(III) [6]. In particular, crystals of MaPgb*(III)-cyanide

were grown by equilibrating the protein solution against a

precipitant solution containing 30% PEG 4000, 0.2 M Li2SO4,

0.1 M Na Hepes (pH 7.0–7.5), 0.02 M potassium ferricyanide, and

0.01 M KCN (at 4uC). Crystals belong to the monoclinic space

groups P21 (two MaPgb* molecules in the asymmetric unit) or C2

(one MaPgb* molecule in the asymmetric unit). The best crystals

diffracted to 1.6 Å resolution using synchrotron radiation (ESRF,

Grenoble, France). Crystals of the cyanide-bound ferric

Trp(60)B9Ala, Tyr(61)B10Ala, and Leu(142)G4Ala mutants were

obtained by equilibrating the protein solutions (containing 0.005

M KCN) against 20–25% PEG 4000, 10% isopropanol, 0.1 M Na

Hepes (pH 7.0–7.5), 0.02 M potassium ferricyanide, and 0.01 M

KCN (at 4uC). All crystals belong to the primitive monoclinic P21

space group (two MaPgb* molecules in the asymmetric unit) and

diffracted to high resolution (in the 1.5 Å–1.7 Å range) using

synchrotron radiation (ESRF, Grenoble, France). Crystallization

conditions similar to those described above for the MaPgb*(III)

mutants produced also crystals belonging to the monoclinic C2

space group (three MaPgb* molecules in the asymmetric unit) for

the Phe(93)E11Leu, and Ile(149)G11Phe mutants, which diffracted

up to 2.0 Å and 1.5 Å resolution, respectively, using synchrotron

radiation (ESRF, Grenoble, France).

Ligand Binding Properties of Protoglobin
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The azide derivative of MaPgb*(III) was prepared by adding to

the MaPgb*(III) solution (about 43 mg/ml concentration) 0.01 M

potassium ferricyanide and 0.1 M Na azide (NaN3). After 1 h of

incubation, the protein-azide complexes were equilibrated against

precipitant solutions containing 20–30% w/v PEG 4000, 0.2 M

Li2SO4 or 10% isopropanol, 0.1 M Na Hepes (pH 7.0–7.5), at

4uC. The best MaPgb*(III)-azide crystals were grown either at

30% w/v PEG 4000, 0.2 M Li2SO4, 0.1 M Na Hepes (pH 7.5), or

at 20% w/v PEG 4000, 10% isopropanol, 0.1 M Na Hepes

(pH 7.0). In the first case, the crystals belong to the monoclinic C2

space group (two MaPgb* molecules in the asymmetric unit) and

diffracted up to 1.8 Å, using synchrotron radiation (ESRF,

Grenoble, France). In the second case, the crystals belong to the

monoclinic P21 space group (two MaPgb* molecules in the

asymmetric unit); one of these was used for Xenon binding

experiments. To promote Xenon diffusion within the protein

matrix, the MaPgb*(III)-azide crystal was exposed to 10 bar

Xenon for 5 min in a high-pressure chamber (Xcell, Oxford Cryo-

system, UK), and rapidly transferred to liquid nitrogen. X-ray

diffraction data up to 2.3 Å resolution were collected using

synchrotron radiation (ESRF, Grenoble, France). An identical

Xenon-binding procedure was also applied to the MaPgb*(III)-

cyanide crystals (C2 crystal form) to produce the MaPgb*(III)-

cyanide-Xenon complex.

The imidazole- and nicotinamide-bound MaPgb*(III) complex-

es were prepared by adding to the MaPgb*(III) solution (about

20 mg/ml concentration) 0.01 M potassium ferricyanide and 0.04

M either imidazole or nicotinamide. After 1 h of incubation, the

MaPgb*(III)-ligand complexes were equilibrated against a precip-

itant solution containing 0.25–0.5 M monobasic ammonium

phosphate or against 15–25% w/v PEG 4000, 10% v/v 2-

propanol, and 0.1 M Na Hepes (pH 7.0–7.5), at 4uC. The best

MaPgb*(III)-imidazole crystals grew in 0.4 M monobasic ammo-

nium phosphate, matching the precipitant solution condition

successfully used for the crystallization of the MaPgb*(II)-O2

complex [6]. The crystals belong to the monoclinic C2 space group

(two MaPgb* molecules in the asymmetric unit) and diffracted up

to 1.38 Å resolution using synchrotron radiation (ESRF, Greno-

ble, France). The best MaPgb(III)-nicotinamide crystals grew in

18% w/v PEG 4000, 10% v/v isopropanol, and 0.1 M Na Hepes

(pH 7.5). They belong to the monoclinic P21 space group (two

MaPgb* molecules in the asymmetric unit) and diffracted up to

1.9 Å resolution using synchrotron radiation (ESRF, Grenoble,

France). Statistics for each data collection are reported in details in

Table S1 and Table S2.

All X-ray diffraction data were integrated and reduced using

MOSFLM and SCALA [15,16]; structure determination was

achieved by molecular replacement methods with the program

PHASER [17], using the MaPgb*(II)-O2 structure as the search

model (PDB accession code 2VEB) [6]. Crystallographic refine-

ment was performed using the program REFMAC [18], the

program COOT [19] having been used for model building/

inspection. The relevant refinement statistics are reported in Table

S1 and Table S2. The program Procheck [20] was used to assess

the stereochemical quality of the protein structures.

Atomic coordinates and structure factors have been deposited

with PDB accession codes 3ZJN (MaPgb*(III)-cyanide complex),

3ZJR (MaPgb*(III)-cyanide-Xenon complex), 3ZJO (MaPgb*(III)-

azide complex), 3ZJS (MaPgb*(III)-azide-Xenon complex), 3ZJP

(MaPgb*(III)-imidazole complex), 3ZJQ (MaPgb*(III)-nicotin-

amide complex), 3ZJH (Trp(60)B9Ala-cyanide complex), 3ZJI

(Tyr(61)B10Ala-cyanide complex), 3ZJJ (Phe(93)E11Leu-cyanide

complex), 3ZJL (Leu(142)G4Ala-cyanide complex), and 3ZJM

(Ile(149)G11Phe-cyanide complex).

Determination of cyanide dissociation kinetics from
MaPgb*(III)-cyanide and its mutants by reductive
nitrosylation

Nitric oxide (NO) (from Aldrich Chemical Co., Milwaukee, WI,

USA) was purified by flowing through an NaOH column in order

to remove acidic nitrogen oxides. The NO stock solution was

prepared by keeping the 2.0% borate buffer solution (pH = 9.2) in

a closed vessel under NO at P = 760.0 mm Hg, anaerobically

(T = 20.0uC). The solubility of NO in the aqueous buffered

solution is 2.0561023 M, at P = 760.0 mm Hg and T = 20.0uC
[21]. All the other products (from Merck AG, Darmstadt,

Germany, and Sigma-Aldrich, St. Louis, MO, USA) were of

analytical grade and used without purification unless stated.

The cyanide adducts of MaPgb*(III), and of the Trp(60)B9Ala,

Tyr(61)B10Ala, Phe(93)E11Leu, Leu(142)G4Ala, and

Ile(149)G11Phe mutants were obtained by adding a 10-molar

excess of a cyanide stock solution (1.061023 M) to the protein

solutions (ranging between 4.461026 M and 5.261026 M) [21].

Values of the first-order rate constant for cyanide dissociation

(koff) from MaPgb*(III)-cyanide and the mutant-cyanide complexes

were determined by mixing the ferric protein-cyanide solutions

with the NO solution under anaerobic conditions, at pH 9.2 (2.0%

borate buffer) and 20.0uC; no gaseous phase was present. The final

concentration of MaPgb*(III) and mutants ranged between

2.261026 M and 2.661026 M. The final cyanide concentration

was ,2.061025 M. The final NO concentration ranged between

1.061024 M and 1.061023 M.

Kinetics of cyanide dissociation from MaPgb*(III)-cyanide and

the mutant-cyanide complexes were analyzed in the framework of

the minimum reaction mechanism represented by Scheme 1

[21,22]:

Fe IIIð Þ{CNzNO ?
koff

Fe IIIð ÞzHCN=CN{zNO

??
fast

Fe IIð Þ{NO

Of note: (i) cyanide dissociation from MaPgb*(III)-cyanide is the

rate limiting step of the whole reductive nitrosylation process

(present study); (ii) the MaPgb*(II)-NO complex is very stable,

dissociating very slowly [22]; and (iii) cyanide binding to

MaPgb*(II) is negligible at [cyanide] ,2.061025 M (unpublished

data).

Depending of the observation wavelength, values of koff were

determined from data analysis according to Eqns. 1 and 2 [21,22]:

MaPgb � IIIð Þ{cyanide½ �t~

MaPgb � IIIð Þ{cyanide½ �i| 1{e{koff |t
� � ð1Þ

MaPgb � IIIð Þ{cyanide½ �t~

MaPgb � IIIð Þ{cyanide½ �i|e{koff |t
ð2Þ

where [MaPgb*(III)-cyanide]t is the cyanide-bound haem-protei-

n(III) concentration at time t, and [MaPgb*(III)-cyanide]i is the

initial cyanide-bound haem-protein(III) concentration (i.e., at

t = 0).

Kinetics was monitored spectrophotometrically between

380 nm and 460 nm. The results are reported as mean values of

at least four experiments, plus or minus the corresponding

Ligand Binding Properties of Protoglobin
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standard deviation. All data were analyzed using the MATLAB

program (The Math Works Inc., Natick, MA, USA).

Results

Cyanide binding mode to MaPgb*(III) and to the mutant
MaPgbs*

High-resolution data (1.60 Å) on the MaPgb*(III)-cyanide

crystals were collected at the ESRF synchrotron facility (ESRF,

Grenoble, France), and the structure was refined to a final R-factor

and R-free of 17.5% and 23.8%, respectively (Table S1). The

tertiary structure of MaPgb*(III)-cyanide is nearly identical in its

backbone to those of ligand-free MaPgb*(III) and MaPgb*(II)-O2

[6], displaying rms deviation values that range between 0.37 Å

and 0.56 Å, calculated for 190 Ca atom pairs. Similarly, the

quaternary assembly of the two independent MaPgb*(III)-cyanide

molecules present in the crystal asymmetric unit (A and B chains)

closely matches the dimer assembly of ligand-free MaPgb*(III) and

of MaPgb*(II)-O2 [6].

In the MaPgb*(III)-cyanide complex the cyanide molecule is

bound to the sixth coordination site of the haem-Fe(III) atom, with

a coordination bond of 2.16 Å and a Fe-C-N angle of 171u for

chain A, and of 2.14 Å and 169u for chain B. Two H-bonds

stabilize the haem-Fe(III)-bound cyanide molecule. On one hand,

the cyanide N atom is linked to Tyr(61)B10 OH group (2.84 Å

and 2.71 Å, for chain A and B, respectively), on the other, it is

hydrogen bonded to Trp(60)B9 Ne2 atom (2.98 Å or 2.99 Å)

(Figure 1A, left panel, and Figure S2A). When compared to the

ligand-free MaPgb*(III) and the MaPgb*(II)-O2 structures some

major differences appear evident. The presence of the haem-

Fe(III)-bound cyanide molecule induces a rotation of the

Phe(93)E11 side chain around the Cb-Cc bond of about 120u
relative to the ligand-free MaPgb*(III) (Figure 1A, right panel).

The rotation of the Phe(93)E11 side chain allows the rotation of

the Trp(60)B9 side chain of ,90u towards the center of the haem

distal site. As a consequence, in the MaPgb*(III)-cyanide complex:

(i) tunnel 1 is hindered by the Trp(60)B9 side chain, and (ii) the

Trp(60)B9 Ne1 atom is at H-bond distance to the haem-Fe(III)-

bound cyanide ligand (Figure 1A). In the MaPgb*(II)-O2 structure,

where the haem-Fe(II)-bound ligand is not stabilized by any H-

bond [6], the rotation of the Phe(93)E11 side chain is only ,94u
relative to ligand-free MaPgb*(III) (Figure 1B, right panel); this is

not sufficient to allow the Trp(60)B9 side chain to enter the haem

distal site and H-bond the ligand (Figure 1B). Interestingly, the

149–154 region, which faces Trp(60)B9 side chain on one side and

the second subunit of the dimer on the other, is significantly

divergent in its Ca-backbone relative to the ligand-free MaPg-

b*(III) and MaPgb*(II)-O2 structures (maximum displacement at

Ala(151)G13 of 1.75 Å and 1.64 Å, respectively), and shows signs

of structural heterogeneity, with Ile(149)G11 and Thr(152)G14

adopting two alternate conformations (Figure 2). Thus, ligand

binding, and the consequent relocation of the Trp(60)B9 side

chain within the haem distal cavity, appears to release structural

constraints at the dimeric interface.

Cyanide binding causes also a shift of about 1 Å of the

Tyr(61)B10 backbone toward the interior of the haem distal site,

with the concomitant side chain rotation of ,90u around the Cb-

Cc bond. In this new orientation, the Tyr(61)B10 OH group

provides a tight H-bond to the haem-Fe(III)-bound cyanide

(Figure 1A). Notably, when H-bonded to the cyanide ligand,

Tyr(61)B10 loses the H-bonds between its OH-group and the

Arg(90)E8 amide N and the Leu(86)E4 carbonyl O atoms

occurring in the ligand-free MaPgb*(III) and MaPgb*(II)-O2

structures [6].

The sites of MaPgb*(III) mutations (Trp(60)B9Ala, Tyr(61)-

B10Ala, Phe(93)E11Leu, Leu(142)G4Ala, and Ile(149)G11Phe) are

located in the surroundings of the haem, or along the two tunnels;

the mutations were designed to evaluate the (structural) impact of

the selected residues on the stabilization of the haem-Fe(III)-bound

ligand and on the reshaping of the haem distal cavity/tunnel

system. All mutant structures have been solved at high resolution,

ranging from 1.5 Å to 2.0 Å (data statistics are reported in Table

S2). Overall, the single mutations do not affect significantly the

tertiary structure of the mutated proteins, which are always closely

similar in their backbone to that of MaPgb*(III)-cyanide,

displaying rms deviation values which range between 0.17 Å

and 0.49 Å, calculated for 190 Ca atom pairs. Significant changes

in the structure of the haem distal site and of the tunnels are

however present in the case of the Trp(60)B9Ala and Tyr(61)-

B10Ala mutants. In the Trp(60)B9Ala mutant one cyanide

stabilizing H-bond is absent, while the H-bond to Tyr(61)B10

OH group is maintained (2.82 Å for chain A, and 2.87 Å for chain

B). As a result, the cyanide ligand is slightly tilted toward the

entrance of tunnel 2, where Tyr(61)B10 is located, with a haem-

Fe(III) coordination bond of 2.25 Å and a Fe-C-N angle of 151u
for chain A, and 2.27 Å and 122u for chain B (Figure 3A). The

Trp(60)B9Ala mutation sets tunnel 1 in a constantly open state.

Only a minor rearrangement of the Ile(149)G11 side chain occurs

within tunnel 1, which is however not sufficient to fill the empty

volume left by the TrpRAla mutation (Figure 3A, right panel).

Interestingly, the location of the Phe(93)E11 side chain in the

Trp(60)B9Ala mutant is superimposable to that of the Phe(93)E11

in the MaPgb*(III)-cyanide complex, thus indicating that the

presence of the haem-Fe(III)-bound cyanide is enough to induce

the Phe(93)E11 side chain rotation; it also suggests that the

insertion of Trp(60)B9 side chain into the haem distal site is only a

consequence of the cyanide binding to MaPgb*(III) and of the

ligand-linked conformational change of Phe(93)E11 side chain.

The Tyr(61)B10Ala mutation has instead a dramatic impact on

the accessibility of the haem distal site since it increases the average

tunnel 2 diameter by more than 1.5 Å (6.0 Å is the shortest

distance between Ala(61)B10 Cb atom and the surrounding

residues). As a result of such increased accessibility, the tunnel 2

entrance site (i.e. roughly the cavity left by the TyrRAla mutation)

in the Tyr(61)B10Ala mutant hosts a glycerol molecule (in both

chains A and B; the glycerol molecule bound to chain A is

modeled in a double conformation) which is able to H-bond the

haem-Fe(III)-bound cyanide (distance of ,2.8–2.9 Å, depending

on the protein chain) (Figure 3B). Thus, in the Tyr(61)B10Ala

mutant, the haem-Fe(III)-bound cyanide molecule is stabilized by

the interaction with the Trp(60)B9 Ne2 atom (2.92 Å for chain A,

and 2.90 Å for chain B), and by the additional H-bond provided

by the glycerol molecule which mimics the H-bond provided by

the Tyr(61)B10 OH group in the MaPgb*(III)-cyanide structure

(Figure 3B). As a result, both the orientations of the haem-Fe(III)-

bound cyanide molecule and of the Phe(93)E11 side chain match

those found in the MaPgb*(III)-cyanide structure.

The Phe(93)E11Leu mutation does not prevent the insertion of

the Trp(60)B9 side chain into the distal site and the stabilization of

the haem-Fe(III)-bound cyanide (Figure 4A). Thus, the ligand

sensing capability of the E11 residue, reflected by Trp(60)B9

conformational changes, does not require specifically a Phe

residue. In the Phe(93)E11Leu mutant structure (three MaPgb*

chains in the asymmetric unit), however, the haem-Fe(III)-bound

cyanide molecule is stabilized only by the H-bond provided by the

Ne2 atom of Trp(60)B9 (,2.8 Å). Indeed, the orientation of the

Tyr(61)B10 side chain matches that found in the MaPgb(III)-

cyanide structure, but its side chain is slightly shifted away from
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the center of the haem distal cavity, its OH group being at ,4 Å

from the cyanide N atom. In this orientation, the Tyr(61)B10 OH

group is not involved in any H-bond interaction, contrary to what

is found in the ligand-free MaPgb*(III) and MaPgb*(II)-O2

structures, where the Tyr(61)B10 side chain, while not interacting

with any ligand, is H-bonded to the Arg(90)E8 amide N and the

Leu(86)E4 carbonyl O atoms [6].

The other two mutations considered, Leu(142)G4Ala, localized

at the proximal site just on top of His(120)F8, and Ile(149)G11Phe,

adjacent to Trp(60)B9 in tunnel 1, do not produce any significant

deviation in the overall conformation of the distal site and in the

cyanide binding mode relative to the MaPgb*(III)-cyanide

structure (Figures 4B and C).

Kinetics of cyanide dissociation from MaPgb*(III)-cyanide
and its mutants by reductive nitrosylation

Mixing of cyanide-bound MaPgb*(III), as well as of

Trp(60)B9Ala, Tyr(61)B10Ala, Phe(93)E11Leu, Leu(142)G4Ala,

and Ile(149)G11Phe mutant solutions with NO solutions induced a

shift of the absorption peak maxima from 420–422 nm (e ranging

between 110 mM21 cm21 and 120 mM21 cm21) to 412–415 nm

(e ranging between 120 mM21 cm21 and 130 mM21 cm21).

Such spectroscopic changes reflect the formation of the ferrous

nitrosylated MaPgb* species (MaPgb*(II)-NO). In fact, the

absorption spectrum of the product corresponds to that obtained

by adding gaseous NO (,760 mmHg) to MaPgb*(II) and mutants

in the presence of sodium dithionite (,161021 M).

All MaPgb*(II)-NO species do not revert to their MaPgb*(III)-

cyanide derivatives; in fact the spectra of all MaPgb*(II)-NO

Figure 1. The haem distal site of MaPgb*(III)-cyanide. Residues lining the haem distal pocket are indicated and shown in stick representation
(yellow). Superimposition of MaPgb*(III)-cyanide to (A) ligand-free MaPgb*(III) (magenta), and (B) MaPgb*(II)-O2 (cyan). The proximal His(120)F8
residue is also shown. Amino acid residues have been labeled using their three-letter codes, the sequence numbering (in parentheses), and the
topological site they occupy within the globin fold. In panel (A) the haem distal cavity entrance sites of tunnel 1 and tunnel 2 are indicated by arrows.
Both panels are shown from a side and a top view. Rotation of the Phe(93)E11 side chain upon ligand binding is indicated in each top view panel. H-
bonds to the haem-Fe(III)-bound cyanide are indicated by dashed lines.
doi:10.1371/journal.pone.0066144.g001
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species reverts to those of the corresponding MaPgb*(II) deriva-

tives, instead of those of the MaPgb*(III) forms, by merely

pumping off gaseous NO, or bubbling helium through the

MaPgb*(II)-NO solutions. However, the denitrosylation process

requires about 12 hours to be completed.

Over the whole NO concentration range explored (1.061024 M

to 1.061023 M), the time course of cyanide dissociation from all

MaPgb*(III)-cyanide species (i.e., for MaPgb*(III)-cyanide reduc-

tive nitrosylation) corresponds to a mono-exponential process for

more than 80% of its course (Figure S3A). As reported for horse

heart Mb [21], values of the first-order rate constant for reductive

nitrosylation of MaPgb*(III)-cyanide species are independent of

the observation wavelength (Figure S3A) and NO concentration.

Moreover, the static difference absorption spectra of MaPgb*(III)-

cyanide minus MaPgb*(II)-NO proteins match very well those

obtained kinetically (Figure S3B). Accordingly, the MaPgb*(III),

MaPgb*(III)-NO, and deoxygenated MaPgb*(II) species were

never detected spectrophotometrically. These findings suggest that

cyanide dissociation from all MaPgb*(III)-cyanide species repre-

sents the rate-limiting step of reductive nitrosylation, as described

in Scheme 1. Moreover, the first-order rate constant for reductive

nitrosylation of all MaPgb*(III)-cyanide species corresponds to the

first-order rate constant for cyanide dissociation, i.e. koff [21,22].

Inspection of Table 1 indicates that the stabilization of the

MaPgb*(III)-cyanide complexes, as monitored by the koff values,

reflects H-bonding of the ligand to haem distal residue(s), i.e.

Trp(60)B9 and Tyr(61)B10. In fact, values of koff for cyanide

dissociation from cyanide-bound MaPgb*(III) and Leu(142)G4Ala

and from the Ile(149)G11Phe ferric mutants, all characterized by

ligand stabilization through two H-bonds (to Trp(60)B9 and

Tyr(61)B10), are lower than those reported for ligand dissociation

from the Tyr(61)B10Ala and Trp(60)B9Ala MaPgb*(III)-cyanide

species, characterized by ligand stabilization through one H-bond.

Higher accessibility to the haem-distal ligand-binding site due to

the Tyr(61)B10Ala and Trp(60)B9Ala mutations may also partly

contribute for the increase in koff for cyanide.

A peculiar case is represented by the Phe(93)E11Leu mutant,

where the measured koff value for cyanide dissociation suggests that

the bound ligand should be stabilized by two H-bonds. However,

the crystal structure reveals only the presence of one H-bond,

between cyanide and the Ne1 atom of Trp(60)B9 side chain.

Analysis of the crystal structure shows that the mutated

Leu(93)E11 side chain imposes to the Tyr(61)B10 side chain a

slightly unfavorable location for H-bonding to the haem-bound

cyanide (the OH group of residue Tyr(61)B10 falls at 4.25 Å on

average from the haem-bound cyanide, in the three independent

subunits). However, no intervening steric impediments are present

for the formation of such H-bond. Indeed, inspection of difference

Fourier maps reveals the presence of a positive electron density

peak (,3.8 s) between the Tyr(61)B10 side chain and the haem-

bound cyanide in one of three Phe(93)E11Leu mutant molecules

present in the crystal asymmetric unit. Such observation suggests

that even in the static crystal environment a fraction of the mutant

molecules may stabilize the haem-bound cyanide through two H-

Figure 2. Superimposition of MaPgb*(III) structures in complex with different ligands. (A) Superimposition of homodimeric ligand-free
MaPgb*(III) (magenta) onto MaPgb*(III)-cyanide (yellow), MaPgb*(III)-azide (green), MaPgb*(III)-imidazole (orange), MaPgb*(III)-nicotinamide (brown),
and MaPgb*(II)-O2 (cyan). The subunit-subunit interface is indicated and relevant helices labeled. Red circles highlight the position of the 149–154
region in both subunits. (B) The 149–154 region in one MaPgb* subunit. For clarity only the side chains of Ile(149)G11, Thr(150)G12, Thr(152)G14, and
Met(153)G15 from the ligand-free MaPgb*(III) (magenta) and MaPgb*(III)-cyanide (yellow) structures are compared, as representative of the two haem
distal site open and closed conformations, respectively. The corresponding different orientations of the Trp(60)B9 side chain are also shown. The
maximum Ca-backbone displacement at Ala(151)G13 is highlighted by a black dotted circle. For clarity, the side chain and label of Ala(151)G13 are
omitted.
doi:10.1371/journal.pone.0066144.g002
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bonds. It is therefore reasonable to expect that in a more dynamic

environment, as in solution, Tyr(61)B10 side chain could provide

the second H-bond to the haem-bound cyanide, in keeping with

the observed koff value for cyanide dissociation (Table 1).

Remarkably, the values of koff for cyanide dissociation from

Trp(60)B9Ala MaPgb*(III)-cyanide and Tyr(61)B10Ala MaPg-

b*(III)-cyanide species are closely similar to those reported for

cyanide dissociation from Mb(III)-cyanide and Hb(III)-cyanide

complexes, where ligand stabilization is achieved through the

distal HisE7 residue [21–24]. The difference in activation energy

for cyanide dissociation from MaPgb*(III), as well as from ferric

Trp(60)B9Ala, Tyr(61)B10Ala, Phe(93)E11Leu, Leu(142)G4Ala,

and Ile(149)G11Phe mutants is ,4 kJ/mol, which is in keeping

with the free energy change associated with the formation of 61

H-bond.

Azide binding mode to MaPgb*(III)
The size and plasticity of the MaPgb*(III) distal site [25] suggest

that the protein could bind haem ligands bigger than ‘‘classical’’

diatomic species. Therefore, a triatomic molecule such as azide

was tested. The structure of the MaPgb*(III)-azide complex was

solved at 1.8 Å resolution (two MaPgb* molecules in the

asymmetric unit) and refined to a final R-factor of 18.9% and

R-free of 25.6% (Table S1). The MaPgb*(III)-azide structure is

almost superimposable in its backbone to that of MaPgb*(III)-

cyanide (rms deviation values calculated for 190 Ca atom pairs

Figure 3. The haem distal site of MaPgb*(III)-cyanide Trp(60)B9Ala and Tyr(61)B10Ala mutants. Residues lining the haem distal pocket
are indicated and shown in stick representation (grey). Superimposition of MaPgb*(III)-cyanide (yellow) onto (A) the MaPgb*(III)-cyanide Trp(60)B9Ala
mutant, and (B) the MaPgb*(III)-cyanide Tyr(61)B10Ala mutant. The proximal His(120)F8 residue is also shown. H-bonds to the haem-Fe(III)-bound
cyanide are indicated by dashed lines. The mutated residues are indicated in underlined bold characters. Both panels are shown from side and top
views.
doi:10.1371/journal.pone.0066144.g003

Ligand Binding Properties of Protoglobin

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e66144



Figure 4. The haem distal site of MaPgb*(III)-cyanide Phe(93)E11Leu, Leu(142)G4Ala, and Ile(149)G11Phe mutants. Residues lining the
haem distal pocket are indicated and shown in stick representation (grey). Superimposition of MaPgb*(III)-cyanide (yellow) onto (A) the MaPgb*(III)-
cyanide Phe(93)E11Leu mutant (side and top views), (B) the MaPgb*(III)-cyanide Leu(142)G4Ala mutant (side view), and (C) the MaPgb*(III)-cyanide
Ile(149)G11Phe mutant (side view). The proximal His(120)F8 residue is also shown. H-bonds to the haem-Fe(III)-bound cyanide are indicated by
dashed lines. The mutated residues are indicated in underlined bold characters.
doi:10.1371/journal.pone.0066144.g004

Table 1. Values of the first-order rate constant (koff) for cyanide dissociation from MaPgb*(III)- and mutant-cyanide complexes as
well as horse heart Mb(III)-cyanide, at pH 9.2 and 20.0uC.

Protein koff (s21) Number of H-bonds Residues H-bonded to cyanide

MaPgb*(III) (5.860.4)61025 2 Trp(60)B9, Tyr(61)B10

Trp(60)B9Ala (5.760.4)61024 1 Tyr(61)B10

Tyr(61)B10Ala (4.260.3)61024 1 Trp(60)B9

Phe(93)E11Leu (6.360.5)61025 1 Trp(60)B9

Ile(142)G4Ala (5.160.5)61025 2 Trp(60)B9, Tyr(61)B10

Ile(149)G11Phe (6.160.6)61025 2 Trp(60)B9, Tyr(61)B10

Horse heart Mb [ref. 21] (4.960.4)61024 1 His(64)E7

doi:10.1371/journal.pone.0066144.t001
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ranging between 0.26 and 0.39 Å), and the dimeric quaternary

structure is preserved.

The linear azide anionic ligand is coordinated to the haem-

Fe(III) atom with a coordination bond of 1.97 Å for the A chain,

and 1.99 Å for the B chain, and is oriented towards tunnel 2, with

the Fe–N1–N3 angles of 125u and 114u, respectively. Contrary to

the MaPgb*(III)-cyanide adduct, the haem-Fe(III)-bound azide is

stabilized by only one H-bond, provided by the Tyr(61)B10 OH

group (2.71 Å for chain A, and 2.72 Å for chain B). The

Trp(60)B9 side chain, however, adopts the same orientation in the

MaPgb*(III)-cyanide and in the MaPgb*(III)-azide complexes.

Thus, the absence of a stabilizing H-bond interaction between

azide and the Trp(60)B9 side chain can only be ascribed to the

triatomic nature of the ligand, which positions its N3 atom ,4 Å

away from the Ne2 atom of Trp(60)B9 (Figure 5A, and Figure

S2B). All residues lining the haem distal side match the position

found in the MaPgb*(III)-cyanide structure, comprising the

‘‘ligand-sensor’’ Phe(93)E11. Only Tyr(61)B10 is slightly shifted

(about 0.9 Å at the OH group) due to the different size of the

bound ligand (azide vs cyanide) (Figure 5A). Furthermore, similarly

to the MaPgb*(III)-cyanide structure, the Ca-backbone at the 150–

154 region diverges significantly relative to that of the ligand-free

MaPgb*(III) and MaPgb*(II)-O2 structures [6], with structural

heterogeneity at the Thr(150)G12 side chain (Figure 2).

Xenon binding to MaPgb*(III)-azide and -cyanide
complexes

To examine the accessibility of the apolar tunnels, a

MaPgb*(III)-azide crystal was equilibrated with high pressures of

pure Xe gas, following an approach that has been used successfully

to identify cavities in a variety of Mbs and Hbs [26–29].

Specifically, the MaPgb*(III)-azide crystal was exposed to 10 atm

of Xenon (for ,10 min), and a full diffraction data set on the

MaPgb*(III)-azide-Xe derivative was successfully collected at 2.3 Å

resolution. The resulting structure was refined to a final R-factor of

22.0% and R-free of 27.4% (Table S1). A similar Xenon-binding

experiment was performed also on the MaPgb*(III)-cyanide

derivative, but after treatment under Xenon pressure the crystals

diffracted to a resolution lower (3 Å, see Table S1) than the

MaPgb*(III)-azide-Xe crystal, which is therefore reported here to

illustrate the Xenon-binding analysis. All results discussed below

apply however also to the MaPgb*(III)-cyanide-Xe derivative

structure (Figure S4).

The backbone structure of MaPgb*(III)-azide-Xe is virtually

identical to that of MaPgb*(III)-azide, with rms deviations ranging

from 0.27 Å to 0.28 Å, depending on the superimposed subunits,

calculated for all 190 Ca atom pairs. In particular the haem

cavities and the two tunnel-systems are identical (Figures 5A and

B). The only noticeable difference is the orientation of the azide

ligand in the haem distal site pocket, which is found almost parallel

to the haem plane (Fe-N1 distance of 2.76 Å and 2.78 Å found in

chains A and B of the X-ray structure, respectively), oriented

roughly along the line connecting the pyrrole NA and NC nitrogen

atoms. The azide N2 atom is weakly H-bonded to the Trp(60)B9

Ne2 atom (3.36 Å for chain A, and 3.22 Å for chain B), and the

Tyr(61)B10 OH group falls too far from the ligand to provide any

H-bond (,4 Å from the azide N1 atom) (Figure 5B). Such ligand-

haem arrangement indicates the occurrence of a pentacoordinated

haem structure. The absence of ligand coordination to the haem-

Fe atom may arise from X-ray-induced Fe(III)RFe(II) reduction,

resulting essentially in drastic loss of haem affinity for the ligand, as

noticed for several different haem proteins [23]. A similar

photoreduction effect is also found in the MaPgb*(III)-cyanide-

Xe complex, where the cyanide ion is at 2.8 Å from the haem-iron

atom, and it is stabilized only by a weak hydrogen bond to the

Trp(60)B9 NE2 atom (3.38 Å) (Figure S4).

Inspection of the residual difference electron density, after the

initial refinement of Xe-bound MaPgb*(III)-azide, indicates the

presence of one Xe atom at refined occupancy of ,60% and

temperature factors of 46.5 Å2. The Xe-binding site is located

inside tunnel 1, trapped in a hydrophobic pocket resulting from

closure of tunnel 1 operated by Trp(60)B9 side chain. The bound

Xe atom is stabilized by favorable van der Waals contacts with

Ile(56)B5, Trp(60)B9, Phe(93)E11, Ile(149)G11, Thr(152)G14, and

Met(153)G15 (Figure 5B and Figure S4). No Xe atoms have been

detected in tunnel 2, likely due to its short length and more polar

nature.

Imidazole binding mode to MaPgb*(III)
To verify whether molecules larger than azide could be

coordinated to the MaPgb* haem-Fe(III) atom, imidazole binding

was tested on the crystalline protein. The structure of the

MaPgb*(III)-imidazole complex was solved at 1.38 Å resolution

(one MaPgb* molecule in the asymmetric unit) and refined to final

R-factor of 15.9% and R-free of 19.8% (Table S1). The structure

of MaPgb*(III)-imidazole is well superimposable in its backbone to

that of the MaPgb*(III)-cyanide complex (rms deviation values

calculated for 190 Ca atom pairs ranging between 0.41 Å and

0.45 Å, depending on the superimposed subunits), and their

dimeric quaternary structure are identical.

The azimuthal orientation of the haem-Fe(III)-bound imidazole

is staggered relative to the haem pyrrole nitrogen atoms (lying at

about 15u from a line connecting the methinic CHA-CHC atoms),

with a haem-Fe(III) coordination bond of 1.97 Å. The haem-

Fe(III)-bound imidazole was refined in a double conformation

(occupancy of 0.5 each) with the imidazole N3 atom pointing

alternatively towards the Tyr(B10)61 OH group (2.69 Å distance),

and the Ne1 atom of Trp(B9)60 (2.64 Å distance) (Figure 5C, and

Figure S2C). Additional stabilizing interactions are provided by

several van der Waals contacts involving the hydrophobic

MaPgb*(III) haem distal site residues, such as Val(B13)64,

Phe(CD1)74, Val(E7)89, Phe(E11)93, and Phe(G7)145, surround-

ing the haem-Fe(III)-bound imidazole.

Overall, the haem distal site structure of the MaPgb*(III)-

imidazole complex superimposes well with that of MaPgb*(III)-

cyanide. Small differences occur in the position of the Tyr(61)B10

OH group (a shift of 0.75 Å), and the rotation of the Phe(93)E11

side chain around the Cb-Cc bond (of ,13u).
Thus, the ligand sensing mechanism of the Phe(93)E11 is

preserved and the Trp(B9)60 side chain is properly oriented in the

haem distal site cavity to stabilize the haem-Fe(III)-bound

imidazole and to shut tunnel 1. It should be noted, however, that

residual positive (Fo – Fc) electron density is present in the region

where Trp(60)B9 side chain is located in ligand-free MaPgb*(III),

thus suggesting that in a low percentage of the protein molecules

(in the crystal) tunnel 1 could still be open. As found in the

MaPgb*(III)-cyanide and MaPgb*(III)-azide structures, the 150–

154 region, which faces the Trp(60)B9 side chain, is markedly

divergent in the Ca-backbone relative to the ligand-free

MaPgb*(III) and MaPgb*(II)-O2 structures, and is affected by

structural heterogeneity, with Thr(150)G12 and Met(153)G15 in

two alternate conformations (Figure 2).

Nicotinamide binding mode to MaPgb*(III)
In search for a MaPgb*(III) ligand larger than imidazole, we

tested nicotinamide, based on the knowledge that certain globins,

such as leghemoglobins, can bind nicotinic acid [23,29].
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The structure of the MaPgb*(III)-nicotinamide complex was

solved at 1.90 Å (two MaPgb* molecules in the asymmetric unit)

and refined to final R-factor and R-free values of 17.7% and

21.1%, respectively (Table S1). The MaPgb*(III)-nicotinamide

structure appears particularly interesting because although ligand

binding neither affects significantly the tertiary structure of the

protein (rms deviation values range between 0.39 Å and 0.48 Å,

calculated for 190 Ca atom pairs relative to MaPgb*(III)-cyanide)

nor the quaternary dimer assembly, it reshapes the haem distal

cavity in a manner which is intermediate between those of the

ligand-free MaPgb*(III) and the MaPgb*(III)-cyanide, MaPgb*(III)-

azide, and MaPgb*(III)-imidazole structures (Figure 6A).

In the MaPgb*(III)-nicotinamide complex (two subunits present

in the crystal asymmetric unit) the N atom of the heterocyclic

compound is coordinated to the haem-Fe(III) atom at 2.15 Å in

chain A, and 2.08 Å in chain B. The amide group points toward

the interior of the distal site cavity, in the direction of tunnel 1,

with the N atom H-bonded to the carbonyl oxygen of Trp(60)B9.

The side chain of Phe(93)E11 provides stacking interaction with

the heterocycle of nicotinamide, being rotated of ,60u relative to

the ligand-free MaPgb*(III) structure (Figure 6A, and Figure S2D).

This location is intermediate between those of the ligand-free and

cyanide-bound MaPgb*(III), where cyanide binding induces a

rotation of about 120u to the Phe(93)E11 side chain (Figure 6B).

Interestingly, the position of the Phe(93)E11 side chain in the

MaPgb*(III)-nicotinamide complex is similar to that found in

MaPgb*(II)-O2 [6], with a difference of ,20u (Figure 6C). As

observed in the MaPgb*(II)-O2 structure [6], the rotation of the

Phe(93)E11 side chain found in the MaPgb*(III)-nicotinamide

crystalline form is not sufficient to allow the insertion of residue

Trp(60)B9 into the haem distal cavity; as a result, tunnel 1 remains

open. The Tyr(61)B10 side chain is not involved in ligand

stabilization, but H-bonded to Arg(90)E8 peptidic N and to

Leu(86)E4 carbonyl O atoms, as observed in the MaPgb*(II)-O2

structure [6]. Thus, although the nicotinamide molecule is the

largest ligand relative to cyanide, azide and imidazole, its binding

results in a smaller rotation of Phe(93)E11, not sufficient to trigger

closure of tunnel 1 by residue Trp(60)B9. Therefore, Phe(93)E11

side chain appears to sense the nature rather than the size of the

haem-Fe(III)-bound ligand. It must also be noted that, despite the

binding of the bulky nicotinamide ligand, the Ca backbone at the

150–154 region matches well those of the ligand-free MaPgb*(III)

and MaPgb(II)-O2 [6], with no signs of structural heterogeneity

(Figure 2).

Discussion

In order to analyse the ligand binding mechanisms in MaPgb,

we solved the crystal structures of cyanide-, azide-, imidazole-, and

nicotinamide-bound MaPgb*(III). Moreover, the role of selected

mutations (Trp(60)B9Ala, Tyr(61)B10Ala, Phe(93)E11Leu,

Leu(142)G4Ala, and Ile(149)G11Phe) on cyanide binding to

MaPgb*(III) was examined from both the structural and the

kinetic viewpoints. Such structural analyses allowed us to identify

new features within the haem distal site, which depict ligand

recognition mechanisms that appear unique among those of

known globins.

Firstly, in consideration of the strong hydrophobicity of the

haem distal site, all ligands are productively stabilized by H-bonds,

which are provided by aromatic residue side chains. The

prototypical case is represented by the haem-Fe(III)-bound

cyanide, which is stabilized by two H-bonds provided by

Trp(60)B9 and Tyr(61)B10 side chains. While ligand stabilization

by the OH group of Tyr(61)B10 requires only one side chain

rotation relative to the ligand-free MaPgb*(III), the H-bond

provided by the Ne2 atom of Trp(60)B9 requires a complex

rearrangement of the haem distal site cavity (Figure 1).

Secondly, Phe(93)E11 appears to play the role in ligand sensing

and discrimination. In fact, the Phe(93)E11 side chain is able to

rotate by ,120u, relative to ligand-free MaPgb*(III), upon cyanide

binding (Figure 1A, right panel). A similar Phe(93)E11 side chain

rotation occurs upon azide and imidazole binding (Figure 5A and

C, right panel). Therefore, ligand binding to the ferric form brings

about a ligand-linked conformational change which leads first to a

rotation of the Phe(93)E11 side chain; this movement, which is

observed for cyanide, azide and imidazole binding (but it is

somehow impaired in the case of nicotinamide) creates then the

space for a consequent ‘‘induced-fit’’ structural change of

Trp(60)B9, which brings the Trp(60)B9 Ne2 atom at H-bonding

distance from the haem Fe(III)-bound ligand. Such a sequential

mechanism is confirmed by the structure of the ferric cyanide-

bound Trp(60)B9Ala mutant, where the ligand is coordinated to

the haem-Fe(III) atom and stabilized only by the Tyr(61)B10 OH

group, the Phe(93)E11 residue being rotated by about 120u
relative to ligand-free MaPgb*(III), even in the absence of

Trp(60)B9 (Figure 3A). Modelling considerations suggest that the

minimal rotation of the Phe(93)E11 side chain able to trigger the

Trp(60)B9 conformational change should be higher than 60u, in

agreement with the inspection of the MaPgb*(III)-nicotinamide

complex structure, where, despite the 60u rotation of the

Phe(93)E11 side chain, the Trp(60)B9 residue does not enter the

haem distal cavity and does not shut tunnel 1 (Figure 6A). Such

distal site structural arrangement is reminiscent of that found in

the MaPgb(II)*-O2 structure [6], where Trp(60)B9 does not enter

the distal site cavity thus leaving tunnel 1 open (Figure 6C). The

ligand-sensing role of Phe(93)E11 does not necessarily require the

presence of an aromatic residue at the E11 topological position as

demonstrated by the structure of the cyanide-bound MaPgb*(III)

Phe(93)E11Leu mutant, where the ligand binding mode and the

distal site geometry are essentially identical to those found in the

MaPgb*(III)-cyanide structure (Figure 4A). Furthermore, the

presence of the Trp(60)B9 side chain within the haem distal site

affects the orientation of the haem-Fe(III)-bound cyanide, but does

not impact on the ability of the adjacent Tyr(61)B10 residue to

reorient its side chain toward the haem-Fe(III)-bound-ligand, as

demonstrated by the structure of the cyanide-bound Trp(60)B9Ala

mutant (Figure 3A). Similarly, the Tyr(61)B10Ala mutation does

neither impair the Phe(93)E11 ligand-sensing mechanism de-

scribed above, nor ligand stabilization provided by Trp(60)B9

(Figure 3B).

Figure 5. The haem distal site of MaPgb*(III) in complex with azide, azide and Xenon, and imidazole. Residues lining the haem distal
pocket are indicated and shown in stick representation (green) for the MaPgb*(III)-azide structure, and (orange) for the MaPgb*(III)-imidazole
structure. (A) Superimposition of MaPgb*(III)-cyanide (yellow) onto the MaPgb*(III)-azide structure. (B) Xenon binding inside tunne1. The Xe atom is
shown as a black sphere with the corresponding electron density (2Fo-Fc map contoured at 1s) shown as grey mesh. (C) Superimposition of
MaPgb*(III)-cyanide (yellow) onto the MaPgb*(III)-imidazole structure (the imidazole molecule is shown in two alternate binding modes). In all panels,
the proximal His(120)F8 residue is also shown, with the H-bonds to the haem-Fe(III)-bound ligands indicated by dashed lines. All panels are shown
from side and top views.
doi:10.1371/journal.pone.0066144.g005
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Cyanide dissociation rate constants, measured in solution for

MaPgb*(III) and its mutants (Table 1), are in good agreement with

the ligand-stabilization events and mechanisms described by the

crystal structures. The only exception is the Phe(93)E11Leu

mutant, where two H-bonding interactions are expected from the

dissociation kinetics measurements, while only one, to the Ne2
atom of Trp(60)B9, is found in the crystal structure of the cyanide

derivative. However, inspection of the crystal structure of the

cyanide-bound Phe(93)E11Leu mutant suggests that Tyr(61)B10

OH group is oriented properly towards the haem-Fe(III)-ligand to

allow H-bonding with minimal structural/dynamical arrangement

of the haem distal site cavity.

Furthermore, the presence of more than one residue, namely

Trp(60)B9 and Tyr(61)B10, involved in H-bond interactions with

the haem-bound ligand, and the conformational flexibility of the

distal site residues which can modulate the H-bond strength, can

explain the observed heterogeneity in resonance Raman stretching

bands and in the CO dissociation kinetics (our unpublished

results). Overall, the comparison of MaPgb*(III) in its liganded and

unliganded states identifies two distinct haem distal site arrange-

ments: (i) a closed distal site conformation, whereby residue

Trp(60)B9 points towards the haem-Fe(III)-bound ligand and shuts

tunnel 1; and (ii) an open distal site conformation, where the

Trp(60)B9 side chain points away from the distal pocket, thus

keeping tunnel 1 in its open state. In addition, it should be noted

that for a quite different ligand, such as nicotinamide, the ligation

state of the protein does not alter either the general architecture of

the haem distal site or the open/closed state of tunnel 1. Thus, the

reactivity of MaPgb might also be regulated by the nature of the

haem ligand.

A third important structural aspect, here highlighted, is the

relocation of the Trp(60)B9 side chain into the haem distal cavity

upon ligand binding, marking the transition of tunnel 1 from the

open to the closed state. The structures of MaPgb*(III)-azide and -

cyanide in complex with Xenon clearly show that the Trp(60)B9

side chain efficiently seals the distal site relative to the tunnel 1

entrance, creating a hydrophobic cavity where the Xenon atom

can be trapped (Figure 5B and Figure S4). On the contrary, no

Xenon atoms bind at tunnel 2, due to its short length and

hydrophilic nature. Thus, the accessibility to the haem cavity, at

least through tunnel 1, is linked to and possibly modulated by the

ligation state of the protein through a complex mechanism of side

chain rearrangements which involve three conserved residues at

the key topological positions B9, B10, and E11. In fact, the nature

of the ligand seems to drive the distal site architecture and the

open/closed tunnel 1 state through conformational relocation of

the Phe(93)E11 side chain, as shown by the different positioning of

residue Phe(93)E11 in the MaPgb*(III)-nicotinamide complex

relative to the cyanide-, azide-, and imidazole-bound adducts

(Figure 6). Thus, Pgbs maintain the ligand stabilization mechanism

based on residue B10, as most invertebrate globins [23], but they

evolved an E7-independent ligand-to-haem path for additional

ligand stabilization/recognition, based on residues at the B9 and

E11 topological positions, which appear to behave in a sequential

‘‘induced-fit’’ fashion.

The insertion of Trp(60)B9 into the haem distal cavity upon

ligand binding was found to be coupled to a change in the

backbone structure of the neighbouring 149–154 region with signs

of alternate conformations for residues Ile(149)G11, Thr(150)G12,

Thr(152)G14, and Met(153)G15 (Figure 2A). The backbone

structures of the 149–154 region in cyanide-, azide-, and

imidazole-bound MaPgb*(III) clearly cluster together, in contrast

with those found for ligand-free and nicotinamide-bound MaPg-

b*(III) as well as MaPgb*(II)-O2 (Figure 2B). The 149–154 region

is located in the second half of the G-helix, at the subunit interface

of the MaPgb* homodimer. The association interface is contrib-

uted mostly by residues belonging to the G- and H-helices, which

build an intermolecular four-helix bundle. However, within the

bundle, tight packing involves specifically the N-terminal half of

the G-helices and the C-terminal half of the H-helices, while the

remaining interface regions are mostly solvent exposed and

marginally involved in direct subunit-subunit interactions

(Figure 2B). Thus, the 149–154 region can afford some flexibility

to compensate the structural changes transmitted from reshaping

of the haem distal site upon ligand binding. On the other hand, the

149–154 region might be able to influence/modulate the

architecture and ligand binding properties of the haem distal

cavity through association of an (unknown) effector molecule or

partner protein. Whether such regulation might occur in an

allosteric fashion is a further possibility, although (negative)

cooperativity has been reported for O2 but not for CO binding

[6,30].

The conformational adaptability shown here by MaPgb* haem

distal site residues, together with the size and hydrophobicity of the

haem distal cavity, suggest that physiological ligands other than

‘‘classical’’ diatomic molecules can target the haem-protein.

Furthermore, the plasticity of the haem distal site residues,

resulting in coupling between ligand sensing and haem distal site

accessibility through a double tunnel system, strongly supports the

idea of a dual path ligand exchange mechanism (typical of some

enzymes), whose functional implications, for a yet undiscovered

role in M. acetivorans CO metabolism, will be object of future

investigations.

Supporting Information

Figure S1 The MaPgb* fold. (A) The figure highlights the

secondary structure elements (gray; labels A through H). The main

protein structural elements that are specific of MaPgb* (relative to

3-on-3 Hbs) are displayed in orange (Z-helix) and in green (N-

terminal, CE, and FG loops). Notice the N-terminal region, the

CE and FG loops that bury the haem (red) and prevent access of

small ligands to the heme distal cavity, which is connected to the

solvent region by tunnel 1 (blue mesh) and tunnel 2 (magenta

mesh). (B) Close up of the MaPgb* tunnel system. The program

Surfnet [31] was used to explore the protein matrix tunnels with a

1.4 Å radius probe. Residues Trp(60)B9 and Tyr(61)B10 at the

entrance of tunnel 1 and tunnel 2, respectively, are shown in stick

representation (yellow) and labelled.

(TIF)

Figure S2 Electron density at the haem distal site of
MaPgb*. Stick representation of the distal site of (A) MaPgb*(III)-

cyanide (yellow), (B) MaPgb*(III)-azide (green), (C) MaPgb*(III)-

imidazole (orange), and (D) MaPgb*(III)-nicotinamide (brown).

The electron density (2FO-FC map contoured at 1s: cyan mesh) is

Figure 6. The haem distal site of MaPgb*(III)-nicotinamide. Residues lining the haem distal pocket are indicated and shown in stick
representation (brown). Superimposition of MaPgb*(III)-nicotinamide onto (A) ligand-free MaPgb*(III) (magenta), (B) MaPgb*(III)-cyanide (yellow), and
(C) MaPgb*(II)-O2 (cyan) structures. All panels are shown from side and top views. The proximal His(120)F8 residue is also shown. Rotation of the
Phe(93)E11 side chain upon ligand binding is indicated in each top view panel. H-bonds to the haem-Fe(III)-bound ligands are shown as dashed lines.
doi:10.1371/journal.pone.0066144.g006

Ligand Binding Properties of Protoglobin

PLOS ONE | www.plosone.org 13 June 2013 | Volume 8 | Issue 6 | e66144



shown around Trp(60)B9 and Tyr(61)B10, the haem, and the

haem-bound ligands.

(TIF)

Figure S3 Reductive nitrosylation of the MaPgb*(III)-

cyanide complex, at pH 9.2 and 20.06C. (A) Time courses of

MaPgb*(III)-cyanide reductive nitrosylation at 410 nm and

425 nm (diamonds and squares, respectively). The analysis of

data obtained at 410 nm (diamonds) according to Eqn. (1) allowed

the determination of koff = (5.960.2)61025 s21. The analysis of

data obtained at 425 nm (squares) according to Eqn. (2) allowed

the determination of koff = (5.860.2)61025 s21. (B) Difference

static and kinetic absorbance spectra of MaPgb*(III)-cyanide minus

MaPgb*(II)-NO (dotted line and circles, respectively). The final

concentration of MaPgb*(III) was 2.461026 M. The final cyanide

concentration was ,2.061025 M. The final NO concentration

was between 1.061024 M and 1.061023 M.

(TIF)

Figure S4 Xenon-binding site in MaPgb*(III)-azide and
-cyanide complexes. Superimposition of MaPgb*(III)-cyanide

(pink) onto the MaPgb*(III)-azide structure (green). The bound-Xe

atom is shown as a sphere in black (MaPgb*(III)-azide) and in grey

(MaPgb*(III)-cyanide). Residues lining the haem distal pocket and

the Xenon-binding cavity are indicated and shown in stick

representation. The proximal His(120)F8 residue is also shown. H-

bonds are indicated by dashed lines.

(TIF)

Table S1 Data collection and refinement statistics for
various derivative of ferric MaPgb*.

(DOC)

Table S2 Data collection and refinement statistics for
cyanide derivative of ferric MaPgb* mutants.

(DOC)
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