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Although transdifferentiation of mesenchymal stem cells (MSCs) into neurons increases the possibility of therapeutic use of
MSCs for neurodevelopmental disorders, the use of MSCs has the limitation on differentiation efficiency to neuronal lineage and
lack of an easy method to monitor the transdifferentiation. In this study, using time-lapse live cell imaging, we assessed the
neuronal differentiation of MSCs induced by a small molecule “NHPDQC (N-hydroxy-2-oxo-3-(3-phenylprophyl)-1,2-
dihydroquinoxaline-6-carboxamide, C18H17N3O3).” Plasmid vector containing red fluorescence reporter genes under the control
of the tubulin α1 (Tα1) promoter (pTα1-DsRed2) traced the neuronal differentiation of MSCs. Two days after NHPDQC
treatment, MSCs showed neuron-like phenotype with neurite outgrowth and high expression of neuron-specific markers in
more than 95% cells. The fluorescence signals increased in the cytoplasm of pTα1-DsRed2-transfected MSCs after NHPDQC
treatment. In vitro monitoring of MSCs along the time courses showed progressive increase of fluorescence till 30 h after
treatment, corresponding with the increase in neurite length. We examined an efficient neuronal differentiation of MSCs by
NHPDQC alone and monitored the temporal changes of neuronal differentiation by neuron-specific fluorescence reporter along
time. This method would help further our understanding of the differentiation of MSCs to produce neurons by simple treatment
of small molecule.

1. Background

Mesenchymal stem cells (MSCs) are nonhematopoietic
stem cells in the bone marrow (BM), which are able to
differentiate into mesodermal lineage cells including osteo-
genic, chondrogenic, adipogenic, and other mesenchymal
lineage cells [1–4]. MSCs may be the best candidate for
stem cell-based replacement therapy because they can be
easily collected from humans and have relatively low
immunogenicity [5–7].

Evidence for therapeutic effects of MSCs have accumu-
lated in recent studies, showing that MSCs exert immuno-
modulatory effects by reducing proinflammatory activity
and neuroprotection via secreting neurotrophic factors to
prevent further neuronal injury [8–12]. Intrastriatal trans-
plantation of GDNF- (glial cell line-derived neurotrophic
factor-) treated MSCs improved behavior in movement
impairment in a rat model of Parkinson’s disease [13]. Trans-
plantation of BM-derived MSCs through intraperitoneal
injection delayed disease onset and increased life span in an
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amyotrophic lateral sclerosis (ALS) mouse model [14].
However, all these therapeutic effects could have been due
to positive “nonneuronal effects” rather than direct neuro-
genesis from MSCs. Furthermore, the grafted MSCs might
continuously proliferate in vivo and make tumors. The
simple method described here efficiently makes MSCs
differentiate to neurons and, importantly, allows the
in vitro time-lapse live cell monitoring of this transdifferen-
tiation of MSCs.

Inourpreviouswork, a newsmallmolecule,N-hydroxy-2-
oxo-3-(3-phenylprophyl)-1,2-dihydroquinoxaline-6-carbox-
amide, named as “NHPDQC” was reported to induce
transdifferentiation of MSCs into neurons with high effi-
ciency (Figure 1). NHPDQC was proposed as potent neuro-
nal inducer in view of neuron-specific gene expression and
electrophysiological properties without cellular toxicity [15].

Neuron-specific promoter-regulated reporters have been
widely used to trace in vivo characteristics of individual
neurons [16–19]. Especially, this technique enables the
monitoring of stem cell differentiation and the screening
of small molecule candidate capable of inducing neuronal
differentiation [20]. One previous study showed that glial
fibrillary acidic protein (GFAP) promoter-driven fluores-
cence reporter was used to purify differentiated astrocytes
from embryonal stem cells and sort out the astrocyte cell
lineage from heterogeneous cell population [21]. Tubulin
α1 (Tα1) promoter has been used often as one of the pro-
moters which are specific for neurons [22–26], and Tα1
promoter-driven reporters can be used to trace early neu-
ronal differentiation of stem cells along with the increase
of Tα1 promoter activity in the early phase of neuronal
differentiation. As NHPDQC facilitates neuronal differenti-
ation of MSCs in a short period of time, Tα1 promoter-
driven reporter system is appropriate for visualizing the
effect of NHPDQC on MSCs over time.

In this study, we applied time-lapse live cell imaging to
track the in vitro changes of neuronal differentiation of MSCs
induced by NHPDQC using Tα1 promoter-driven fluores-
cence reporter gene.

2. Methods

2.1. Neuronal Transdifferentiation of MSCs Using NHPDQC.
MSCs were isolated from the femur bone marrow of male
Fisher rats. The cells were then maintained in Dulbecco’s
modified Eagle’s medium (DMEM; Invitrogen, Grand Island,
NY, USA), containing 10% of fetal bovine serum (FBS;

Invitrogen, Grand Island, NY, USA), along with 100U/ml
penicillin, 100μg/ml streptomycin, and 0.25μg/ml ampho-
tericin B (Gibco, Grand Island, NY, USA). The nonadherent
cells were removed after 48 h, and the adherent cells were
washed with phosphate-buffered saline (PBS) and then cul-
tured in fresh medium. The cultured cells were maintained
for 12 to 20 passages during the experiment. The MSCs were
seeded with the initial density of 4× 105 cells per 10 cm plate.
The MSCs were treated with NHPDQC at a concentration of
20μM and 0.1% dimethyl sulfoxide (DMSO: Sigma-Aldrich,
St. Louis, USA), followed by incubation in a standard incuba-
tor with 5% CO2 for 72 h. The MSCs in the control group
were treated with the same amount of DMSO and incubated
under the same conditions. The morphologies of the cells
were detected by phase contrast microscopy.

2.2. Reverse Transcription Polymerase Chain Reaction (RT-
PCR). The total RNA of the MSCs was isolated using TRIzol
reagent (Invitrogen, Grand Island, NY, USA) and was
reverse-transcribed using a first-strand cDNA synthesis kit
(Invitrogen, Grand Island, NY, USA). The sequences of
forward and reverse primers were described in Table 1.
The polymerase chain reaction (PCR) was performed for 30
cycles (denaturation at 94°C for 30 s, annealing at 56°C for
30 s, and extension at 72°C for 60 s).

2.3. Immunohistochemistry.Cells were fixed with 4% parafor-
maldehyde (PFA: Wako Pure Chemical, Osaka, Japan) for
20min at room temperature. After blocking with normal
serum, the cells were incubated in 0.1% Triton X-100 in
PBS containing primary mouse antibody Tuj1 against
brain-specific βIII-tubulin (1 : 200 dilution: TU-20, Cell Sig-
naling) and β-tubulin (1 : 50 dilution, D-10, Santa Cruz) for
24 h at 4°C. The cells were washed and incubated with Alexa
Fluor 488-conjugated goat anti-mouse secondary antibodies
(Invitrogen, Grand Island, NY, USA). Fluorescence images
were obtained with a Carl Zeiss LSM 510 microscope.

2.4. Transfection of Fluorescent Reporter Gene. A plasmid
construct with a Tα1 promoter driving red fluorescent
protein expression, pTα1-DsRed2, was kindly provided by
Dr. Yoon K (Sungkyunkwan University, Seoul, Korea) [25].
The plasmid was transfected into MSCs by incubating for
2 h with Lipofectamine Plus (Invitrogen, Carlsbad, CA),
diluted in OPTI-MEM medium (Gibco, Grand Island, NY).
Subsequently, the cells were washed with PBS and cultured
for 48 h in a serum-containing growth medium.

2.5. Confocal Microscopy and Live Cell Imaging. The cells
were seeded on sterile cover slips in 24-well plates and
cultured for 24h. They were then fixed using 4% PFA under
gentle shaking for 20min, followed by washing with PBS.
Transfer slides were prepared with a mounting solution
containing 4′,6-diamidino-2-phenylindole dihydrochloride
(DAPI) solution (Vector Laboratories Inc., Burlingame, CA,
USA). A confocal laser scanning microscope (LSM 510; Carl
Zeiss Inc., Thornwood, NY, USA) was used for fluorescence
imaging: detection was carried out at a wavelength of
405 nm for DAPI and at 573nm for DsRed2. The length of
neurite growth in MSCs with neuronal transdifferentiation
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Figure 1: The quinoxaline-based small molecule, NHPDQC
(N-hydroxy-2-oxo-3-(3-phenylprophyl)-1,2-dihydroquinoxaline-
6-carboxamide), was structurally modified to induce neuronal
differentiation of rat MSCs.
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was manually measured on at least 3 acquired images. The
cells were placed in an incubation chamber equipped with a
time-lapse imaging system (Olympus IX81 microscope).
Phase contrast and fluorescence images were obtained simul-
taneously, at 30min intervals, until 72 h following treatment.
Quantitative analysis for measuring neurite growth and fluo-
rescence signal in the DMSO-treated cells and the
NHPDQC-treated cells were performed by implemented
software (METAMORPH 7.5.6, MDS Analytical Technolo-
gies, PA, USA). And confocal data was used for quantitative
analysis using TissueFAXS2.0. After the samples were pre-
scanned, the region of interest was automatically measured.
Individual fluorescence signals from region of interest were
detected using TissueFAXS2.0. Cell analysis software, Tissue-
Quest, was used for analyzing total fluorescence intensity
versus DAPI in the whole cell population (TissueGnostics,
CA, USA).

2.6. Statistical Analysis. Continuous variables were tested
using Student’s t-test. Data were expressed as mean± stan-
dard deviation, and P values smaller than 0.05 were consid-
ered significant.

3. Results

3.1. Morphological Changes of MSCs with NHPDQC
Treatment. The NHPDQC was synthesized as 1-bromo-3-
phenylpropane underwent coupling reaction with dimethyl
oxalate, then ketoester cyclization with methyl 3,4-diami-
nobenzoate, and finally introduction of hydroxylamine
using tetrahydropyranyloxyamine and trifluoroacetic acid,
sequentially [15].

MSCs treated with DMSO alone as a control did not
show any morphological changes (Figure 2(a)). In contrast,
two days after incubation of MSCs with 20μM NHPDQC,
most MSCs showed apparent neuron-like morphological
changes, including a spindle-like retraction of the cell body
along with the elongated neurite outgrowth (Figure 2(b)).
On live cell microscope imaging, the NHPDQC-treated
MSCs started into neuron-like differentiation within 24h,

and almost all of MSCs (approximately >95%) formed
finally neuron-like phenotype at 48 h (Figure 2(b), lower
panel). Whereas the total number of cells did not increase
substantially in the NHPDQC-treated MSCs, the DMSO-
treated control MSCs increased gradually in cell number
until 48 h.

3.2. Evaluation of Neuronal-Specific Marker Expression in
MSCs Treated with NHPDQC. On RT-PCR analysis for
neuron-specific gene expression at 48h after NHPDQC
treatment, early postmitotic neuronal marker (neuron-spe-
cific βIII-tubulin), and other neuron-specific markers, NSE
expressed significantly higher in MSCs (Figure 3(a)). In
the MSCs treated with only DMSO as the control group,
βIII-tubulin expression was not detected, but NSE expres-
sion was detected scantly. Glial marker GFAP expression
was not detected in either the treatment or control group.
Expression of the presynaptic vesicle protein, synaptophysin,
increased slightly in the NHPDQC-treated MSCs within the
treatment group (Figure 3(a)). Immunofluorescence staining
revealed that the cell shape was changed in the NHPDQC-
treated cells using cytoskeleton protein. The NHPDQC
treatment also increased the βIII-tubulin expression in
the cytoplasm of the MSCs (Figure 3(b)). These results
demonstrated that NHPDQC triggered MSCs into early
neuronal lineage within 48 hr postinduction in terms of
immunophenotype with relevant markers.

3.3. In Vitro Transdifferentiation Imaging into Neurons in
Living MSCs. To monitor time-lapse changes of neuronal
differentiation of MSCs by NHPDQC in vitro, we introduced
a reporter plasmid DNA vector driven by the Tα1 promoter,
pTα1-DsRed2. Red fluorescence signals increased in the
cytoplasm of MSCs treated with NHPDQC within 48 h
(Figure 4(a)), compared with that of the DMSO-treated
control group, suggesting that the promoter activity of
the neuronal marker (Tα1) was enhanced by NHPDQC.
The neurite growth length measured on confocal micro-
scopic images had a mean value of 53.3± 12.4μm for the
NHPDQC-treated cells (Figure 4(b)). In contrast, in the

Table 1: Information on the primers used for reverse transcription polymerase chain reaction (RT-PCR).

Target genes Abbreviations Nucleotide sequences

Neuron-specific enolase NSE
Forward
Reverse

GTGGACCACATCAACAGCAC
TGAGCAATGTGGCGATGAG

Neuron-specific class III β-tubulin βIII-tubulin
Forward
Reverse

GGCCTCCTCTCACAAGTAT
GTCGCCCTCTGTTAGTGC

Glial fibrillary acidic protein GFAP
Forward
Reverse

TTTCTCCTTGTCTCGAATTA
GGTTTCATCTTGGAGCTTCT

Microtubule-associated protein 2 MAP2
Forward
Reverse

TCGGCTCATTAACCAACCTC
GAGCCACATTTGGAAGTCAC

Neurofilament medium NF-M
Forward
Reverse

GCACTAAGGAGTCCCTGGAAC
GCCTCGACTTTGGTCTTCTG

Synaptophysin Synaptophysin
Forward
Reverse

CCACGGACCCAGAGAAC
GCTGGCTGCCCGTAATC

β-Actin β-Actin
Forward
Reverse

TGGAATCCTGTGGCATCCATGAAAC
TAAAACGCAGCTCAGTAACAGTCCG
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DMSO-treated control group, the neurite length was not
almost measurable meaning the lack of any morphological
changes. When TissueFAX fluorescence imaging analyzer
was also introduced to obtain total fluorescence signals
for the whole cell population in a cell-loaded slide glass,
the red fluorescence signals in pTα1-DsRed2-transfected
MSCs after treatment of NHPDQC were approximately
10-fold higher than those in the DMSO-treated cell group
(Figure 4(c)).

To establish the time-lapse live cell imaging system for
the detection of neuronal differentiation in MSCs by
NHPDQC, a live cell fluorescence microscopy equipped with
CO2-supplied cell chamber stage was used for maintaining
the live MSCs until 30 h. MSCs treated with DMSO only
showed negligible Tα1 promoter activity and no significant
phenotypic alteration on time-lapse imaging (Figure 5(a)).
In contrast, we observed a gradual increase in DsRed2
fluorescent signal, accompanied by morphological change in
MSCs within the NHPDQC treatment group (Figure 5(b)).
On the quantitative analysis of fluorescence signals, inten-
sity in the NHPDQC-treated group increased gradually from
2h to 24 h and then started to decrease (Figure 5(c)).
However, neurite outgrowth progressed further over time
in the NHPDQC-treated MSCs. This suggested that Tα1
promoter-based reporter imaging could be used to trace
fate changes of bone marrow-derived MSCs to neurons
in live cell condition.

4. Discussion

Development of fluorescence-based evaluation system capa-
ble of tracing the neuronal differentiation of MSCs by chem-
ical compound is crucial for examining the efficacy of
neuronal differentiation of MSCs. In this study, we evaluated
the neuronal transdifferentiation ability of NHPDQC for
MSCs and developed in vitro monitoring system based on
neuron-specific promoter-driven fluorescence reporters dur-
ing neuronal differentiation of MSCs.

Quinoxaline derivatives are known to have wide range of
biological properties from antimicrobial effects to anticancer
effects [27]. NHPDQC was synthesized via structural modifi-
cation of quinoxaline-based small molecule, and this small
molecule was first identified from a chemical library to
induce neurons in neuronal precursor cell lines. NHPDQC
treatment in MSCs showed a significant morphology change
and the increased NSE and βIII-tubulin expression on a
dose-dependent manner. Functional neuronal characteristics
were also verified using electrophysiological studies, and
DNA microarray analysis showed that certain cholinergic
neuron receptors increased [15]. Based on these results,
NHPDQC has been considered as neuronal lineage-specific
inducer in MSCs.

This small molecule-based protocol for induction of
transdifferentiation of MSCs into neurons may be more suit-
able for future clinical application than stably overexpressing
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Figure 2: Morphological changes of (a) the DMSO-treated mesenchymal stem cells (MSCs) or (b) the NHPDQC-treated MSCs at 24 h
(upper panel) and 48 h (lower panel) after treatment. MSCs treated with NHPDQC exhibited neurite growth, along with cell body retraction.
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Figure 3: Neuronal differentiation of MSCs after treatment of NHPDQC. (a) Reverse transcription polymerase chain reaction (RT-PCR)
results (left column: DMSO-treated group, right column: NHPDQC treatment group). Expression of the neuronal markers Tuj1 and NSE
was increased in the MSCs at 48 h after treatment with NHPDQC. The RT-PCR results revealed that the expression of the presynaptic
vesicle protein, synaptophysin, was increased slightly after 48 h of treatment with NHPDQC. Glial marker GFAP did not increase in both
of undifferentiated and differentiated MSCs. (b) Immunofluorescence staining was performed in the DMSO-treated cell group and the
group treated with NHPDQC. The results showed that Tuj1 expression was increased in the NHPDQC-treated group within 48 h. Green
color: β-tubulin (upper panel), Tuj1 (lower panel); blue color: DAPI.
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Figure 4: Enhanced fluorescence signals after neuronal differentiation of pTα1-DsRed2-transfected MSCs by NHPDQC. (a) Confocal
microscopic data showed that Tα1 promoter-regulated RFP reporter activity was increased in the NHPDQC-treated group within 48 h
(blue color: DAPI; red color: pTα1-DsRed2). (b) Two days after treatment of NHPDQC, length of neurite outgrowth was measured from
confocal microscope images. ∗P value <0.05. (c) Total fluorescence activity for the expression of neuronal markers was analyzed in whole
cell population by TissueFAXS2.0.
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neuron-inducing transcription factor because genetic
modification of transplanted cells using viral vectors may
induce unwelcomed side effects including innate immune
response [28] and insertional mutagenesis [29]. In this
study, we used a small molecule-based method to induce
neuronal differentiation of rat MSCs. However, in order
to accelerate clinical translation, human MSCs would
be more useful and acceptable to be used for future
human application. Many previous reports clearly suggest

that there are similarities and differences of MSCs of
different species. Human MSCs were shown to take a
longer time to achieve osteogenic and chondrogenic cell
differentiation phenotype, compared to the differentiation
time of rat MSCs even though rat MSCs and human
MSCs have a similar differentiation potential [30]. Studies
evaluating transdifferentiation ability of NHPDQC in
human MSCs would be necessary to take one step toward
clinical application.
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Figure 5: Time-lapse live cell images of (a) the DMSO-treated group and (b) the NHPDQC-treated group in pTα1-DsRed2-transfected
MSCs. NHPDQC treatment to induce neuronal differentiation showed that the fluorescence signals in MSCs transfected with pTα1-
DsRed2 were gradually increased according to cellular phenotypic changes. (c) Neurite growth (gray) and fluorescence signals (black)
were increased in the NHPDQC-treated group than the DMSO-treated cell group from 2 h after treatment. Fluorescence signal in the
NHPDQC-treated group was dropped at 24 h after treatment. In contrast, neurite growth was progressed at 30 h after treatment.
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Many studies have reported on transdifferentiation of
MSCs into neuronal lineage by treatment of chemicals such
as β-mercaptoethanol (BME)/dimethyl sulfoxide (DMSO)/
butylated hydroxyanisole or neurotrophic factors or by their
coculture with neural or glial cells [31–37]. More recently, the
BME-treated MSCs showed neuron-like features, expressing
high level of neural-specific markers (Map2, Nefl, Tau, and
nestin) [38]. However, previous neuronal induction protocol
using chemicals showed relatively low efficiency and toxic
effect to cultured cells [39, 40]. Also, numerous studies have
focused on developing a scaffold-based neuronal differentia-
tion induction method [39, 40]. The rGO-assembled porcine
acellular dermal matrix (PADM) scaffold could promote the
differentiation of MSCs into neuronal cells with high gene
expression (nestin, beta tubulin-III, GFAP, and MAP2) with
neurite sprouting after 7 days under neural differentiation
conditions [41]. More interestingly, the exosome of differen-
tiating neuronal cells was sufficient to induce neurogenesis of
MSCs [42]. The differentiating PC12 exosome-treated MSCs
showed neurite sprouting and upregulated the gene expres-
sions of neuronal markers with a 3.5-fold higher level of
miR-125b. However, the design of these 3D architectures
was complicated and time consuming and took a long time
to generate neuronal lineage.

In our earlier work, the estimated efficacy of NHPDQC
for neuronal differentiation was more than 95% in cultured
MSCs [15]. Our observation was in agreement with the pre-
vious finding, suggesting that NHPDQC would be potent
neural inducer in comparison with other chemicals. Wood-
bury et al. [43] reported that treatment with 2% DMSO elic-
ited morphologic change of MSCs. To eliminate the aberrant
effect of nonspecific chemical treatment, we used the control
group with much lower DMSO concentration. The control
group without NHPDQC did not show any morphological
change, indicating NHPDQC-specific induction of neuronal
differentiation. Also, we introduced a more convenient
method with a low-dose chemical treatment for neural trans-
differentiation than that in previous studies [33, 43].

Typical methods for evaluation of neuronal differentia-
tion include a conventional type of inverted microscope for
determining cellular morphology, a confocal microscope for
detecting immunophenotype, and a transmission electron
microscopy for investigating ultrastructure in the fixed sam-
ple. These methods have limitation to follow up morpholog-
ical change because neuronal marker expression of MSCs
after committing to neuronal cells fluctuated over time. In
this study, we used the neuron-specific promoter-based
fluorescence reporter system for time-course tracking of
neuronal differentiation in the live MSCs in vitro using
time-lapse fluorescence microscope. We found that fluores-
cence activities in pTα1-DsRed2-transfected MSCs increased
gradually in association with increasing neurite outgrowth
after induction of neuronal differentiation by NHPDQC.
High DsRed2 signals were seen clearly along the extended
neurites until at least 30 h (Figure 4(b)). Because the
utmost advantage of NHPDQC for inducing neuronal dif-
ferentiation is high differentiation efficacy and short period
time for neuronal induction (more than 95% within 48 h),
transient transfection of pTα1-DsRed2 into MSCs was

enough to monitor the progress of neuronal differentiation
in MSCs.

Development of stable and safe methods for detecting
serial changes of neuronal transdifferentiation would be
essential in the study of in vivo transdifferentiation of MSCs.
In vivo monitoring of neuronal differentiation using optical
reporters was reported in living animals in many reports,
by showing the change of reporter signals in vivo, using
neuron-specific promoter-regulated luciferase reporters or
neuron-specific miR-targeted reporters [44, 45]. Though bio-
luminescence reporter-based studies provide highly sensitive
data with low background in vivo, this method is limited in
obtaining microscopic sophisticated changes in vitro. Thus,
the development of advanced multimodal imaging tech-
niques using both luciferase and fluorescence reporters could
help to better understand in vivo as well as in vitro informa-
tion on transdifferentiation efficacy of MSCs.

5. Conclusion

In this study, we investigated the capability of a new small
molecule, NHPDQC, to facilitate efficiently the neuronal
transdifferentiation of MSCs. By observing the changes of
fluorescent markers on time-lapse fluorescence imaging sys-
tem, neuronal differentiation of MSCs could be traced tem-
porally. This efficient method for neuronal induction using
NHPDQC and the effective live cell imaging enabled tracking
the efficacy of transdifferentiation of MSCs into neurons.
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