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Bacterial resistance to the third-generation cephalosporin antibiotics has become a
major concern for public health. This study was aimed to determine the characteristics
and distribution of blaCTX ,−M−14 which encodes an extended-spectrum β-lactamase,
in Escherichia coli isolated from Guangdong Province, China. A total of 979 E. coli
isolates isolated from healthy or diseased food-producing animals including swine and
avian were examined for blaCTX M 14 and then the blaCTX M 14 positive isolates were− − − − −
detected by other resistance determinants [extended-spectrum β-lactamase genes,
plasmid-mediated quinolone resistance, rmtB, and floR] and analyzed by phylogenetic
grouping analysis, PCR-based plasmid replicon typing, multilocus sequence typing, and
plasmid analysis. The genetic environments of blaCTX−M−14 were also determined by
PCR. The results showed that fourteen CTX-M-14-producing E. coli were identified,
belonging to groups A (7/14), B1 (4/14), and D (3/14). The most predominant resistance
gene was blaTEM (n = 8), followed by floR (n = 7), oqxA (n = 3), aac(6′)-1b-cr (n = 2),
and rmtB (n = 1). Plasmids carrying blaCTX M 14 were classified to IncK, IncHI2, IncHI1,− −
IncN, IncFIB, IncF or IncI1, ranged from about 30 to 200 kb, and with insertion sequence
of ISEcp1, IS26, or ORF513 located upstream and IS903 downstream of blaCTX−M−14.
The result of multilocus sequence typing showed that 14 isolates had 11 STs, and the
11 STs belonged to five groups. Many of the identified sequence types are reported
to be common in E. coli isolates associated with extraintestinal infections in humans,
suggesting possible transmission of blaCTX M 14 between animals and humans. The− −
difference in the flanking sequences of blaCTX−M−14 between the 2009 isolates and the
early ones suggests that the resistance gene context continues to evolve in E. coli of
food producing animals.

Keywords: Escherichia coli, CTX-M-14, plasmids, MLST, cephalosporin

INTRODUCTION

Enterobacteria with resistance to third and fourth generation cephalosporin antibiotics, especially
Escherichia coli bearing extended-spectrum β-lactamase genes (ESBLs), have been detected in
a wide range of food-producing animals. In 1989, CTX-M-type β-lactamases, whose carriers
are highly resistant to cefotaxime but sometimes susceptible to ceftazidime, were considered
as a novel group of class-A β-lactamases with extended-spectrum properties. This family of
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enzymes are well inhibited by clavulanate and tazobactam
(Tzouvelekis et al., 2000). Since then, the CTX-M family of
ESBLs has become prominent and is common in E. coli with
many infections occurring in human patients in the community
(Livermore and Hawkey, 2005). In addition, the occurrence
and prevalence of CTX-M in food-producing animals were also
reported frequently (Hammerum et al., 2012; Reich et al., 2013).
Rapid dissemination of blaCTX−M genes involved plasmids and
mobile genetic elements as well as epidemic spread of particular
strains (Eckert et al., 2006). ISEcp1-like insertion sequences
(ISs) have repeatedly been observed upstream of open reading
frames (ORFs) encoding members belonging to the CTX-M-1,
CTX-M-2, and CTX-M-9 clusters. ISs such as IS10, IS26, and
IS903 have also been observed flanking the ORF region of
blaCTX−M genes (Arduino et al., 2002).

Of the CTX-M enzymes, the CTX-M-1 and CTX-M-9 clusters
have been the most frequently reported worldwide, and although
in some places CTX-M-2 group remains endemic, the emergence
of new CTX-M groups (mainly CTX-M-1 and CTX-M-9) has
been documented (D’Andrea et al., 2013). In addition, the CTX-
M-14 enzyme is, besides CTX-M-9, the most widespread enzyme
of the CTX-M-9 group (Valverde et al., 2009), especially in China
(Li et al., 2010; Zheng et al., 2012). CTX-M-14 was first isolated
from hospital in China in 1997 (Chanawong et al., 2002). It is a
member of the CTX-M-9 cluster and differs from blaCTX−M−9
only by the substitution Ala 231−→Val (Ma et al., 2002), and it
has spread almost all over the world (Canton and Coque, 2006).
Reports showed that ISEcp1, IS26, ORF513, IS903, and ORF1005
located upstream and downstream of blaCTX−M−14, respectively,
which might have contributed to its widespread transmission
(Izumiya et al., 2005; Eckert et al., 2006; Bae et al., 2007; Navarro
et al., 2007). Moreover, most of the literature indicates that novel
CTX-M enzyme genes were often derived from or recombinated
with CTX-M-14-like β-lactamase (Djamdjian et al., 2011; He
et al., 2013; Tian et al., 2014), indicating that blaCTX−M genes
evolve by homologous recombination between members of
different groups, especially with blaCTX−M−14 (Tian et al., 2014).

Due to the importance of blaCTX−M−14 in antimicrobial
resistance and its limited information in food producing animals,
we examined the characteristics and distribution of blaCTX−M−14
in E. coli of food-producing animals in China in this study.

MATERIALS AND METHODS

Bacterial Isolates and CTX-M-14
Detection
From 2002 to 2009, a total of 979 E. coli isolates, including 455
isolates in 2002, 119 isolates in 2003–2004, 76 isolates in 2007 and
329 isolates in 2009 were isolated from healthy or diseased food-
producing animals from Guangdong Province in China. Samples
were collected from rectal swabs of healthy animals, or the liver,
heart, lung, or muscle samples of diseased or dead animals.
Samples were seeded onMacConkey agar at 37◦C, and one colony
with typical E. coli morphology was selected from each sample.
Each isolate was from an individual animal. The bacterial strains
were identified by classical biochemical methods and confirmed

using the API-20E system (bioMérieux). All confirmed E. coli
isolates were stored at−80◦C in the Luria–Bertani broth medium
containing 30% glycerol.

Cefotaxime-resistant E. coli isolates were selected on
MacConkey agar containing cefotaxime at 2 μg/mL and then
the blaCTX−M−14 gene was detected by PCR analysis with the
primer described previously (Yu et al., 2007), the primers and
PCR programs were listed in Supplementary Table S1. PCR
products were directly sequenced, and then made comparison in
the GenBank nucleotide database.

Antimicrobial Susceptibility Testing and
Genes Characterization
The minimum inhibitory concentrations (MICs) of quinolones
(nalidixic acid), fluoroquinolones (ciprofloxacin, enrofloxacin,
and levofloxacin), third-generation cephalosporins (ceftiofur,
cefotaxime, and ceftazidime) and other antimicrobials
(olaquindox, ampicillin, trimethoprim-sulfamethoxazole,
tetracycline, gentamicin, amikacin, chloramphenicol, and
florfenicol) in blaCTX−M−14 positive isolates were determined
by the agar dilution method following the CLSI guidelines.
The breakpoints for individual antimicrobial were used as
recommended by the CLSI (M100-S19), CLSI (Vet01-A4/Vet01-
S2), and DANMAP 98 (olaquindox). E. coliATCC25922was used
as a quality control strain. All blaCTX−M−14 positive isolates were
tested for blaCTX−M−1G, blaCTX−M−2G, blaCTX−M−8G, blaTEM,

and blaSHV , blaOXA and blaCMY−2 by PCR and then confirmed
by sequencing. At the same time, plasmid-mediated quinolone
resistance (PMQR) genes (qnrA, qnrB, qnrC, qnrD, qnrS, qepA,
aac(6′)-Ib-cr, and oqxA), rmtB and floR were also detected. The
PCR programs and primer sequences were described previously
(Yu et al., 2007; Yue et al., 2008; Veldman et al., 2011; Li et al.,
2013; Liu et al., 2013, 2014). The primers and PCR programs
were listed in Supplementary Table S1. All PCR products were
directly sequenced, and the results were compared with those in
the GenBank nucleotide database.

Clonal Relatedness
A multiplex PCR methodology was employed to assign isolates
harboring blaCTX−M−14 to one of the four phylogenetic groups
(A, B1, B2, or D). Primers and methodology have been
described previously (Doumith et al., 2012). For isolates
carrying blaCTX−M−14, multilocus sequence typing (MLST) was
performed using seven conserved housekeeping genes (adk,
purA, recA, mdh, icd, gyrB, and fumC; Wirth et al., 2006). The
internal fragments of all loci were sequenced. Allelic profiles and
sequence type (ST) determinations were performed according
to the E. coli MLST website1 scheme. MLST data were analyzed
by using the eBURST program (version 32), which assesses the
relationship within clonal complexes. The set minimum group
allele number was five. The UPGMAmethod of START program
(version 2) was used to construct phylogenetic grouping tree. The
genetic distance is 0.1.

1http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
2http://eburst.mlst.net
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TABLE 1 | Characteristics of the 14 Escherichia coli isolates carrying blaCTX−M−14.

Isolates Origin Year Drug-resistant spectrum Group Resistant
genes

MICs (µg/ml) Replicon
typing

Genetic
environment

CTF CTX CTR

ZLP20 Pig 2002 AMP/CTX/CTR/CTF/KAN/
DOX/TET/NAL/ENR/CIP/FLF

A blaCTX−M−14a,
oqxA, floR

64 64 64 F, Y

ZLP20-D AMP/ CTR/CTF/CTX blaCTX−M−14a 32 64 64 F ISEcp1,
IS903

ZLP19 Pig 2002 AMP/CTX/CTR/CTF/KAN/DOX/
TET/NAL/ENR/CIP/FLF

A blaCTX−M−14a,
floR

64 64 128 F, Y

ZLP19-D AMP/ CTX /CTR/CTF blaCTX−M−14a 32 64 64 F ISEcp1,
IS903

ZLP21 Pig 2002 AMP/CTX/CTR/CTF/KAN/GEN/
DOX/TET/NAL/ENR/CIP/FLF

A blaCTX−M−14a 32 32 64 HI1, N

ZLP21-D AMP/ CTX /CTR/CTF blaCTX−M−14a 32 32 32 HI1, N ISEcp1,
IS903

ZLP25 Pig 2002 AMP/CTX/CTR/KAN/DOX/TET/
NAL/ENR/CIP/FLF

A blaCTX−M−14a,
aac(6’)-1b-cr

64 32 64 HI1, N

ZLP25-D AMP/ CTX /CTR/CTF/TET blaCTX−M−14a 16 32 16 HI1, N ISEcp1,
IS903

HN428 Duck 2005 AMP/CTR/CXT/CTF/KAN/SM/
DOX/TET/NAL/ENR/CIP/FLF

D blaCTX−M−14a,
blaTEM−1

64 32 64 FIB, FIC, I1,
F

HN428-D AMP/ CTX /CTR /TET blaCTX−M−14a,
blaTEM−1

4 16 8 FIB, F ISEcp1,
IS903

a88 Duck 2007 AMP/CTR/CTF/KAN/SM/TET/
NAL/ENR/CIP/ FLF

D blaCTX−M−14a,

blaTEM−1

64 32 64 F, Y, K

a88-D AMP/ CTX /CTR blaCTX−M−14a 4 16 16 F ISEcp1,
IS903

14 Duck 2009 AMP/CTX/CTR/CXT/KAN/GEN/DOX
/TET/NAL/ENR/CIP/FLF

B1 blaCTX−M−14a,

blaCTX−M−79

128 256 256 I1, K

14-D AMP/ CTX /CTR/CTF/TET blaCTX−M−14a 128 256 128 K ISEcp1,
IS903

16 Duck 2009 AMP/CTF/CTX/CTR/KAN/GEN/DOX/
TET/NAL/ENR/CHL/CIP/FLF

B1 blaCTX−M−14a,

blaTEM−135,
oqxA, floR

64 128 128 HI2, FIB, K

16-D AMP/CTF/CTX/CTR/CHL/CIP/FLF blaCTX−M−14a 64 128 32 K ORF513,
IS903

40 Duck 2009 AMP/CTX/CTR/KAN/GEN/DOX/
TET/NAL/ENR/CIP/FLF

A blaCTX−M−14a,
blaTEM−1,
oqxA, floR

16 64 64 HI2, FIA, F,
FIB

40-D AMP/CTF/CTX/CTR/GEN/FLF blaCTX−M−14a,
floR

16 32 8 HI2, F ISEcp1,
IS903

103 Goose 2009 AMP/CTX/CTR/CXT/CTF/KAN/GEN/
DOX/TET/NAL/ENR/CIP/FLF

A blaCTX−M−14b,

blaTEM−1,

aac(6’)-1b-cr,
rmtB

64 64 128 I1, FIB, F, K

103-D AMP/CTF/CTX/CTR/CHL/CIP/FLF blaCTX−M−14b,
rmtB

64 64 64 I1 ISEcp1,
ORF513,
IS903

132 Goose 2009 AMP/CTX/CTF/CTR/KAN/DOX/
TET/NAL/ENR/CIP/FLF

B1 blaCTX−M−14a,
oqxA, floR

64 256 256 P, F, K

132-D AMP/CTX/CTF/CTR blaCTX−M−14a 64 128 32 F IS903

156 Pig 2009 AMP/CTF/CTX/CTR/KAN/GEN/
DOX/TET/NAL/ENR/CIP/FLF

D blaCTX−M−14a,
blaTEM−1, floR

128 64 128 FIA,P, F, K

156-D AMP/CTF/CTX/CTR/KAN/GEN/DOX/
TET/NAL/ENR/CIP/FLF

blaCTX−M−14a,
blaTEM−1, floR

128 256 128 K ISEcp1,IS903

173 Pig 2009 AMP/CTX/CTF/CTR/CTF/KAN/GEN/
DOX/TET/NAL/ENR/CIP/FLF

A blaCTX−M−14a,
blaTEM−1, floR

64 64 64 FIB, Y, F, K

173-D AMP/CTX/CTF/CTR blaCTX−M−14a,
floR

64 64 64 F IS26, ISEcp1,
IS903

(Continued)
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TABLE 1 | Continued

Isolates Origin Year Drug-resistant spectrum Group Resistant
genes

MICs (µg/ml) Replicon
typing

Genetic
environment

CTF CTX CTR

187 Pig 2009 AMP/CTX/CTF/CTR/KAN/GEN/DOX/
TET/NAL/ENR/CIP/FLF

B1 blaCTX−M−14a,
blaTEM−1b

32 64 64 FIB, I1, Y, F,
K

187-D AMP/CTX/CTF/CTR/KAN/GEN/CIP blaCTX−M−14a 16 64 16 I1 IS903

D, corresponding conjugants or transformants; AMP, Ampicillin; CTX, Cefotaxime; CTF, Ceftiofur; CXT, Cefoxitin; CTR, Ceftriaxone; CTZ, Ceftazidime; STR, Streptomycin;
GEN, Gentamycin; KAN, Kanamycin; FLF, Florfenicol; TET, Tetracycline; NAL, Nalidixic acid; CIP, Ciprofloxacin; ENR, Enrofloxacin; DOX, Doxycycline.

Transfer of the blaCTX−M−14 Gene and
Plasmid Analysis
Transferability of the identified blaCTX−M−14 genes was
determined by conjugation using streptomycin-resistant E. coli
C600 as the recipient strain (Zheng et al., 2012). Transconjugants
were selected on MacConkey agar plates supplemented with
cefotaxime (2 μg/mL) and streptomycin (2000 μg/mL). For
those isolates that failed in conjugation experiments, plasmid
DNA was extracted by QIAGENPrep Plasmid Midi Kit
(Qiagen, Germany), and electroporated into electrocompetent
E. coli DH5α (TaKaRa Biotechnology, Dalian, China) using a
Gene Pulser apparatus (Biorad Laboratories). Transformants
were selected on MacConkey agar plates supplemented with
cefotaxime (2 μg/mL). The presence of blaCTX−M−14 was
confirmed by PCR. Plasmids were preliminarily classified
according to their incompatibility group by using the PCR-based
replicon typing (PBRT) scheme described previously (Carattoli
et al., 2005). PFGE with S1 nuclease (TakaRa Biotechnology,
Dalian, China) digestion of whole genomic DNA was performed
for all 14 transconjugants and transformants as described
previously (Barton et al., 1995). After Southern transfer to a
Hybond-N+ membrane (GE Healthcare, Little Chalfont, UK),
the plasmids were probed with the blaCTX−M−9G gene (DIG
High Prime DNA Labeling and Detection Starter Kit I, Roche
Applied Science, Mannheim, Germany).

Genetic Environment of blaCTX−M−14
Detection of the ISs including ISEcp1, IS26, ORF513, IS903,
and ORF1005, which are located upstream or downstream of
blaCTX−M−14, were performed by PCR according to the methods
in previous reports (Izumiya et al., 2005; Eckert et al., 2006; Bae
et al., 2007; Navarro et al., 2007; Barlow et al., 2008).

RESULTS

Antimicrobial Susceptibility and
Detection of Resistance Genes
Among the 979 E. coli isolates surveyed, fourteen isolates
harbored blaCTX−M−14, among which four were isolated from
swine in 2002, two from duck in 2005 and 2007, and
the other eight were isolated from swine and duck in
2009. All the 14 blaCTX−M−14-positive isolates were multidrug
resistant (resistant to three or more classes of antimicrobials)
and all of them were resistant to ampicillin, cefotaxime,

ceftiofur, ceftriaxone, florfenicol, tetracycline, kanamycin, and
ciprofloxacin. In addition, the resistance of the blaCTX−M−14-
positive isolates to gentamicin and doxycycline were 64 and 86%,
respectively (Table 1). Among the fourteen isolates harboring
blaCTX−M−14, only one isolate was confirmed as blaCTX−M−14b-
carrying strain, the other thirteen were blaCTX−M−14a. In
addition, the fourteen isolates were also subjected to the detection
of ESBLs, PMQR genes and other resistance genes (rmtB and
floR). The most predominant gene was blaTEM (n = 8), including
six blaTEM−1, one blaTEM−1b, and one blaTEM−135, followed by
floR (n= 7), oqxA (n= 3), aac(6′)-1b-cr (n= 2), and rmtB (n= 1)
(Table 1).

Clonal Relatedness and Transfer of
blaCTX−M−14
Phylogenetic group analysis showed that group A (7/14) was
dominant amongst the isolates that produced the CTX-M-14
enzymes, followed by group B1 (4/14) and group D (3/14).
None of them belonged to group B2 (Table 1). The result of
MLST showed that the 14 isolates have 11 ST, among which
ST2929 and ST2962 were newly discovered (Supplementary
Table S2). The MLST results belonged to five groups. ST10,
ST206, ST2929, ST2930, and ST2962 belonged to Group 1
(Figure 1A), while ST155, ST224, and ST602 were classified into
Group 2 (Figure 1B). Furthermore, ST648, ST359, and ST405
belonged to Group14, Group16, and Group17, respectively.
Phylogenetic grouping tree suggested that ST10, ST2929, ST206,
and ST2930 were close in one branch, while ST224, ST602,
ST155, ST359, and ST2962 were clustered in another branch.
ST648 and ST405 were separated from others (Figure 2). Eight
transconjugants and six transformants were successfully obtained
by conjugation/transformation experiments. Co-transfer of
blaTEM−1 or rmtB or floR genes were also detected. The
blaCTX−M−14-positive strain isolated in 2005 co-transferred with
blaTEM−1. Among the 2009 isolates, one had co-transfer of rmtB,
two had co-transfer of floR, and another one had co-transfer
of both blaTEM−1 and rmtB. MICs of cefotaxime, ceftiofur, and
ceftriaxone increased two–fourfold compared with the recipients.

Plasmids and Genetic Environment of
blaCTX−M−14
Plasmids containing blaCTX−M−14 were predominately belonging
to IncF (n = 5), IncK (n = 3), and lncI1 (n = 2). Additionally,
2 of the 14 were positive for two replicons (IncHI1 and
IncN), another one was positive for IncFIB and IncF, and the
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FIGURE 1 | (A) eBRUST results of Group 1. The red boxes indicate that the corresponding five sequence types (STs ; ST206, ST10, ST2929, ST2930, and ST2962)
we detected in Group 1. (B) eBRUST results of Group 2. The red boxes indicate that the corresponding three STs (ST155, ST224, and ST602) we detected in
Group 2.

remaining one belonged to lncHI2 and lncF. The size of the
plasmids ranged from about 30 to 200 kb (Supplementary Figure
S2). ISEcp1 and IS903 were found upstream and downstream,
respectively, of the blaCTX−M−14-positive isolates isolated from
2002 to 2007(Supplementary Figure S1). Among the eight
positive isolates isolated in 2009, four were detected with ISEcp1
and IS903 upstream and downstream, respectively, one harbored
ISEcp1 upstream, and the other three carried IS903 downstream.
In addition, IS26 was confirmed in one strain of 2009, and
ORF513 positive isolates were also found in this year. None of
the isolates harbored ORF1005.

DISCUSSION

CTX-M-type ESBLs, with 150 variants, have recently been the
most widespread ESBLs in E. coli. CTX-M variants can be divided
into six clusters: the CTX-M-1, −2, −8, −9, −25, and KLUC
groups. Additionally, the most frequently reported groups are
CTX-M-1 and CTX-M-9, and CTX-M-14 is the most variant
within the latter group (D’Andrea et al., 2013).

In this study, phylogenetic group analysis showed that group
A (7/14) was dominant amongst the isolates that produced the
CTX-M-14 enzymes, followed by group B1 (4/14) and group
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FIGURE 2 | Evolutionary branches of 14 blaCTX−M−14-positive Escherichia Coli.

D (3/14), which was consistent with the reports in Portugal,
Spain, and China (Valverde et al., 2009; Zheng et al., 2012).
Previous studies showed that most E. coli strains responsible
for urinary tract infections and other extraintestinal infections
in humans belong to group B2 or, to a lesser extent, to group
D (Johnson and Stell, 2000; Yang et al., 2012). Investigation of
urinary E. coli isolates from 20 widely dispersed tertiary Chinese
hospitals revealed although phylogroups D and B2 were most
frequently observed, phylogroups A and B1 were also found in
blaCTX−M−14-producing E. coli isolates (Cao et al., 2011).

According to recent reports, replicon types of blaCTX−M−14-
positive plasmids belonged to lncF, lncFIB, lncI1, lncA/C, lncN,
lncFII, and lncI1-Iγ (Millan et al., 2011; Song et al., 2011;
Tamang et al., 2011). In this study, blaCTX−M−14-carrying
plasmids predominately belonged to IncF and IncK. The spread
of blaCTX−M−14 in E. coli in Spain is reported to be mediated
by IncK plasmids (Valverde et al., 2009), while in Korea and
France blaCTX−M−14 is mostly carried on IncF plasmids (Marcade
et al., 2009). IncF plasmids were found frequently to be associated
with CTX-M enzyme genes of E. coli (Matsumura et al., 2013;
Mnif et al., 2013). IncK plasmids may facilitate the ability of
E. coli to colonize the intestine and, consequently, enhance the
pathogenic profile of specific clones or clonal groups (Oshima
et al., 2008). Besides, reports showed that the acquisition of
IncK plasmids containing blaCTX−M−14 by group A and B1
E. coli clones could have enhanced their ability to colonize the
urinary tract in patients exposed to antibiotics (Valverde et al.,
2009). IncHI1, IncHI2 and IncN plasmids were rarely reported in
blaCTX−M−14-producing E. coli.

In this study, 11 different STs (including two new STs)
were detected among 14 blaCTX−M−14-producing E. coli isolates.
The findings indicate that no ST predominates in CTX-M-14-
producing E. coli from food-producing animals of Guangdong.
ST10 and ST648 were common in E. coli isolated from human
and animals (Shabana et al., 2013; Maluta et al., 2014; Xia
et al., 2014; Jamborova et al., 2015). ST155 was once found
in human, duck, and bovine (Ben Sallem et al., 2012; Sváb
et al., 2013; Maluta et al., 2014). ST359 was once reported in
human and duck (Maluta et al., 2014). ST405, a global clonal
group associated with the global increase of ESBLs, was mainly
reported in human origin as well as once reported in rooks
and food origins (Jouini et al., 2013; Matsumura et al., 2014;

Jamborova et al., 2015). ST602 in E. coli of cats was once
reported (Nebbia et al., 2014). ST224 was detected in E. coli of
human, dogs and buffalo origin (Mshana et al., 2011; Dahmen
et al., 2013; Aizawa et al., 2014), while ST224 was found in
duck origin in 2009 in this study3. Moreover, recent reports
revealed that E. coli of human origin, especially E. coli-producing
ESBLs associated with urinary tract infection, mainly belonged
to the ST10 complex. In Portugal, Spain, and Brazil, ST155 and
ST359 were found rising in patients suffering from urinary tract
infection (Canton and Coque, 2006). In this study, the STs we
have found were mainly reported in human, suggesting that
blaCTX−M−14 could transfer between human and food-producing
animals.

Insertion sequences played an important role in the transfer of
blaCTX−M−14. In this study, ISEcp1 was detected 42 nucleotides
upstream of both blaCTX−M−14a and blaCTX−M−14b. It is of
interest to note that an identical 42-bp region has also been
detected upstream of different genes encoding ESBLs of the
CTX-M-9 cluster, such as CTX-M-9, −14, −16, and −17
(Barlow et al., 2008), which means this subtype may have
the same origin as blaCTX−M−14. From 2002 to 2007, the
genetic environment of blaCTX−M−14-positive isolates was the
same, with ISEcp1 and IS903 found upstream and downstream,
respectively, while blaCTX−M−14-positive isolates in 2009 showed
diversity of the genetic platform. IS26 and ORF513 were both
found in 2009. It is important to note that ORF513 located
upstream of blaCTX−M−14a in strain 16-D was the same as
blaCTX−M−14b of strain 103-D. This showed that resistant genes
of incompatible plasmids have the possibility to transfer and then
recombine.

Extended-spectrum β-lactamase genes genes were often
found to be strongly associated with PMQR or 16S rRNA
methyltransferase (16S-RMTase) genes, and some were often
found to be located on the same plasmid, both in human
and animals (Carattoli, 2009; Liu et al., 2013). In this study,
blaCTX−M−14 of the isolates isolated from 2002 to 2007 tended
to conjugate alone, while co-transfer with blaTEM−1, rmtB, or
floR on the same plasmid were common in the 2009 isolates.
Co-existence or co-spread of ESBLs with PMQR, rmtB or
floR suggests that the resistant isolates could be selected by

3http://mlst.ucc.ie/mlst/dbs/Ecoli/GetTableInfohtml
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different classes of antibiotics. The fourteen isolates carrying
blaCTX−M−14 were found to be multidrug resistant and showed
resistance to more than two non-β-lactam antimicrobial
agents, including kanamycin, tetracycline, doxycycline, nalidixic
acid, ciprofloxacin, enrofloxacin, and florfenicol. Some of them
were also resistant to other cephalosporins, including ceftiofur,
cefoxitin, and ceftriaxone, but remained susceptible to
ceftazidime fortunately. In addition, although the blaCTX−M−14-
positive isolates showed resistance to kanamycin and
gentamycin, most of them (13/14) remain susceptible to
amikacin (data not shown), which indicated amikacin
might be effective for treating blaCTX−M−14-positive E. coli
infection.

CONCLUSION

The evolution of blaCTX−M−14 gradually became diversified in
food-producing animals of Guangdong, China, from 2002 to
2009. Findings from this study and previous publications by

others suggest that antibiotics, especially the third- and fourth-
generation cephalosporins, should be used more prudently in
food-producing animals.
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