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Abstract

Background: Personalized healthcare promises to successfully advance the treatment of heterogeneous neurological
disorders such as relapsing remitting multiple sclerosis by addressing the caveats of traditional healthcare. This study
presents a framework for personalized prediction of treatment response based on real-world data from the
NeuroTransData network.

Methods: A framework for personalized prediction of response to various treatments currently available for
relapsing remitting multiple sclerosis patients was proposed. Two indicators of therapy effectiveness were
used: number of relapses, and confirmed disability progression. The following steps were performed: (1) Data
preprocessing and selection of predictors according to quality and inclusion criteria; (2) Implementation of
hierarchical Bayesian generalized linear models for estimating treatment response; (3) Validation of the resulting predictive
models based on several performance measures and routines, together with additional analyses that focus on evaluating
the usability in clinical practice, such as comparing predicted treatment response with the empirically observed course of
multiple sclerosis for different adherence profiles.

Results: The results revealed that the predictive models provide robust and accurate predictions and generalize to new
patients and clinical sites. Three different out-of-sample validation schemes (10-fold cross-validation, leave-one-site-out
cross-validation, and excluding a test set) were employed to assess generalizability based on three different statistical
performance measures (mean squared error, Harrell’s concordance statistic, and negative log-likelihood). Sensitivity to
different choices of the priors, to the characteristics of the underlying patient population, and to the sample size, was
assessed. Finally, it was shown that model predictions are clinically meaningful.

Conclusions: Applying personalized predictive models in relapsing remitting multiple sclerosis patients is still new
territory that is rapidly evolving and has many challenges. The proposed framework addresses the following challenges:
robustness and accuracy of the predictions, generalizability to new patients and clinical sites and comparability of the
predicted effectiveness of different therapies. The methodological and clinical soundness of the results builds the basis for
a future support of patients and doctors when the current treatment is not generating the desired effect and they are
considering a therapy switch.
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Background
Knowledge about the effectiveness of available treatments is
typically based on results from randomized controlled trials
(RCTs). However, these results are derived in a controlled,
constrained setting and do not necessarily reflect real-world
patient populations and drug labels. In addition, results
from RCTs are based on group-level differences, while
treatment decisions require individual-level information to
enable optimal treatment allocation for an individual pa-
tient. This can cause a ‘trial-and-error paradigm of treat-
ment allocation’ [1], in which the individual patient
undergoes several therapy switches until a suitable treat-
ment is found. Real-world data are gaining increasing
importance to fill this gap between RCTs and utilization of
treatment options in daily practice. This is also why the
European Medical Agency and the Food and Drug Admin-
istration in the USA are seeing the availability of real-world
data as an emerging opportunity to improve treatment
quality and allocation of resources [2] [3] [4] [5] [6]. In the
field of multiple sclerosis (MS), several registries have
captured qualified clinical data for more than 10 years, in-
cluding MSBase (founded in 2004, multinational), OFSEP
(2001, France), Swedish MS registry (2001, Sweden),
MSDS3D (2010, Germany), and NeuroTransData (NTD;
2008, Germany).
MS is the most prevalent neurological auto-immune

disorder of the central nervous system and affects patients
in the most dynamic and productive time of their lives by
causing severe physical disability and mental handicap,
thus impairing abilities for social and professional partici-
pation over time in the majority of those affected. The
treatment landscape of MS is continually changing: since
2000, more than 900 clinical studies have been listed in
the clinical trials registry created by the National Institutes
of Health alone. Following the first Interferon-β1b inject-
able therapy in 1995, 14 different disease modifying ther-
apies (DMTs) based on eight approved compounds
became available in the EU in 2017 for the relapsing re-
mitting form of multiple sclerosis (RRMS) [2].
Disease mechanisms and course of RRMS are hetero-

geneous and challenging to predict at a group level, and
even more in an individual patient. This heterogeneity,
the impact of clinical outcomes on quality of life and the
large number of treatment options make a personalized
approach for a tailored treatment of patients desirable.
This study is built on previous research on personal-

ized medicine [5–10]. It contributes to an ongoing ad-
vancement on the personalization of RRMS treatment
allocation by proposing a framework for comparing the
effectiveness of DMTs at patient level. Two indicators of
treatment effectiveness are taken into account: the num-
ber of on-therapy relapses experienced by the patient,
and the occurrence of a confirmed disability progression
(CDP) during the therapy. The statistical approach relies

on hierarchical Bayesian generalized linear models
(GLMs).
This study is based on the NTD MS registry, where phy-

sicians in Germany capture quality-proven real-world data
in a large number of different clinical sites and for hetero-
geneous patients and disease histories. This provides the
basis for the generalization of the predictive models to a
wide range of patients and clinical sites that were not part
of the model development. The methodological and clin-
ical soundness of the results of this framework is thor-
oughly evaluated in addition by comparing the predicted
treatment response with the clinically observed course of
MS for different adherence profiles.
Applying personalized predictive models in RRMS pa-

tients is still a new territory that is rapidly evolving and
has many challenges. The objective of this study is to ad-
dress some of these challenges by providing robust and
reliable predictions of treatment response based on real-
world data. This builds the basis for a future support of
patients and doctors when the ongoing treatment fails
and a therapy switch is considered.

Methods
This study proposes a framework for personalized predic-
tion of effectiveness of various therapies currently available
for RRMS patients. The framework comprises the following
steps: (i) data preprocessing, selection of predictors accord-
ing to quality and inclusion criteria, and definition of two
indicators of therapy effectiveness (Section 2.1); (ii) model
development using hierarchical Bayesian GLMs for estimat-
ing therapy response according to both indicators of ther-
apy effectiveness (Section 2.2); (iii) model performance
assessment based on state-of-the-art performance measures
and procedures, together with additional analyses that focus
on applicability in clinical practice, i.e. on generalizability to
new data and on comparability of predictions for different
treatments (Section 2.3).

Data
This study employed clinical real-world data recorded in
the NTD MS registry. NTD is a Germany-wide network
of physicians in the fields of neurology and psychiatry
that was founded in 2008. Currently, 153 neurologists in
78 offices work in NTD practices serving about 600,000
outpatients per year. Each practice is certified according
to network-specific and ISO 9001 criteria. Compliance
with these criteria is audited annually by an external cer-
tified audit organization. The NTD MS registry includes
about 25,000 patients with MS, which represents about
15% of all MS patients in Germany. In this database,
demographic and clinical parameters are captured in real
time over an average of 3.7 visits and Expanded Disabil-
ity Status Scale (EDSS) assessments per year per patient.
Standardized clinical assessments of functional system

Stühler et al. BMC Medical Research Methodology           (2020) 20:24 Page 2 of 15



scores and EDSS calculation are performed by certified
raters (http://www.neurostatus.net). All personnel
undergoes regular training to ensure quality of data in
the database. This quality is monitored by the NTD data
management team. Data input is checked for inconsist-
encies and errors by also using an error analysis pro-
gram. Both automatic and manually executed queries
are implemented to further ensure data quality, e.g.
checks for inconsistencies and requests for missing in-
formation. All data are pseudonymized and pooled to
form the NTD MS database. The codes uniquely identi-
fying patients are managed by the Institute for medical
information processing, Biometry and Epidemiology
(Institut für medizinische Informationsverarbeitung, Bio-
metrie und Epidemiologie (IBE)) at the Ludwig Maximil-
ian University in Munich, Germany, acting as an
external trust center. The data acquisition protocol de-
scribed above was approved by the ethical committee of
the Bavarian Medical Board (Bayerische Landesärzte-
kammer; June 14, 2012) and re-approved by the ethical
committee of the Medical Board North-Rhine (Ärzte-
kammer Nordrhein; April 25, 2017).
For this study, data were extracted from the NTD MS

database on July 1, 2018.

Predictors
The predictors that were used to model therapy effective-
ness are listed in Table 1. An overview of their distribution
and discretization is provided in Additional file 1: Table
S1.3. All predictors were defined and selected based on
prior scientific research and clinical expertise (SB, AB) [11].

Data quality and inclusion criteria
The data used for model development consist of therapy
cycles, i.e. each observation corresponds to a therapy cycle.
Several quality and inclusion criteria were applied for data
preprocessing and patient population selection, respectively.
The selected observations fulfilled quality criteria related

to validity, accuracy, completeness, consistency and uni-
formity of the information in the database, including: all
predictors were available at the start of the index therapy,
at least one relapse was documented before the start of the
index therapy, patients were required to have at least one
documented EDSS measurement before the start of the
index therapy. Extreme therapy cycles with annualized re-
lapse rate above 12 per year were excluded from the study.
The following inclusion criteria were applied: patients

were required to be at least 18 years old, EDSS before
the start of the index therapy was required to be less
than or equal to six, index therapy was required to be
one of the following: Dimethylfumarat (DMF), Fingoli-
mod (FTY), Glatirameracetat (GA), Interferon-ß1 (IF),
Natalizumab (NA) or Teriflunomide (TERI). Therapies
that were prescribed within 6 months of MS diagnosis
without a previous treatment failure were excluded as
they do not represent therapy switches during the course
of RRMS. If more than one therapy cycle was available
for a single patient, one therapy was randomly selected,
while the others were discarded. Therapy cycles corre-
sponding to clinical sites with only one remaining pa-
tient were also excluded.
After the quality and inclusion criteria were applied,

90% of the therapy cycles (3119) were used for model
development and validation, and 10% of the therapy

Table 1 List of model predictors, along with code names for shorter reference across the study

Code name Description

Age Age at the start of the index therapy

Gender Gender

EDSS EDSS (measured at most 6 months before or 3 months after the start of the therapy cycle,
and at least 84 days after a relapse)

Index / Index therapy DMT taken during the therapy cycle

Current / Current therapy DMT taken prior to the start of the therapy cycle

Diagnosis distance Time elapsed between MS diagnosis and start of index therapy

Relapse distance Time elapsed between the last relapse preceding the start of the index therapy and the start
of the index therapy

Relapses count Number of relapses in the year prior to the start of the index therapy

DMTs count Number of DMTs taken prior to the start of the index therapy

Second-line Whether a second-line DMT has been taken before the start of the index therapy

Current duration Duration of the current therapy

Index duration Duration of the index therapy

Clinical site Clinical site where the course of MS is observed

EDSS expanded disability status scale, DMT disease modifying therapy, Second-line DMT to be employed by label of the European Medical Agency if previous DMT
failed to achieve sufficient control of disease activity (of the DMTs considered in this work, this applies to Fingolimod and Natalizumab), MS multiple sclerosis.
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cycles (314) were used as test set for validation as de-
scribed below in Section 2.3.3.
A detailed overview of the data selection process is

shown in Additional file 1: Table S1.1. A comparison of
the responses of interest and of the predictors before
and after the quality and inclusion criteria were applied
is presented in Additional file 1: Tables S1.2, S1.3 and
Figure S1.3.

Indicators of therapy effectiveness
Number of relapses and confirmed disability progression
(CDP) during the observation time of a therapy cycle are
established clinical indicators for therapy effectiveness in
RRMS [7, 8]. Both indicators were therefore used to
measure the effectiveness of index therapies. Addition-
ally, probabilities of being free of relapse and free of
CDP, respectively, were derived for validation [9].
A CDP was defined as a worsening of at least 1.0 point

when the previous EDSS is 5.5 or lower and 0.5 point
otherwise; the worsening must be sustained for at least
3 months and must be confirmed by at least one other
valid EDSS measurement. A more detailed definition of
CDP is included in Additional file 2.

Model development
The number of on-therapy relapses was modelled as fol-
lowing a negative binomial distribution whose mean and
shape parameters depend on individual patient charac-
teristics and index therapy. The occurrence of a CDP
was modelled as following a binomial distribution, where
the probability of observing a CDP depends on individ-
ual patient characteristics and index therapy.
In both cases, a hierarchical Bayesian GLM was

employed [12]. The correlation that typically arises
between measurements coming from the same clinical
site was addressed by modeling a random intercept. The
duration of each observed therapy cycle was incorpo-
rated in the models as an offset term, since the number
of relapses and the probability of observing a CDP is ex-
pected to be larger for longer exposure, i.e. observation
time of index therapy. A detailed description of the
models is presented in Additional file 3.
In this study, Bayesian estimation was used due to the

advantages offered by the possibility to incorporate prior
information, which also allows for regularization [13].
The specific values that were given to the parameters’
priors are summarized in Table 2. These priors are

weakly informative, in line with the values proposed by
[14]. The parameters are assumed to be independent.
Models were fitted with version 2.14.1 of the rstanarm

package in R [13]. This implementation uses the Hamil-
tonian Monte Carlo approach to draw samples from the
parameters’ posterior joint distribution. For each Markov
chain started to this purpose, the convergence to the tar-
get distribution was assessed using the Gelman and
Rubin potential scale reduction statistic R̂ [13]. For each
of the samples and for each of the six considered index
therapies (Section 2.1.2), the number of relapses or the
occurrence of a CDP were predicted for each observa-
tion by disregarding clinic-specific random effects, i.e. by
setting all random intercepts to zero (in rstanarm, this is
done by setting the ‘re.form’ argument of the posterior_
predict function to ‘~ 0′). A new patient will thereby
have consistent predictions across different clinical sites.
These predictions obtained from the posterior distribu-
tion were summarized by looking (i) at their average and
at the fraction of those that predict an absence of relapse
(relapse model), and (ii) at the fraction of those that pre-
dict an absence of CDP (CDP model).

Model performance assessment
In this section, the following content is presented: model
calibration (Section 2.3.1), statistical measures of model
performance (Section 2.3.2.), model generalizability (Sec-
tion 2.3.3), comparison with nested models of lower com-
plexity (Section 2.3.4), sensitivity of the models to different
choices of the priors, to the characteristics of the patient
population, and to the sample size (Section 2.3.5), and com-
parison of treatment effectiveness predicted by the models
(Section 2.3.6).

Model calibration
The agreement between the predicted and observed out-
comes was assessed by distributing the therapy cycles
into several bins of predicted outcomes. The bin size
was chosen such that there are 20 equally-populated
bins in total, covering the full range of the predicted out-
comes. For each bin, the mean predicted outcome was
compared with the mean observed outcome. If the
model is well-calibrated, the two quantities are expected
to be close to each other. The agreement between pre-
dictions and observations was studied for all therapy cy-
cles and also for each DMT separately. The adoption of
equally-populated bins rather than equally-sized bins has

Table 2 Default priors assigned to the relapse and CDP models’ parameters

Model Intercept Fixed effects Dispersion Standard deviation of random intercepts

Relapse N(0, 10) N(0, 2.5) Half-Cauchy(0, 5) Gamma(1, 1)

CDP N(0, 10) N(0, 2.5) – Gamma(1, 1)

CDP confirmed disability progression.
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the advantage that the statistical uncertainty due to the
population size of each bin is the same for all points in
the calibration plot.

Statistical measures of model performance
Model performance was evaluated via mean squared
error (MSE), negative log-likelihood and Harrell’s con-
cordance statistic (C-Index).
The C-Index was used to analyze the ability of the

models to discriminate among different responses, in
this case to discriminate between none and at least one
relapse, and between the occurrence and absence of a
CDP, respectively. When comparing predicted and ob-
served indicators of therapy effectiveness, therapy cycles
with roughly the same duration were matched. This is
achieved by allowing for up to 6 months difference if the
smaller of the two durations is less than half a year, and
up to 12months difference otherwise [15].
The negative log-likelihood per patient was obtained fol-

lowing the approach in [12], page 169, and using the log_
lik function of the rstanarm package [13]. The negative
log-likelihood for the full patient population was obtained
by summing the negative log-likelihoods per patient.
Although the models allow to make predictions for the

effectiveness of all six therapies included in this study
(Section 2.1.2), statistical measures were only evaluated
where the associated indicator of therapy effectiveness
could be observed, i.e. using the predictions for the ob-
served index therapy.

Model generalizability
The generalizability of the models was assessed using
three different out-of-sample validation schemes. The
first validation scheme consisted in evaluating the model
performance using a 10-fold cross-validation. The sec-
ond validation scheme used a leave-one-site-out cross-
validation with respect to the clinical site. Patients from
the same clinical site were excluded from the sample
that was used to fit the model and then used to test how
well this model performs. The procedure was repeated
for each clinical site. The third validation scheme evalu-
ated the model performance on the test set.
Performance measures were calculated using out-of-

sample predictions as well as in-sample predictions.
Each in-sample prediction was obtained from one ran-
domly selected training fold. Therefore, exactly one out-
of-sample and one in-sample prediction per therapy
cycle were retained. Out-of-sample and in-sample per-
formance measures were compared in order to identify
overfitting. The robustness of the performance measures
was assessed by repeating the 10-fold cross-validation 40
times, which allowed to compute standard errors.
The modeling approach described in Section 2.2 leads

to the generation of six predictions per patient, one for

each of the six therapies under consideration. Only pre-
dictions for the observed index therapy were retained
when analyzing generalizability.

Comparison with nested models
The models presented above allow to make comparable
predictions for all six therapies included in this study for
each patient and each indicator of therapy effectiveness.
The impact of the patient characteristics and their inter-
actions with the index therapy on the model predictions
was evaluated by comparing the model of Section 2.2
with two models of lower complexity. These two models
were nested in the predictive model.
The first nested model, referred to as non-personalized

model, does not have a dependency on the patient charac-
teristics (Table 3). This model returns a fixed ranking of
the six therapies under consideration. The model is not
personalized, since two patients with a therapy cycle of
the same duration but different characteristics will obtain
the same predicted response, and hence will have the
same comparative therapy effectiveness profile.
The second nested model, referred to as prognostic

model, has a dependency on the patient characteristics but
not on their interactions with the index therapy (Table 3).
This model is an extension of the non-personalized

model that additionally allows for personalization, that is,
for patient characteristics to have an impact on the pre-
dicted response. However, it is important to note here that
patient characteristics are not allowed to interact with the
index therapy, i.e. there is no personalization in the ob-
tained ranking of the six therapies under consideration.
The predictive model in this study differs from the

prognostic model by the addition that individual patient
characteristics were allowed to interact with the therapy,
i.e. the therapy effectiveness and corresponding ranking
were allowed to differ for different patients.

Sensitivity analysis
The predictions’ robustness was tested with respect to
different choices of the priors, to the characteristics of
the underlying patient population, and to sample size.
Methods and results are presented in detail in Add-
itional file 5, Additional file 6 and Additional file 7.

Comparison of predicted therapy response
The modeling approach presented above leads to the
generation of six predictions per patient (Section 2.2),
one for each of the six therapies under consideration. As
both predictive models allow therapy effectiveness to dif-
fer for different patient characteristics, a personalized
ranking of therapies was obtained for each patient. Note
that this ranking only applies with respect to the chosen
indicator of therapy effectiveness, i.e. in this case either
the lowest predicted number of relapses or the lowest

Stühler et al. BMC Medical Research Methodology           (2020) 20:24 Page 5 of 15



predicted probability of observing a CDP, and does not
represent an overall therapy recommendation which
would account for multiple determinants. In order to
evaluate the usability of the models in clinical practice,
average observed treatment responses were compared
between patients who received the highest ranked
therapy (denoted as DMT* in the following) and those
who did not.
To avoid potential confounders on responses, the distri-

bution of each predictor was matched between patients
who received DMT* and those who did not with a
propensity-score-based weighting as implemented by the
twang package [16, 17]. The propensity-score-based
weighting allowed to match the distributions of the covari-
ates of the two groups without having to discard any data
[16, 18, 19]. It was implemented based on age, relapses
count (in the past 12months), EDSS as categorized in [8],
and diagnosis distance. The distributions of the covariates
of each group were matched by using the population
weights to estimate the average treatment effect of the
population [16, 17], while all other settings were kept to
the default settings of the twang package [16, 17].
To test the statistical significance of the group differ-

ences between patients receiving DMT* and those who
did not, a weighted GLM was employed according to an
analysis of outcomes approach [16]. P-values were de-
rived from the GLM based on the estimated significance
of the relevant intercept and slope coefficients. For each

observation, an indicator variable was used to specify
whether the patient received DMT*. A negative binomial
GLM was used for the observed number of relapses [18]
and a binomial GLM was employed for the observed oc-
currence of a CDP as follows:

svyglm:nbðobserved:number:relapses � took:DMT� þ

offset log duration:DMT �ð Þð Þ; design ¼ design:psÞ

svyglmðobserved:occurence:CDP � took:DMT�

þoffset log duration:DMT �ð Þð Þ; family

¼ binomial; design ¼ design:psÞ

The duration of each therapy cycle was included as
offset to allow for cycles with heterogeneous observation
time, i.e. to allow for the comparability of the results be-
tween patients with different index therapy durations.
The procedure is illustrated in Fig. 1.

Results
The following results are presented: overview of patient
population after quality and inclusion criteria were applied
(Section 3.1), importance of model coefficients (Section
3.2) and model performance assessment (Section 3.3).

Table 3 Overview of the predictors used for predictive models and nested models

Non-personalized model Prognostic model Predictive model

Clinical site x x x

Index therapy x x x

Index duration x x x

Age x x

Gender x x

EDSS x x

Second-line x x

Current therapy x x

Current duration x x

Interaction (Current therapy, Current duration) x x

Diagnosis distance x x

Relapse distance x x

Relapses count x x

DMTs count x x

Interaction (Index therapy, Diagnosis distance) x

Interaction (Index therapy, Gender) x

Interaction (Index therapy, Relapses count) x

Interaction (Index therapy, Second-line) x

EDSS expanded disability status scale, DMT disease modifying therapy, Second-line DMT to be employed by label of the European Medical Agency if previous DMT
failed to achieve sufficient control of disease activity.
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Patient population
After the inclusion criteria described in Section 2.1.2 have
been applied, index therapy cycles consist of: Dimethylfu-
marat (22%), Fingolimod (25%), Glatirameracetat (13%),
Interferon-ß1 (19%), Natalizumab (9%), and Terifluno-
mide (13%). At least 266 therapy cycles per DMT are
available for model development. A detailed description of
the patient population is reported in Additional file 1.

Importance of model coefficients
The predictors associated to the eight largest fixed-
effect parameter estimates (in magnitude) of the re-
lapse and CDP models are reported in Table 4 and
Table 5, respectively. The predictors are listed along
with the signs and the posteriors’ median absolute de-
viations (MADs) of their corresponding estimates.
Most of the ranked coefficients are interaction terms,
two of which appear in both rankings: (i) the coeffi-
cient for the interaction between Natalizumab as
index therapy and the diagnosis distance, and (ii) the
coefficient for the interaction between Fingolimod as
index therapy and the second-line therapy indicator.
In the relapse model, the duration of the current
therapy seems to have a significant impact both indi-
vidually and when combined with Teriflunomide or
Fingolimod. Note that the largest parameter estimate
has the highest uncertainty. In the CDP model, hav-
ing had a second-line DMT is particularly meaningful
when the index therapy is Teriflunomide, Natalizu-
mab or Fingolimod.
Figure 2 displays the MADs of the fixed-effects’

posterior distributions in the relapse and the CDP
models. In both cases, the estimates having highest

uncertainty are those associated to the following pre-
dictors: duration of the current therapy, interaction
between the current therapy and its duration, and
Teriflunomide as a current therapy.

Model performance assessment
Model performance was assessed via model calibra-
tion (Section 3.3.1), model generalizability (Section
3.3.2), comparison with nested models (Section 3.3.3),
sensitivity analysis (Section 3.3.4) and comparison of
observed therapy response to evaluate the usability of
the models in clinical practice (Section 3.3.5).

Fig. 1 Comparison of predicted therapy. a Patients assigned to the same highest ranked therapy are divided into two groups: those who
received indeed this therapy (red) and those who received another therapy (gray). b Weights are calculated for the two groups to mitigate the
effect of confounds on the analysis. In particular, the weights are calculated such that each group matches the population statistics. As an
example, this results in larger weights for females in the group with a smaller ratio of females compared with the overall occurrence than in the
group with a larger ratio. c The weights are included in a survey-weighted GLM, where an indicator variable encodes membership to one of the
two groups, and observation time is accounted for. The GLM allows for a propensity-score-based weighting of the clinically relevant outcomes of
the two groups. The estimated slope allows then for a comparison of the disease activity between the two groups

Table 4 Most important predictors in the relapse model

Ranka Predictor Signb MAD

1 Current = TERI: Current duration – 4.301

2 Intercept – 0.553

3 Current = TERI – 1.406

4 Current = FTY: Current duration + 1.983

5 Index = NA: Diagnosis distance + 0.368

6 Current duration + 1.414

7 Index = TERI: Relapses count – 0.332

8 Index = FTY: Second-line = TRUE – 0.335

MAD median absolute deviation, TERI Teriflunomide, FTY Fingolimod, NA
Natalizumab, Second-line DMT to be employed by label of the European
Medical Agency if previous DMT failed to achieve sufficient control of
disease activity.
a Ranked according to the magnitude of the median of the corresponding
coefficient’s posterior distribution
b A positive sign is associated with a boosting effect on the number of
relapses; a negative sign is associated with a lessening effect on the number
of relapses
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Model calibration
The agreement between predictions and observations
was studied for all DMTs and also for each DMT
separately.
Both the relapse model and the CDP model are well

calibrated for low values of the response, while the
agreement between prediction and observation worsens
for high response values (Fig. 3. As only few therapy cy-
cles have a high response value, improvement can be ex-
pected as new data is collected.
The same calibration assessment was performed for

each of the six considered index therapies the models
are trained on. The resulting figures show the same
trend as for the calibration with all DMTs (Fig. 3), indi-
cating that the predictions for one selected index therapy
do not systematically underestimate or overestimate the
response when compared with the others.
This supports the conclusion that predictions for dif-

ferent therapies can be compared, and that the resulting
therapy ranking is usable.

Model generalizability
The generalizability of the model was assessed using
three different out-of-sample validation schemes (Sec-
tion 2.3.3). All results are reported in Table 6, Table 7
and Table 8.

10-fold cross-validation and test set For 10-fold cross-
validation, the percentage change between in-sample
and out-of-sample performance measures is always less
than 9.5%. For most performance measures and models,
this change is even less than 5%. The percentage change
between out-of-sample and test-set performance mea-
sures is less pronounced. For the relapse model, the
MSE and the negative log-likelihood drop less than 2%

and the C-Index drops by 5.7%. For the CDP model, the
three performance measures drop by 5.7–6.3%.
As the models presented in this study should be ap-

plicable to different time windows, performance mea-
sures were additionally evaluated for forecast windows
between 0.5 and 5.5 years. All performance measures
show the best results in the first half year, remain stable
in the time window between 0.5 and 4.5 years and de-
cline for time windows above 4.5 years. The time win-
dows (0.5, 1.5], (1.5, 2.5], (2.5, 3.5], (3.5, 4.5] show
comparable results for all performance measures (Add-
itional file 4: Table S4.1).

Leave-one-site-out cross-validation Only a slight in-
crease in negative log-likelihood is observed when mak-
ing predictions for new clinical sites compared with in-
sample predictions. Furthermore, the negative log-
likelihood has a similar variability within and across clin-
ical sites for both the relapse and CDP models (Add-
itional file 9). These findings indicate that the models
generalize well to new clinical sites.
In summary, the results presented in this section indi-

cate that the relapse model is more robust than the CDP
model and that both predictive models are robust and
therefore able to generalize to new patients and clinical
sites, especially when predicting up to 4.5 years into the
future.

Comparison with nested models
Two additional nested models of lower complexity were
presented in Section 2.3.4. Predictive models were com-
pared with these non-personalized and prognostic
models based on out-of-sample performance measures
(40 times 10-fold cross-validation).

Comparison between predictive and non-personalized
model When adding personal characteristics to the
relapse model, an increase of performance is observed in
both discrimination (increase of C-Index from 0.5531 to
0.6458 by 0.0927) and goodness-of-fit (decrease of nega-
tive log-likelihood of − 69.3), while no change is observed
for the MSE (− 0.0003). For the CDP model, the results
derived from the performance measures are inconclusive.
The negative log-likelihood and the MSE show a decrease
in performance from the non-personalized to the predict-
ive model (5.8 resp. 0.00048 difference). On the other
hand, the addition of the personal characteristics causes
an improvement of the C-Index by 0.0352.

Comparison between predictive and prognostic model
The predictive models include additional parameters ac-
counting for interactions between patient characteristics
and index therapy compared with the prognostic model
(Table 3), which allows the predicted therapy effect to

Table 5 Most important predictors in the CDP model

Ranka Predictor Signb MAD

1 Intercept – 0.721

2 Index = TERI: Second-line = TRUE – 0.977

3 Index = NA: Second-line = TRUE – 0.837

4 Index = NA: Diagnosis distance + 0.518

5 Index = FTY: Second-line = TRUE – 0.487

6 Current = IF: Current duration – 1.604

7 Current = NA: Current duration – 2.124

8 Current + 0.711

MAD median absolute deviation, TERI Teriflunomide, FTY Fingolimod, NA
Natalizumab, IF Interferon-ß1, Second-line DMT to be employed by label of the
European Medical Agency if previous DMT failed to achieve sufficient control
of disease activity.
a Ranked according to the magnitude of the median of the corresponding
coefficient’s posterior distribution
b A positive sign is associated with a boosting effect on the likelihood of
observing a CDP; a negative sign is associated with a lessening effect on the
likelihood of observing a CDP
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differ for different patients (Section 2.3.4). For the re-
lapse model, a decrease in performance is observed
when accounting for interactions (C-Index − 0.0024,
MSE 0.0242, negative log-likelihood 6.2). For the CDP
model, a decrease is observed in goodness-of-fit (MSE
0.00011, negative log-likelihood − 1.4) while an increase
in performance is observed for the C-Index (0.0194).

In summary, adding personal characteristics as predic-
tors is beneficial in terms of C-Index and negative log-
likelihood, for the relapse model, and in terms of C-
Index, for the CDP model. These findings suggest that
this first level of personalization is worth to be further
investigated. Adding a second level of personalization,
i.e. interactions between patient characteristics and

Fig. 2 Model coefficients. MADs of the fixed effects’ posterior distributions in the relapse model (a) and in the CDP model (b)
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index therapy, increases model complexity and shows no
improvement in the performance measures for the re-
lapse model, and an improvement in the C-Index and
negative log-likelihood of the CDP model. In order to
further assess the benefit of the predictive models, a new
method was introduced in Section 2.3.6 and is evaluated
below in Section 3.3.5. This allows to investigate the po-
tential of these models from a different perspective.

Model robustness
It was shown that the predictive models are robust against
different choices of the priors, as for the vast majority of
patients the changes in the model coefficients did not
affect the therapy ranking (Additional file 5: Figure S5.7).
Exceptions were cases where the predictions for different
therapies were already similar. Similarly, the predictive
models proved robust against differing characteristics of

Fig. 3 Calibration. Calibration of the relapse model (top) and CDP model (bottom) using equally-populated bins, when considering all DMTs
together (left) and when considering each DMT separately (right). The predictions are split into 20 equally-populated bins from zero to four
relapses, for the relapse model, and from zero to one, for the CDP model. Different shades of gray highlight a different population size
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the underlying patient population and against changes in
the sample size within the assessed range (Additional file
6 and Additional file 7).

Comparison of predicted therapy response
Both predictive models enable to derive a personalized
ranking of therapies for each patient (Section 2.3.6). In
the following, disease activity is compared within a
survey-weighted GLM between patients being treated
with the highest ranked therapy DMT* and patients
treated with a different DMT.
From the six therapies discussed in this study (Dimethyl-

fumarat, Fingolimod, Glatirameracetat, Interferon-ß1,

Natalizumab, and Teriflunomide) only those which had
both patients receiving and not receiving DMT* could be
considered. Furthermore, implementation properties of the
employed packages required a minimum of 10 observations
per condition [20]. Due to these criteria, Glatirameracetat,
Interferon-ß1 and Teriflunomide had to be excluded from
the assessment of the relapse model and Interferon-ß1 had
to be excluded from the assessment of the CDP model
(Additional file 8: Table S8.1).
The results of the relapse model are presented in Table

9. This table summarizes the group comparisons derived
from the survey-weighted negative binomial GLM
svyglm.nb (Section 2.3.6), applied to the observed number
of relapses and for the respective DMT*. Observation time
has been accounted for within this GLM. As the indicator
variable takes value 1 for receivers of DMT* and 0 for
non-receivers of DMT*, a negative slope indicates a lower
disease activity for patients who received DMT*. Both
Dimethylfumarat and Natalizumab are associated with a
significantly lower number of observed relapses at the p <
0.05 significance level when patients received DMT* com-
pared to other DMTs. Fingolimod, however, is associated
with lower sample sizes in both groups, and the differ-
ences between the two groups are not significant.
The results of the CDP model are presented in Table

10. This table summarizes the group comparisons derived
from the survey-weighted quasi-binomial GLM svyglm

Table 6 Performance of predictive, prognostic and non-personalized models based on out-of-sample and in-sample predictions

Measure Out-of-sample mean (SE)a In-sample mean (SE)a Sample sizeb Response Model

C-Index 0.5819 (0.0008) 0.6546 (0.0005) 307,784 CDP predictive

C-Index 0.5625 (0.0007) 0.6220 (0.0004) 307,784 CDP prognostic

C-Index 0.5467 (0.0006) 0.5649 (0.0005) 307,784 CDP non-personalized

C-Index 0.6458 (0.0004) 0.6781 (0.0003) 505,724 relapse predictive

C-Index 0.6482 (0.0003) 0.6700 (0.0002) 505,724 relapse prognostic

C-Index 0.5531 (0.0003) 0.5609 (0.0003) 505,724 relapse non-personalized

MSE 0.12497 (0.00005) 0.11928 (0.00004) 3119 CDP predictive

MSE 0.12486 (0.00004) 0.12132 (0.00003) 3119 CDP prognostic

MSE 0.12449 (0.00002) 0.12388 (0.00001) 3119 CDP non-personalized

MSE 0.7554 (0.0008) 0.7097 (0.0006) 3119 relapse predictive

MSE 0.7312 (0.0005) 0.7049 (0.0003) 3119 relapse prognostic

MSE 0.7557 (0.0002) 0.7517 (0.0001) 3119 relapse non-personalized

NLL 1252.6 (0.6) 1190.9 (0.4) 3119 CDP predictive

NLL 1254.0 (0.5) 1215.5 (0.2) 3119 CDP prognostic

NLL 1246.8 (0.2) 1240.3 (0.1) 3119 CDP non-personalized

NLL 2580.8 (0.6) 2519.9 (0.4) 3119 relapse predictive

NLL 2574.6 (0.5) 2534.9 (0.3) 3119 relapse prognostic

NLL 2650.1 (0.2) 2641.9 (0.2) 3119 relapse non-personalized

SE standard error of the mean, CDP confirmed disability progression, C-Index Harrell’s concordance statistic, MSE mean squared error, NLL negative log-likelihood.
a Estimated by repeating 10-fold cross-validation 40 times
b Refers either to the number of observations (MSE, NLL) or the number of matched pairs (C-Index)

Table 7 Performance of models trained on the full data set and
evaluated on the test set

Measure Value Sample sizea Response Model

C-Index 0.554 3354 CDP predictive

C-Index 0.608 5606 relapse predictive

Average NLL 0.423 314 CDP predictive

Average NLL 0.821 314 relapse predictive

MSE 0.131 314 CDP predictive

MSE 0.784 314 relapse predictive

CDP confirmed disability progression, C-Index Harrell’s concordance statistic,
MSE mean squared error, NLL negative log-likelihood.
a Refers either to the number of observations (MSE, average NLL) or the
number of matched pairs (C-Index)
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(Section 2.3.6), applied to the observed occurrences of
CDP, and for the respective DMT*. Analogously to the as-
sessment of the relapse model, observation time has been
accounted for within this GLM and a negative slope
indicates a lower disease activity for patients who re-
ceived DMT*. All therapies except Fingolimod are asso-
ciated with a lower occurrence of CDP when patients
received DMT*, although only the differences for
Dimethylfumarat are statistically significant at the sig-
nificance level of p < 0.05. The remaining therapies are
associated with considerably smaller sample sizes in at
least one of the two groups.
In summary, recommendations based on predicted

rankings could not be assessed for all six therapies due
to sample size (Additional file 8: Table S8.1). For the
CDP model, five of the six therapies could be assessed,
where a negative estimated slope from a survey-
weighted GLM corresponds to the highest ranked ther-
apy in four cases, and is significant for one comparison.
For the relapse model, three of the six therapies were
assessed, where a negative estimated slope from a
survey-weighted GLM is associated with the highest
ranked therapy in all cases except for Fingolimod, and
is significant for two comparisons. These results indi-
cate that although performance measures do not cap-
ture the additional benefit of interactions between
patient characteristics and index therapy, the compari-
son of treatment effectiveness derived from both pre-
dictive models adds value in clinical practice, as
patients receiving DMT* show less disease activity than
patients receiving any other DMT (significant for three
out of eight comparisons).

Discussion
A framework for personalized prediction was employed
to assess the effectiveness of different DMTs with
regards to clinical outcomes of RRMS. Hierarchical
Bayesian GLMs were implemented to predict the num-
ber of relapses or the occurrence of a CDP, for several
available DMTs. The predictive framework was based on
real-world data collected in the NTD registry, which
consists of clinical data on patient characteristics and
disease history.
Assessment of the model performance using estab-

lished statistical methods demonstrated that the relapse
model and the CDP model provide robust and accurate
predictions, and that both models generalize to new pa-
tients and clinical sites.
The predictive relapse model achieved an average out-

of-sample C-Index of 0.65 and an average out-of-sample
MSE of 0.76 relapses. The predictive CDP model
achieved an average C-Index of 0.58 and an average out-
of-sample MSE of 0.12 CDPs.
The predictive models were shown to be robust

against different choices of the priors and against sample
size. Robustness against different choices of the priors
was proven by the fact that changing the prior distribu-
tions does not influence the predicted therapy ranking.
Exceptions were cases where the predictions for different
therapies were already similar. Robustness against sam-
ple size was proven by the fact that model coefficients
do not change significantly when reducing the sample
size within the assessed range.
The overall performance of the predictive models al-

lows for reliable comparisons of the effectiveness of

Table 8 Performance of the predictive models based on leave-one-site-out cross-validation

Measure Out-of-samplea mean In-sampleb mean Sample sizec Response Model

C-Index 0.579 0.652 307,784 CDP predictive

C-Index 0.646 0.675 505,724 Relapse predictive

MSE 0.125 0.119 3119 CDP predictive

MSE 0.748 0.711 3119 Relapse predictive

NLL 1254.330 1192.544 3119 CDP predictive

NLL 2581.261 2523.731 3119 Relapse predictive

CDP confirmed disability progression, C-Index Harrell’s concordance statistic, MSE mean squared error, NLL negative log-likelihood.
a Based on predictions for patients from a clinical site not used during training
b Based on predictions for all patients from all clinical sites used for training
c Refers either to the number of observations (MSE, NLL) or the number of matched pairs (C-Index)

Table 9 Comparison of therapy effectiveness for the relapse model

DMT* Slope coefficienta Sample size when DMT* was taken Sample size when DMT* was not taken p-value

Dimethylfumarat −0.6918 134 307 0.016

Fingolimod 0.0423 128 112 0.860

Natalizumab −0.4376 234 2182 0.019

DMT* highest ranked disease modifying therapy.
a Derived from a survey-weighted negative binomial generalized linear model where negative sign indicates lower disease activity
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different therapies. Therapy rankings obtained from both
predictive models proved to be aligned with real-world
clinical outcomes. Patients having received the therapy
with the highest predicted effectiveness were less likely
to suffer from relapses or to experience a CDP com-
pared with patients treated with other DMTs. Statisti-
cally significant differences were always associated with
better disease outcomes for patients who received the
highest ranked therapy.
The generalizability of the models was evaluated by

implementing a 10-fold cross-validation scheme, a
leave-one-site-out cross-validation scheme with re-
spect to the clinical site, and by using a test set.
When comparing in-sample against out-of-sample
performance measures, performance never dropped by
more than 9.5% for all three performance measures
used in this study, indicating that the predictive
models generalize well to an unseen patient popula-
tion. Comparable performance was obtained using 10-
fold cross-validation and the test set. This indicates
that the predictive models can be applied to new pa-
tients that fulfill the inclusion criteria. The availability
of a large multi-site dataset with high-quality entries
in the NTD registry proved important for testing the
generalizability of the models to new clinical sites, an
inevitable requirement to ensure applicability to a
wide range of patients.
As application of predictive models in RRMS is still

at an early stage, this study builds on previous studies
in this field ([8, 9, 21, 22]) and addresses identified
challenges: (1) effectiveness of different therapies with
regards to disease course can be compared with one
another as they are based on the same model and
underlying data, (2) the models fulfill multiple estab-
lished statistical criteria for accuracy and robustness,
and show comparable performance for predictions up
to 4.5 years into the future, (3) the models generalize
to new patients and new clinical sites, (4) model pre-
dictions are clinically meaningful, since patients re-
ceiving the therapy with the highest predicted
effectiveness had a better observed clinical outcome
in terms of number of relapses and CDP.

The Bayesian predictive modeling setup is ideal for
including newly available therapies, as results derived
from clinical studies can be used as prior information.
Predictive models will be updated on a regular basis
every three months, following the continuous updates
of the NTD registry. For this, the predictive models
are fitted based on an updated training set after qual-
ity and inclusion criteria have been applied to a new
data extraction, and the main validation routine as
described above is performed. After quality checks
have been passed, coefficients are updated accord-
ingly. This will ensure that the underlying algorithms
are monitored and validated regularly, and that
changes in the RRMS treatment landscape will be
captured as soon as possible. In addition, new models
will be assessed to improve the capabilities of the
framework even further.
For the presented and all further extensions of the pre-

dictive models, additional validation on external data
sets is planned. As magnetic resonance imaging (MRI)
and molecular data for the prediction of RRMS treat-
ment response become available, their usefulness will be
evaluated to improve predictive accuracy and tailor the
predictive framework even further to personalized
information.

Conclusion
The findings presented in this study support a personal-
ized approach in RRMS treatment and tackle some ca-
veats in classical medicine, where assessing the potential
individual benefit of therapy choices is based on group-
level analysis and not on individual patient characteris-
tics [23] [24] [25] [26]. Predictive models that are con-
tinuously updated and that provide personalized
comparative therapy effectiveness insight support the
multifaceted shared decision process between doctors
and their patients in a clinically meaningful way. Positive
experience of their use in daily clinical practice will fos-
ter collection of high-quality real-world data and con-
tribute to the transition to effective personalized
treatment of RRMS.

Table 10 Comparison of therapy effectiveness for the CDP model

DMT* Slope coefficienta Sample size when DMT* was taken Sample size when DMT* was not taken p-Value

Dimethylfumarat −0.5363 863 306 0.027

Fingolimod 0.1114 135 87 0.792

Glatirameracetat −0.5336 238 45 0.350

Natalizumab −0.4021 1101 132 0.405

Teriflunomide −0.4317 179 16 0.730

DMT* highest ranked disease modifying therapy.
a Derived from a survey-weighted quasi-binomial generalized linear model where negative sign indicates lower disease activity
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