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Abstract
Digital pathology – the digitalisation of clinical histopathology services through the scanning and storage
of pathology slides – has opened up new possibilities for health care in recent years, particularly in the
opportunities it brings for artificial intelligence (AI)-driven research. Recognising, however, that there is
little scholarly debate on the ethics of digital pathology when used for AI research, this paper summarises
what it sees as four key ethical issues to consider when deploying AI infrastructures in pathology, namely,
privacy, choice, equity, and trust. The themes are inspired from the authors’ experience grappling with the
challenge of deploying an ethical digital pathology infrastructure to support AI research as part of the
National Pathology Imaging Cooperative (NPIC), a collaborative of universities, hospital trusts, and industry
partners largely located across the North of England. Though focusing on the UK case, internationally, few
pathology departments have gone fully digital, and so the themes developed here offer a heuristic for ethi-
cal reflection for other departments currently making a similar transition or planning to do so in the future.
We conclude by promoting the need for robust public governance mechanisms in AI-driven digital
pathology.
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Introduction

In 2018, the UK Government invested £50 million to
establish five artificial intelligence (AI) Centres of
Excellence in digital pathology and medical imaging,
as part of the ‘data to early diagnosis and precision
medicine’ strand of their Industrial Strategy Challenge
Fund. The five centres are the Industrial Centre for AI
Research in Digital Diagnostics (I-CAIRD), the
London Medical Imaging and Artificial Intelligence

Centre for Value-Based Healthcare, the National
Consortium of Intelligent Medical Imaging (NCIMI),
the National (previously Northern) Pathology Imaging
Collaborative (NPIC), and the Pathology Image Data
Lake for Analytics, Knowledge and Education
(PathLAKE). This paper examines the ethical chal-
lenges arising in the delivery of one side of that invest-
ment, namely, digital pathology.
Digital pathology – the digitalisation of clinical his-

topathology services through the scanning and
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electronic storage of pathology slides – has opened up
new possibilities for health care in recent years,
including improved efficiency and safety, remote
working, and reduced costs [1,2]. Most notable, how-
ever, are the opportunities it brings for AI-driven
research. Yet, although there is growing literature on
the ethics of medical AI and imaging [3–5], there is,
as Coulter et al have noted, a lack of understanding
amongst histopathologists regarding the ethics of AI-
driven digital pathology [6]. The purpose of this paper
is therefore to provide a timely intervention into digital
pathology research ethics by reviewing key issues to
consider when deploying AI infrastructures.
Here, we focus on four themes: privacy, choice,

equity, and trust. The themes are not meant to be
exhaustive, but instead are general introductory frame-
works meant to stimulate debate and reflection. As
Morley et al note, ethical issues are relative to ‘differ-
ent stages of the algorithmic development lifecycle’
[5]. The issues raised here, then, will likely evolve as
digital pathology develops. As, however, there are
presently no AI tools being applied in routine diagnos-
tic work in the UK, rather than speculate on the poten-
tial bioethical effects of unknown future AI tools, the
paper looks instead at the current state of digital
pathology practice in the UK, and the ethical chal-
lenges arising out of the attempt to provide an infra-
structure for AI research in digital pathology.
The themes are inspired from our experience of

grappling with the challenge of deploying an ethical
digital pathology infrastructure to support AI research
as part of the National Pathology Imaging Cooperative
(NPIC), a collaborative of universities, hospital trusts,
and industry partners largely located across the North

of England. Though focusing on the UK case, interna-
tionally, few pathology departments have gone fully
digital, and so the themes developed here offer a heu-
ristic for ethical reflection for other departments cur-
rently making a similar transition or planning to do so
in the future. The paper begins with a description of
the data sharing practices and privacy protections
already in place within NPIC. It uses that as a spring-
board for discussing ethical issues we have encoun-
tered when thinking about data sharing beyond the
clinical care context, namely, those of choice, equity,
and trust. Following the outlining of those issues, we
conclude by arguing for the need for robust public
governance frameworks to strengthen accountability
over the sharing of digital pathology data when devel-
oping medical AI tools.

Privacy

Traditionally, histopathologists have diagnosed dis-
ease by examining sections of tissue on glass slides
with a light microscope. With the introduction of
whole slide image (WSI) scanners, however, glass
slides can be captured as high-resolution digital
images, stored and transmitted electronically, and
viewed on workstations allowing pathologists to
make their diagnosis using an enlarged digital image
on their computer screen. Databases of the captured
images can also be used to train machine learning
algorithms. Figure 1 provides a simplified model of
digital pathology work and data flows.

Figure 1. A simplified model of digital pathology work and data flows. The process begins with specimen retrieval (1) and preparation
(2) through fixing, cut-up, embedding, microtomy, staining, and drying. High-resolution digital scans (�40) are then taken and stitched
into one ‘WSI’ (3). The image is then uploaded to a server (4) to be viewed by the pathologist on their workstation (5) and they input a
digital report (6). The pathology report data (e.g. summary diagnosis, free text, and the minimum pathology data set required by COSD
[Cancer Outcomes and Services Dataset]) are stored on the server along with the patient’s histopathology image data as identifiable
information. It is then de-identified upon export for the purposes of research (7) and made accessible along with other linked data (8).
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The process begins with specimen retrieval and
preparation through fixing, cut-up/trimming/grossing,
embedding, microtomy, staining, and drying. High-
resolution digital scans (�40) of the glass slide are
then taken and ‘stitched’ into one ‘WSI’. Next, the
digital images are uploaded to a server and viewed by
the pathologist on their workstation so that they can
determine their diagnosis and input a digital report.
The pathologist may also, at this point, add annota-
tions and labels to the images as part of their reporting.
That information is saved with the image and report,
and stored in the cloud where it can be accessed, along
with other linked data, by third parties for the purposes
of research.
Though there are several ethical issues that may

arise throughout the workflow, the ethical challenges
related to AI are primarily associated with the pooling
and sharing of data for research (research here may
involve multiple uses of patient data, whether AI
driven or not, but it is expected that AI will be the
most common contribution due to its facility in ana-
lysing large data sets). Here, the issue that has seen
the most attention is data privacy and its protection
through de-identification practices.
The common law duty of confidentiality holds that a

doctor has an obligation to keep identifiable patient
information – i.e. information that might disclose a
patient’s identity beyond the direct care team – private,
unless given explicit consent to share it, or sharing it
falls under one of the exceptions to the common law
duty: anonymity, legal obligation, public interest,
impracticality, etc. [7]. Histopathology has tradition-
ally maintained privacy through physical limitations of
glass slides sharing (which are bound to one site at
any one time) and through removing or obscuring
patient identifiers (for instance, removing labels or
scrubbing out information using black out marker
pens). Digital pathology data are duplicable, more
mobile, and hence require additional techniques to
ensure the privacy of patient data.
Data privacy can be assured in several ways, for

instance, by managing access to the data, through de-
identification techniques (i.e. by removing data that
could identify a patient), and by legally binding third
parties to maintaining secure information governance
practices. In NPIC, we achieve this by controlling
access to data through the Leeds Teaching Hospital
Trust data access committee, who review researcher
applications according to, amongst other things, the
scientific merit of the research plan, the benefits to
patient communities, and conformity with data protec-
tion law [8]. Upon successful application, the data
extraction team de-identify data by suppressing,

randomising, or generalising direct and indirect identi-
fiers such as NHS numbers, dates of birth, dates of
admission, etc. In doing so, they use ‘K-anonymity’
methods in which data are de-identified to be indistin-
guishable from a set amount (k) of other individuals.
Moreover, as studies show that linking data sets can
theoretically increase the possibility of re-identification
[9], there are further safeguards in place to limit the
risks to privacy. This includes secure transfer and stor-
age mechanisms, data destruction policies, audit trails
recording what data were released and to whom, and
legal safeguards in the form of contracts forbidding
any attempt to re-identify patients.
In many ways, the above data protection measures

build upon existing practices for medical data sharing
in hospital settings in the UK, and collectively they
provide a robust system for protecting patient data
when sharing it for research. It is a primary obligation
for any department hoping to deploy digital pathology
systems for AI research to ensure this continues to be
the case and to commit to ongoing monitoring of data
protection measures to make sure they remain up
to date.

Choice

Even with safeguards in place for protecting patient
privacy, as a report from Understanding Patient Data
and the Ada Lovelace Institute put it, ‘people may still
care how…[data] is used even if they can’t easily be
identified’ [10]. For instance, they may care about
how such data are used because of concerns over the
potential social harms stemming from its use and thus
may wish to exercise autonomy over who can access
the data and the uses to which it is put. Hence, the
question arises: what choice should the public have
over the sharing of their de-identified pathology data?
One way of thinking about that question of autonomy
over data sharing is through the issue of consent.
It is a well-established principle of medical law and

ethics that patients provide informed consent for their
treatment [11]. Individual opt-in consent is, as noted
above, also required when sharing personal data unless
sharing it falls under one of the aforementioned excep-
tions or the implied consent needed for direct care.
Processing digital slides in the hospital trust all fall
under data practices needed for direct care. When it
comes to sharing pathology data for research purposes,
however, no standard process exists. For instance, with
NPIC-controlled data, some external researchers want-
ing access to the data may voluntarily seek explicit

211The ethics of AI-driven digital pathology

© 2022 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland & John Wiley & Sons, Ltd.

J Pathol Clin Res 2022; 8: 209–216



opt-in consent from patients as part of their ethics
approvals before applying to our data access commit-
tee, while certain forms of linked data may already
have arrangements for explicit consent for sharing data
for research (for instance, the 100,000 Genomes
Project, which is to be linked to the NPIC data set, has
explicit opt-in consent as a requirement) [12]. Other-
wise, however, explicit opt-in consent is not a require-
ment, following recommendations by the General
Medical Council (GMC) for sharing de-identified
pathology images [13]. The ethical grounds for sharing
pathology images without consent are found in the
anonymity of the data, which is one of the exceptions
to the common law duty of confidentiality [14].
Though anonymity in its strongest sense means having
no possible way to link back to any information that
may identify someone, here anonymity has a more
practical meaning of low-risk identifiability, and thus
is synonymous with robust de-identification. Such an
interpretation is backed up by the Information
Commissioners Office (ICO), who confirm that the
anonymity exception applies even if there are limited
risks of re-identification [9]. Similarly, the Data Pro-
tection Act (2018) and case law both confirm that
anonymisation does not have to be ‘risk free’, only
that the risks of identification be mitigated so as to be
remote or unlikely. Even where the data controller
holds information that may allow for the possibility of
re-identification, that in itself is not sufficient grounds
for constituting the disclosure of personal information
[9]. Though recognising that anonymity is potentially
problematic in an era of big data, there is no a priori
reason to think, then, that sharing de-identified digital
pathology data along with linked data would fail a test
of low-risk anonymity.
De-identification of patient data informs NPIC’s

approach to consent, which is to share de-identified
data without individual consent so as to maximise the
utility of healthcare data for public benefit. We believe
this aligns with public opinion, insofar as the public
generally are more willing to share data when de-
identified [15]. We also recognise, however, that
patients may want to exercise some control over data
flows, even when de-identified, which we achieve by
checking against national opt-outs before data release.
The decision to follow the national opt-out is volun-
tary, since it is only mandatory when sharing identifi-
able information without consent (i.e. when sharing
falls under section 251 of the NHS Act 2006, which
allows confidentiality to be set aside for identifiable
information under certain conditions) [16]. It does not
apply, therefore, for de-identified data, such as that
used in NPIC.

Though opt-in consent (whether broad, dynamic, or
meta) might offer alternatives for enhancing autonomy
for data subjects, it can be difficult to administer at
scale or for retrospective data, and would likely also
reduce participation rates, compromising the utility of
the database as a result [17,18]. Opt-out models are
arguably easier to implement, though we recognise
that there are risks with these models as well. For
instance, it is questionable whether opt-outs provide
genuine choice if patients are unaware of that option
and it is possible that they can introduce bias into the
data set if certain groups of people opt-out [19].
Robust public engagement would limit the risk of the
former. Regarding the latter, it is not known what the
specific risks are for digital pathology, though there
are reasons to be optimistic. For instance, the latest
figures for the national data opt-out (for September
2021) show an opt-out rate of 5.35% [20]. According
to one study, this is within the tolerances of a mean-
ingfully representative study of population health,
which puts participation requirements at 90% [21].
That said, biases remain a theoretical possibility if sys-
tematic opt-outs occur within that margin (and espe-
cially if the margin grows).
These risks notwithstanding, following the national

opt-out, we argue, is a reasonable and practical alterna-
tive to opt-in measures, providing patients with auton-
omy around sharing de-identified data, while
balancing that against the need for maximising data
sharing and protecting patient confidentiality. As with
privacy, we also advise that opt-out risks should be
continually monitored and mitigated where possible.

Equity

Given the low risks to patient confidentiality, the pub-
lic benefits of sharing data, and the availability of opt-
out, we contend that the above approach functions
well for protecting individual data subjects’ interests
for privacy and autonomy. However, there are broader
social challenges of AI-driven digital pathology con-
cerning equity that need to be mentioned.
For instance, one of the most pressing challenges

that comes up in medical AI literature is that of data
value and for-profit involvement. As several studies
confirm, the public are generally supportive of sharing
NHS data for purposes beyond direct care, but that
support is largely conditional on there being public,
rather than merely private, benefits [22,23]. This does
not mean that for-profit motives cannot play any role
whatsoever. Evidence also suggests that the public are
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increasingly aware of the value of NHS data, and are
also of the opinion that its value can be returned in
direct (health care) and indirect (financial, administra-
tive, etc.) benefits [10,24]. Notwithstanding this broad
understanding of reciprocity, evidence shows that there
is common scepticism over commercial data sharing
agreements, especially in instances where commercial
partners bargain for sharing agreements that are dis-
proportionately favourable to their private interests
over public benefit [10,22,25,26].
Given that large technology and social media com-

panies, who possess the advanced engineering exper-
tise and technical resources for supporting AI research
at scale, play an important role in (AI driven)
healthcare research, the question becomes how to offer
a balanced and fair model of data sharing practices
with researchers, including those working for profit?
Contemporary responses to this question have been to
offer guidance on best practices through, for instance,
checklists for AI procurement, financial compensation
schemes, and promises of an NHS centre of expertise
to provide guidance on data value [27,28]. Such
advice, however, may limit the perceived value of data
to financial value and therefore raises further questions
about how to diversify what constitutes value and fair
reciprocity.
Another challenge for healthcare equity comes from

the possibility of algorithmic bias. Although algorithmic
bias has primarily been observed outside of healthcare
contexts, it has recently been shown to have implica-
tions for patient communities as well [29–31]. As Hao
notes [32], there are different ways in which bias can
find its way into AI, from underrepresented data sets to
poor conceptualisation of research. It is unclear what
pathways exist for bias in AI-driven digital pathology.
On one hand, digital pathology cohort identification
strategies build upon existing approaches to cohort
selection in pathology and clinical trials, meaning any
possible bias would not necessarily be an outcome of
digital pathology per se, but of those existing practices.
There is also a widespread assumption that common
cancer cells exhibit a morphological uniformity across
cohorts, implying that the risks of bias are minimal. On
the other hand, some cancers are understood to dispro-
portionately affect (whether due to prevalence or
aggressiveness) some groups more than others [33,34],
or are simply rarer as in the case of sarcomas, and so
may introduce biases if underrepresented in the training
data. Further research is needed on the pathways in
which algorithmic bias may be possible. Taken with the
public concerns around commercialisation, it prompts
ongoing reflection on how to make medical AI research
equitable and available to all.

Trust

Both commercial involvement and bias have further
implications for public trust. Kerasidou defines trust in
terms of three core concepts: vulnerability, voluntari-
ness, and good will [35]. Thus, for trust to exist, an
individual or organisation makes decisions that are in
the best interests of another, whose trust must be
earned, not obliged. Trustworthiness similarly means
being able to demonstrate that goodwill. Though there
are no studies of public trust in AI-driven digital
pathology, multiple studies show differing degrees of
awareness and trust around AI. A recent public survey
conducted for the British Computer Society highlights
that approximately half (53%) of 2,000 adults sur-
veyed claimed they had ‘no faith in any organisation
to use algorithms when making judgements about
them’ [36]. Only 17% of respondents trusted the uses
of automated decisions in the NHS. Research con-
ducted by Ipsos Mori is more optimistic. Overall sup-
port for data-driven technologies, especially those
using scans or imaging for the automation of diagno-
sis, was high, providing that humans were kept in the
loop [37,38].
One area where trust is most fragile, however, is in

the involvement of commercial third parties, especially
social media, insurance, and marketing companies,
and those based in the USA, which are consistently
rated as having the highest degrees of mistrust [39].
Insofar as those companies may want access to digital
pathology data for research, even if the public are
amenable to AI data analysis for diagnosis, they may
not trust the company applying to make use of their
data, and therefore desire assurances that any commer-
cial involvement is overall in the public interest [35].
Similarly, there is much documented mistrust affecting
the acceptance of, or participation in, AI or health
research, in minority or marginalised communities,
often due to histories of bias or exclusion [40–42].
Mistrust may also be exacerbated by the media. For

instance, it has been noted that there are pervasive
anxieties regarding AI stemming from the perceived
anticipatory harms and sometimes apocalyptic imagery
referenced in works of fiction [43]. Understanding
Patient Data have also highlighted how news media
often focuses on the risks of health data sharing rather
than its benefits [44]. Arguably, these media portrayals
of the risks of AI are likely to impact perceptions of
the trustworthiness of future medical AI, and taken
with the mistrust due to commercialisation and bias,
emphasise the need to develop medical AI systems
that are worthy of trust.
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Trustworthiness has been shown to be earned in a
number of ways in medical contexts, for instance,
through consent processes, professional integrity, and
community engagement [35]. In the context of AI, it is
argued that trustworthiness is earned by developing
algorithms that are lawful, ethical, and robust and
which respect principles of human autonomy, preven-
tion of harm, fairness, and explicability (the last of
which includes ideals of transparency and explainability)
[45,46]. All of these norms will no doubt continue to
be important to the public acceptability of AI. That
said, there is some controversy around the notion of
explainability. Though a common aspiration for the
development of ethical AI [47], Ghassemi et al [48]
have recently called it a ‘false hope’ due to interpret-
ability gaps between AI models and current
explainability methods. Instead, they advocate for rig-
orous internal and external validation of AI tools in
order to engender trust. Validation will no doubt be
an essential mechanism for promoting public confi-
dence, and, notwithstanding Ghassemi et al’s point,
how AI is transparently communicated to the public
should also remain a vitally important issue for the
future ethics of medical AI research [49].

Conclusion

Privacy, choice, equity, and trust do not exhaust the
ethical issues emerging in AI-driven digital pathology,
but they are central to the use of data for research pur-
poses in the field. As it stands, medical data sharing
ethics tend to focus on issues of privacy in order to
protect individual research subjects’ interests. When
thinking about the ethical challenges of sharing pathol-
ogy data, however, a broader vantage point is needed,
meaning that digital pathologists also need to
strengthen commitments to choice, equity, and trust.
Though the issues are complicated, requiring ongoing
discussion within the research community, it is also
important to remember the role patient and public
involvement and engagement (PPIE) has in all this. As
a recent survey of histopathologists in the UK con-
firms, there is a general ‘need for transparency about
data uses and the inclusion of the views and opinions
of the public in decisions about these uses’ [6]. One
reason, however, why medical data sharing practices
sometimes struggle stems from a failure to properly
include patients and the public in the governance pro-
cess [50,51]. To strengthen commitments to privacy,
choice, equity, and trust, then, it would be wise to
learn from that, and to involve the public in those

discussions with researchers and ethicists as they think
through the future of medical AI.
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