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Abstract

Granulocyte-colony stimulating factor (G-CSF), a pleiotropic cytokine, belongs to the

hematopoietic growth factor family. Recent studies have reported that G-CSF is a predictive

biomarker of oocyte and embryo developmental competence in humans. The aim of our

study was to determine whether CSF3 and its receptor (CSF3R) were expressed in porcine

maternal reproductive tissues (oviduct and uterus), cumulus cells, and embryos and to

investigate the effects of human recombinant G-CSF (hrG-CSF) supplementation during in

vitro culture (IVC) on the developmental competence of pre-implantation embryos. To do

this, we first performed reverse-transcription polymerase chain reaction (RT-PCR). Second,

we performed parthenogenetic activation (PA), in vitro fertilization (IVF), and somatic cell

nuclear transfer (SCNT) to evaluate the embryonic developmental potential after hrG-CSF

supplementation based on various concentrations (0 ng/mL, 10 ng/mL, 50 ng/mL, and 100

ng/mL) and durations (Un-treated, Days 0–3, Days 4–7, and Days 0–7) of IVC. Finally, we

examined transcriptional levels of several marker genes in blastocysts. The results of our

study showed that CSF3 transcript was present in all samples we assessed. CSF3-R was

also detected, except in cumulus cells and blastocysts from PA. Furthermore, 10 ng/mL and

Days 0–7 were the optimal concentration and duration for the viability of in vitro embryonic

development, especially for SCNT-derived embryos. The rate of blastocyst formation and

the total cell number of blastocysts were significantly enhanced, while the number and index

of apoptotic nuclei were significantly decreased in optimal condition groups compared to

others. Moreover, the transcriptional levels of anti-apoptotis- (BCL2), proliferation- (PCNA),

and pluripotency- (POU5F1) related genes were dramatically upregulated. In conclusion, for

the first time, we demonstrated that CSF3 and CSF3R were expressed in porcine reproduc-

tive organs, cells, and embryos. Additionally, we determined that hrG-CSF treatment

improved porcine embryonic development capacity in vitro.
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Introduction

Owing to their genetic, anatomic, and physiologic similarities with humans [1], porcine animal

models are commonly used for studying human diseases, developing novel medical treatment

therapies, and xenotransplantation. Recently, xenotransplantation has been widely investi-

gated utilizing interspecies chimeras, created via the injection of human pluripotent stem cells

into porcine blastocysts [2]. Due to the associated importance of in vitro porcine embryo cul-

ture, methods for increasing the viability of embryos are crucial. However, despite extensive

research in previous decades, conditions for the production of in vitro porcine embryos

remain suboptimal [3]. The investigation of maternally-derived factors could aid in vitro pro-

duction methods.

In vivo, pre-implantation embryos developed from the zygote to blastocyst stage must tra-

verse the maternal oviduct to the uterus. During this process, numerous maternal growth fac-

tors, cytokines, and nutrients provide essential conditions for embryonic development [4–7].

Furthermore, in previous studies, these maternal factors have been shown to affect embryonic

development, blastocyst formation rates, blastocyst cell number, metabolism, and apoptosis

[4–7].

Granulocyte colony-stimulating factor (G-CSF, CSF3), a pleiotropic cytokine, belongs to the

hematopoietic growth factor family, including macrophage-colony stimulating factor (M-CSF,

CSF1) and granulocyte macrophage-colony stimulating factor (GM-CSF, CSF2) [8]. Numerous

studies have reported that, in several mammalian species, M-CSF [9–11] and GM-CSF [12–15]

are expressed in the oviduct and uterus during early pregnancy. Furthermore, they have been

implicated in embryonic development. M-CSF enhances the rate of embryonic development

[16] and has been shown to increase trophectoderm (TE) cell numbers in mice [10]. GM-CSF

has likewise been shown to increase the total cell number of embryos and enhances the capacity

of pre-implantation embryonic development in a variety of mammalian species [17–21]. Com-

pared to two such cytokines, reports regarding the roles of G-CSF in reproductive biology are

essentially limited to human and mouse. Previous studies have shown that CSF3 and its receptor

(CSF3R) were expressed at the fetomaternal interface—including endometrial cells—in murine

and human pregnancy [22, 23], and in fallopian tube epithelial cells in humans [24]. However,

to the best of our knowledge, no study has surveyed the roles of G-CSF on pre-implantation

embryonic developmental competence during in vitro culture.

G-CSF is best known for its effects on proliferation, differentiation, and activation of

hematopoietic cells of the neutrophilic granulocyte lineage [25, 26]. These effects are reported

to be mediated via activation of the Jak/STAT and MAPK pathways [27, 28]. Recently, G-CSF

was reported to be involved in the processes of mammalian reproduction. The level of G-CSF

in the follicular fluid has been indicated as a predictive biomarker of not only the developmen-

tal competence of oocytes and embryos, but also subsequent implantation capacity of embryos

after in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) in humans [29–32].

Yanagi et al. [33] and Salmassi et al. [34] demonstrated that G-CSF protein in human follicular

fluid was mainly located in granulosa cells and that the expression of G-CSF mRNA in the late

follicular phase was ~10 fold higher than that of other phases during the menstrual cycle.

G-CSF has been shown to enhance pregnancy and birth rates in patients who suffer from

recurrent miscarriage. It also promotes the regeneration of endometrial cells in rats [35–37].

In agreement with the results described above, our previous study showed that CSF3 and

CSF3R were also detected in various cells and tissues derived from porcine ovaries such as

oocytes, cumulus cells, granulosa cells, and the corpus luteum [38]. We also confirmed that

human recombinant G-CSF (hrG-CSF) supplementation during porcine oocyte maturation in
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vitro increased the competence of oocytes to develop as embryos [38]. However, the role of

hrG-CSF in in vitro pre-implantation embryonic development remains unclear.

The aim of the present study was to determine whether CSF3 and CSF3R are expressed in

the porcine reproductive tract and embryos and to investigate the effects of hrG-CSF on pre-

implantation embryos during in vitro culture (IVC). To do this, we first analyzed the expres-

sion of CSF3 and CSF3R mRNA in the oviduct, uterus, cumulus cells, and blastocysts. Second,

we performed parthenogenetic activation (PA), IVF, and somatic cell nuclear transfer (SCNT)

to evaluate embryonic developmental potential and to count the total and apoptotic cell num-

bers of blastocysts after hrG-CSF supplementation. Finally, we examined the transcriptional

levels of genes selected as markers for proliferation (PCNA), pluripotency (POU5F1), and apo-

ptosis (BCL2 and BAX) in blastocysts.

Materials and methods

Chemicals

Unless otherwise indicated, all chemicals and reagents used in this study were purchased from

Sigma-Aldrich Corporation (St. Louis, MO, USA). Given that porcine G-CSF is not currently

available, we used human recombinant G-CSF (hrG-CSF, SRP6164; Sigma-Aldrich) in this

study. The factor was dissolved in Dulbecco’s phosphate-buffered saline (DPBS; Invitrogen/

Thermo Fisher Scientific, Carlsbad, CA, USA) with 0.1% bovine serum albumin (BSA). The

final hrG-CSF stock solution was formulated to 10 μg/mL. The control medium consisted of

DPBS containing 0.1% BSA. Both solutions were stored at –20˚C previous to warming for

addition to porcine zygotic medium-3 (PZM-3) [39].

Oocyte recovery and in vitro maturation

Ovaries from prepubertal gilts were collected from a local slaughterhouse and transported to

the laboratory within 2 h in physiological saline supplemented with 100 IU/mL penicillin G

and 100 mg/mL streptomycin sulfate at 37˚C. Follicles 3–6 mm in diameter were aspirated

using an 18-gauge needle attached to a 10-mL disposable syringe. Cumulus-oocyte complexes

(COCs) were pooled in 15 mL conical tubes and allowed to sediment out of solution at 37˚C

for 5 min. The supernatant was discarded and the sediment containing the COCs was resus-

pended with HEPES-buffered Tyrode’s medium (TLH) containing 0.05% (wt/vol) polyvinyl

alcohol (TLH-PVA). Oocytes possessing an evenly granulated cytoplasm and 3–10 layers of a

compact cumulus mass were selected and washed twice with TLH-PVA. After washing, 50–60

COCs were transferred to a 4-well dish (Nunc, Roskilde, Denmark) with 500 μL in vitro matu-

ration (IVM) culture medium (TCM-199; Invitrogen) supplemented with 0.6 mM cysteine,

0.91 mM sodium pyruvate, 10 ng/mL epidermal growth factor (EGF), 75 μg/mL kanamycin,

1 μg/mL insulin, 10% (vol/vol) porcine follicular fluid (pFF), 4 IU/mL equine chronic gonado-

tropin (eCG), and 4 IU/mL human chronic gonadotropin (hCG; Intervet, Boxmeer, The Neth-

erlands). After 22 h of culture, COCs were transferred to hormone-free IVM medium and

cultured for an additional 20–22 h at 39˚C under 5% CO2 in humidified air. COCs were then

denuded by gentle pipetting with 0.1% hyaluronidase and washed three times in TLH-PVA

medium. Denuded oocytes with obvious first polar bodies and uniform ooplasm were selected

to produce embryos.
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Detection of G-CSF and G-CSF-R by reverse transcription-polymerase

chain reaction (RT-PCR) analysis

Gene expression of CSF and CSF3R was analyzed in porcine oviducts and uteruses in the luteal

and follicular phases. Expression levels in cumulus cells and blastocysts derived from in vitro
fertilization (IVF) and parthenogenetic activation (PA) were also investigated. The follicular

phase was defined by follicular maturation and the luteal phase was defined by the presence of

the corpus luteum. Uteri and oviducts were collected from a slaughterhouse and mechanically

isolated; approximately 0.01 g of the resulting tissue per sample was used for RT-PCR analysis.

Tissues were washed three times with PBS containing 0.01% (wt/vol) PVA (PBS-PVA), snap

frozen in liquid nitrogen, and ground to a fine powder. Cumulus cells isolated from 120

COCs, 21 IVF blastocysts (Day 7), and 18 PA blastocysts were selected separately under a ste-

reomicroscope. All blastocyst developmental stages (early, expanded, and hatched) from IVF-

and PA-derived embryos were used for RT-PCR analysis. Finally, tissues and cells were washed

three times with PBS-PVA and transferred to lysis buffer (Dynabeads1mRNA Direct Kit;

Dynal Biotech Asa, Oslo, Norway) before snap freezing in liquid nitrogen and storage at –

80˚C until mRNA isolation could be performed. mRNA was extracted using the Dynabeads1

mRNA Direct Kit (Dynal Biotech ASA) followed by routine cDNA synthesis using the Labo-

Pass™ cDNA Synthesis Kit Mastermix (Cosmo Genetech, Seoul, Korea). PCR amplification

was performed using 35 cycles, each consisting of 15 sec at 95˚C, 15 sec at 58˚C, and 30 sec at

72˚C. After amplification, 10 μL of the PCR reaction product was electrophoresed on a 1.5%

agarose gel and product sizes were verified with a 100-bp DNA ladder (Roche, Mannheim,

Germany). The reference gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was

PCR amplified to rule out the possibility of RNA degradation and to control for the variation

in mRNA concentrations in the RT reaction.

Parthenogenetic activation of oocytes

Matured oocytes were rinsed twice in activation medium (280 mM mannitol solution contain-

ing 0.001 mM CaCl2�2H2O and 0.05 mM MgCl2�6H2O, with pH adjusted to 7.0–7.4 and osmo-

larity adjusted to 280 mOsm/L). For activation, the oocytes were placed between two

electrodes in a chamber containing the activation medium connected to a BTX Electro-cell

Manipulator 200 (BTX, Richmond, CA, USA) and subjected to two direct-current (DC) pulses

of 380 V/mm for 60 μsec. Activated oocytes were immediately transferred into PZM3 supple-

mented with 7.5 μg/mL cytochalasin B (CB, C6762) for 3 h. They were then transferred into

30 μL PZM-3 droplets (10 gametes per drop) covered with mineral oil after being washed three

times in fresh PZM-3 medium. Embryos were cultured at 39˚C in a humidified atmosphere of

5% O2, 5% CO2, and 90% N2 for 168 h (Day 7). In all experiments, the IVC medium was

renewed after 48 h (Day 2) and 96 h (Day 4).

In vitro fertilization and culture

IVF and IVC were performed according to a protocol described previously [38]. Briefly, the

oocytes were co-incubated with sperm for 20 min at 39˚C in a humidified atmosphere of 5%

CO2 and 95% air. After co-incubation, loosely attached sperm was removed from the zona pel-

lucida (ZP) by gentle pipetting. After washing three times in modified Tris-buffered medium

(mTBM) as described previously [40], oocytes were then incubated in fresh mTBM without

sperm for 5 to 6 h at 39˚C in a humidified atmosphere of 5% CO2 and 95% air. Thereafter, fer-

tilized oocytes were cultured in 30 μL micro-drops of PZM-3 (10 ova per drop) after being

washed three times with the same medium. Micro-drops were covered with pre-warmed
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mineral oil and embryos were cultured at 39˚C for 168 h (7 days) under a humidified atmo-

sphere of 5% O2, 5% CO2, and 90% N2.

Micromanipulation for somatic cell nuclear transfer, fusion, and activation

Matured oocytes were incubated for 5 min in manipulation medium (TLH-BSA; calcium-free

TLH with 0.2% bovine serum albumin) containing 5 μg/mL Hoechst 33342 (B2261; Sigma-

Aldrich) and 5 μg/mL CB. After washing twice in fresh TLH-BSA, oocytes were transferred

into a drop of TLH-BSA supplemented with 5 μg/mL CB. Oocytes were enucleated by aspirat-

ing their polar bodies and metaphase II chromosome-containing ooplasm using a 16 μm glass

pipette (Origio Humagen Pipets, Charlottesville, VA, USA). Enucleation was confirmed by

momentary exposure to UV under the control of a shutter system (VCM-D1; Vincent Associ-

ates, Rochester, NY, USA). After enucleation, a 14–15 μm trypsinized fetal fibroblast with a

smooth cell surface was transferred into the perivitelline space of an enucleated oocyte using a

fine injecting pipette. The couplets were washed twice in activation medium (as described for

PA) and transferred to a chamber with the fusion medium (260 mM mannitol solution con-

taining 0.1 mM CaCl2 and 0.05 mM MgSO4). Membrane fusion was induced by two DC pulses

of 680 V/mm for 60 μsec. Fused oocytes were washed 3–4 times; membrane fusion was vali-

dated using a stereomicroscope after a 30-min incubation in TLH-BSA. Thereafter, SCNT

embryos were treated with 2 mM 6-dimethylaminopurine and 0.4 mg/mL demecolcine in the

PZM-3 for 4 h under incubation conditions described for PA. Reconstructed embryos were

washed three times in fresh PZM-3 medium, transferred into 30 μL PZM-3 droplets covered

with pre-warmed mineral oil, and incubated for 7 days.

Embryo evaluation and total cell count

The day on which PA or IVF was performed was designated Day 0. Cleavage status was

checked under a stereomicroscope at 48 h (Day 2). Evenly cleaved embryos were classified into

three groups (2 to 3, 4 to 5, and 6 to 8 cells). Blastocyst formation was assessed at 168 h (Day 7)

and blastocysts were classified according to their degree of expansion and hatching status as

follows: early blastocyst (a small blastocyst with a blastocoel equal to or less than half of the

embryo volume), expanded blastocyst (a large blastocyst with a blastocoel greater than half of

the embryo volume or a blastocyst with a blastocoel completely filling the embryo), and

hatched blastocyst (hatching or already hatched blastocyst) [38]. To determine the total cell

number of blastocysts, blastocysts were collected at day 7, washed in PBS-PVA, and fixed in

3.7% paraformaldehyde with PBS-PVA for 10 min before staining with 10 μg/mL Hoechst-

33342 for 5 min, followed by a final washing in PBS-PVA. The stained blastocysts were

mounted on glass slides in a drop of 100% glycerol, gently covered with a coverslip, observed

under a fluorescence microscope (TE300; Nikon, Tokyo, Japan) at 400× magnification, and

counted manually.

Transferase-mediated dUTP nick end labeling (TUNEL) assay

Blastocysts were washed three times in PBS-PVA then fixed in 3.7% paraformaldehyde (w/v)

for 1 h at room temperature. After fixation, they were permeabilized with 0.5% Triton X-100

(v/v) for 1 h at 38.5˚C. Permeabilized blastocysts were then incubated in the dark for 1 h at

37˚C with fluorescein-conjugated deoxyuridine triphosphate (dUTP) and terminal deoxynu-

cleotidyl transferase (Roche, Mannheim, Germany). After nick end labeling, the blastocysts

were counterstained with 10 μg/mL Hoechst 33342 for 10 min at room temperature to label

nuclei, washed in DPBS-PVA, mounted under a coverslip, and examined under a fluorescence

microscope (TE300; Nikon).
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Gene expression analysis by real-time polymerase chain reaction (real-time

PCR)

Blastocyst samples (approximately 10 blastocysts per group) were prepared as described above

in the RT-PCR analysis section and stored at –80˚C for further analysis. Gene expression

(Table 1) was analyzed by real-time PCR, ABI PRISM 7300 Sequence Detection System;

Applied Biosystems/Thermo Fisher Scientific, Foster City, CA, USA). After mRNA extraction

and cDNA synthesis, qRT-PCR reactions were performed using 2 μL of cDNA template with

10 μL SYBR1Master Mixes (Applied Biosystems) containing primers specific to PCNA,

POU5F1, BCL2, and BAX (Table 1). Reactions were performed for 35 cycles under the follow-

ing conditions: denaturation at 95˚C for 30 sec, annealing at 57˚C for 15 sec, and extension at

72˚C for 30 sec. Gene expression was quantified relative to the reference gene, GAPDH. Rela-

tive quantification was based on a comparison of threshold cycle (Ct) at constant fluorescence

intensity. Relative mRNA expression (R) was calculated using the following equation: R = 2-

[4Ct sample-4Ct control].

Statistical analysis

Each experiment consisted of at least three replicates; for each replicate, oocytes were collected

on the same day from the same group of slaughterhouse-derived ovaries. Statistical analysis

was carried out using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). Embryonic development (e.g.,

rates of cleavage and blastocyst formation) was analyzed by the chi-squared test. The total cell

number of blastocysts derived from PA and IVF were compared by one-way analysis of vari-

ance (ANOVA), followed by Duncan’s multiple range tests. T-tests were conducted to assess

the apoptotic differences between cloned blastocysts and for relative gene expression levels. All

data are presented as mean ± SEM. P< 0.05 was considered significant.

Results

Detection of G-CSF and its receptor by RT-PCR

The results showed that amplicons were detectable in samples from IVF-derived blastocysts, as

well as in the oviduct and uterus, respectively, derived from both phases. On the contrary,

Table 1. Primer sequences for analysis of mRNA gene expression.

mRNA Primer sequences (5’-3’) Product size (bp) GenBank accession number

GAPDH F: 5’-GTCGGTTGTGGATCTGACCT-3’ 207 NM_001206359.1

R: 5’-TTGACGAAGTGGTCGTTGAG-3’

PCNA F: 50-CCTGTGCAAAAGATGGAGTG-30 187 XM_003359883

R: 50-TTTTCGGTGAGGTGAGAGAGG-30

POU5F1 F: 50-GCGGACAAGTATCGAGAACC-30 200 NM_001113060

R: 50-CGTTGCTCTCCTAAAACTCC-30

BCL2 F: 5’-AATGACCACCTAGAGCCTTG-3’ 182 NM_214285

R: 5’-GGTCATTTCCGACTGAAGAG-3’

BAX F: 5’-TGCCTCAGGATGCATCTACC-3’ 199 XM_003127290

R: 5’-AAGTAGAAAAGCGCGACCAC-3’

CSF3 F: 5’- GAGCTTCCTGGAGCTGGCGTAC-3’ 208 NM213842

R: 5’-TGCTACAGGCGGGAGAAT-3

CSF3R F: 5’-CTGGGCCTGCTTCTTGATAA-3’ 202 XM_021095950.1

R: 5’-GGCTAGTGGACAGGTCTGGA-3

F: Forward, R: Reverse.

https://doi.org/10.1371/journal.pone.0230247.t001
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almost no expression of CSF3R was detected in cumulus cells and parthenogenetic blastocysts

expressed neither CSF3 nor its receptor (Fig 1).

Effects of hrG-CSF supplementation at various concentrations on porcine

in vitro development of PA and IVF embryos

To identify the optimal concentration of hrG-CSF for the embryonic development of porcine

parthenotes and IVF-derived embryos, embryos were cultured in IVC medium containing 0,

10, 50, and 100 ng/mL hrG-CSF as previously described [38] for 168 h (7 days). The embryos

were evaluated for cleavage and blastocyst presence after 48 h (2 days) and 168 h (7 days),

respectively, using a stereomicroscope. hrG-CSF had no significant effect on the cleavage rate

or blastocyst formation rate in PA-derived embryos. Blastocyst total cell numbers were, how-

ever, slightly increased in the 50 ng/mL hrG-CSF treatment group compared to untreated con-

trols (49.2 ± 1.0, n = 41 and 44.0 ± 1.1, n = 36, respectively; Table 2). In IVF-derived embryos,

blastocyst formation was enhanced in the 10 ng/mL hrG-CSF treated group (28.7%) compared

to that in the 100 ng/mL hrG-CSF treated and non-treated groups (16.9% and 19.3%, respec-

tively; Table 3). Furthermore, total cell number was significantly higher in embryos treated

with 10 ng/mL hrG-CSF (62.5 ± 4.5) compared to those treated with 100 ng/mL hrG-CSF (41.

0 ± 2.9) and those that were non-treated (44.3 ± 3.0; Table 3). The effective optimal concentra-

tion of hrG-CSF was consistent with levels previously reported [38].

Effects of hrG-CSF treatment on in vitro development of PA and IVF

embryos according to the duration of treatment

We established four groups for PA- and IVF-derived embryos according to the duration of 10

ng/mL hrG-CSF supplementation. These four groups included the non-treated control and

treatment during the first 89 h (Days 0–3), the second 89 h (Days 4–7), and the entire 178 h

Fig 1. Detection of CSF3 and CSF3R by RT-PCR. mRNA expression of CSF3 and CSF3R in porcine oviduct and uterus derived from follicular phase and

luteal phase, as well as cumulus cells and blastocysts derived from IVF and PA by reverse transcription-PCR and agarose gel electrophoresis.

https://doi.org/10.1371/journal.pone.0230247.g001
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(Days 0–7), respectively. No difference in parthenote development capacity was observed

between hrG-CSF treatment groups. Nevertheless, blastocyst cell numbers were significantly

increased in the 178 h-treated embryos (51.2 ± 2.1) compared to the first 89 h treated and non-

treated embryos (45.3 ± 1.7 and 42.0 ± 1.5, respectively; Table 4). In IVF-derived embryos, the

entire 178 h treatment group yielded increased blastocyst formation rate (22.0%) compared to

the other three groups (14.8%, 17.7%, and 18.3%; Table 5). However, there was no observed

effect on cell numbers in IVF blastocysts.

Effect of uninterrupted hrG-CSF treatment on the in vitro development of

cloned embryos

Supplementation of hrG-CSF for the entire IVC period increased the percentage of cloned

embryo blastocyst formation compared to non-treated embryos (24.6% vs. 18.0%, respectively;

Table 6).

Effects of hrG-CSF treatment on total cell number and apoptosis in SCNT

blastocysts

To examine the quality of cloned porcine blastocysts, the total number of nuclei and incidence

of apoptosis were counted. The total number of nuclei was significantly (P< 0.05) enhanced

in embryos treated with hrG-CSF compared to non-treated embryos (43.56 ± 2.3 vs.

Table 2. Effects of hrG-CSF supplementation at various concentrations on porcine in vitro development of parthenotes.

hrG-CSF Concentration (ng/mL) No. of oocytes Cultured (4)� No. (%) of embryos developed to Blastocyst cell Number (N)

Cleaved (%)† Blastocyst (%)†

0 144 127 (88.5) 46 (31.8) 44.0 ± 1.1(26)a

10 142 126 (88.4) 50 (35.0) 48.1 ± 1.0(31)bc

50 158 143 (90.2) 45 (28.2) 49.2 ± 1.0(25)c

100 141 125 (88.8) 46 (32.5) 44.9 ± 1.2(24)ab

Values with different superscripts within the same column are significantly different (P< 0.05).

The data represent means ± SEM.

� Number of replicates.

N Number of blastocysts examined.

† Percentage of total cultured oocytes.

https://doi.org/10.1371/journal.pone.0230247.t002

Table 3. Effects of hrG-CSF supplementation at various concentrations on porcine pre-implantation embryonic development of in vitro fertilization embryos.

hrG-CSF Concentration (ng/mL) No. of oocytes Cultured (3) � No. (%) of embryos developed to Blastocyst cell Number (N)

Cleaved (%) † Blastocyst (%) †

0 88 62(70.5) 17(19.3) 44.3 ± 3.0(17)ab

10 87 57(65.5) 25(28.7) 62.5 ±4.5 (23)c

50 91 58(63.7) 21(23.1) 58.4 ± 6.9(21)bc

100 83 52(62.7) 14(16.9) 41.0 ± 2.9(14)a

Values with different superscripts within the same column are significantly different (P< 0.05).

The data represent means ± SEM.

� Number of replicates.

N Number of blastocysts examined.

† Percentage of total cultured oocytes.

https://doi.org/10.1371/journal.pone.0230247.t003
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31.9 ± 1.8, respectively; Fig 2A and 2B). Furthermore, the number of apoptotic nuclei and the

apoptotic index was significantly decreased in embryos treated with hrG-CSF compared to

non-treated controls (5.5 ± 0.7 vs. 8.3 ± 1.2 and 13.6% vs. 26.4%, respectively; Fig 2A, 2C and

2D).

Effects of hrG-CSF treatment on mRNA expression levels of PA, IVF, and

cloned blastocysts

Expression levels of PCNA, POU5F1, BCL2, and BAX were evaluated in PA, IVF, and

SCNT-derived blastocysts. POU5F1 and BCL2 transcripts were significantly higher in

hrG-CSF-treated than in non-treated blastocysts in all groups (Fig 3). PCNA mRNA tran-

script levels were significantly increased only in SCNT-derived hrG-CSF-treated blasto-

cysts (Fig 3C).

Discussion

Here we show for the first time that CSF3 and CSF3R are expressed in porcine reproductive

organs, cumulus cells, and blastocysts of the porcine reproductive system. Furthermore, the

blastocysts derived from IVF expressed CSF3R. We had speculated that G-CSF was one of the

Table 4. Effects of hrG-CSF (10 ng/mL) treatment duration on in vitro development of parthenotes.

Groups No. of oocytes No. (%) of embryos developed to Blastocyst cell Number (N)

cultured (3)� � 2-cells (%)† Blastocysts (%) †

control 89 66(74.1) 29(32.8) 42.0 ± 1.5(28)a

Day 0 to 3 89 66(74.2) 30(33.9) 45.3 ± 1.7(29)a

Day 4 to 7 89 69(77.6) 28(31.4) 46.4 ± 1.9(28)a,b

Day 0 to 7 89 65(73.2) 31(34.9) 51.2 ± 2.1(31)b

Values with different superscripts within the same column are significantly different (P< 0.05).

The data represent means ± SEM.

hrG-CSF: human recombinant granulocyte-colony stimulating factor.

� Number of replicates.

N Number of blastocysts examined.

† Percentage of total cultured oocytes.

https://doi.org/10.1371/journal.pone.0230247.t004

Table 5. Effects of hrG-CSF (10 ng/mL) treatment duration on in vitro development of in vitro fertilization embryos.

Groups No. of oocytes No. (%) of embryos developed to Blastocyst cell Number (N)

cultured (3)� � 2-cells (%)† Blastocysts (%) †

control 81 57 (70.4) 12 (14.8) 54.8 ± 2.0(12)

Day 0 to 3 85 52 (61.3) 15 (17.7) 54.7 ± 1.8(15)

Day 4 to 7 82 53 (64.7) 15 (18.3) 52.1 ± 2.2(15)

Day 0 to 7 82 56 (68.4) 18 (22.0) 54.4 ± 0.3(18)

Values with different superscripts within the same column are significantly different (P< 0.05).

The data represent means ±SEM.

hrG-CSF: human recombinant granulocyte-colony stimulating factor.

� Number of replicates.

N Number of blastocysts examined.

† Percentage of total cultured oocytes.

https://doi.org/10.1371/journal.pone.0230247.t005
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maternally-derived factors needed for embryonic development. We found that hrG-CSF sup-

plementation increased the capacity of embryonic development the total cell number of blasto-

cysts and decreased the number of apoptotic nuclei with a corresponding upregulation of the

expression of genes related to proliferation (PCNA), pluripotency (POU5F1), and anti-apopto-

sis (BCL2).

In previous studies, M-CSF and GM-CSF have been reported to increase murine, bovine,

and porcine blastocyst formation in in vitro culture conditions [16, 18, 20]. Furthermore,

GM-CSF has been shown to increase cell numbers of both the inner cell mass (ICM) and tro-

phectoderm and reduce apoptotic nuclei in humans [41]. Moreover, it improved the hatch

rate of embryos from their zona pellucida and the attachment rate of embryos in in vitro cul-

ture in humans [17] and mice [18]. The effects of G-CSF on the potential of pre-implantation

embryonic development remain unclear. We speculated that G-CSF may play a role similar to

other members of the CSF family. In the present study, we investigated the effects on the devel-

opmental potential of PA, IVF, and SCNT embryos. Interestingly, it was found that the most

prominent effect of hrG-CSF was on cloned embryos. In contrast, there was no improvement

in the proportion of PA blastocyst formation and no expression of CSF3R in PA blastocysts.

However, transcript levels of POU5F1 and BCL2 were found to be increased in all three types

of hrG-CSF-treated blastocysts. These findings may be due to the expression of CSF3R in por-

cine oocytes, as we described previously [38]; alternatively, the receptor may be temporarily

expressed during the early stages of embryonic development, which we did not evaluate here.

Another possible explanation for these results might involve the difference in global levels of

epigenetic reprogramming in porcine in vitro-derived embryos (PA, IVF, and SCNT) such as

DNA methylation [42], leading to the observed differences in the effects of hrG-CSF. Taken

together, the present findings are consistent with previous reports on the other two members

of the CSF family [16–18, 20, 41].

Considering previous reports, these molecules may be produced during specific periods of

pre-implantation embryonic development. An example of such would be interleukin-1β,

which is thought to exert its action on embryonic growth before Day 5 in bovines [43].

GM-CSF has been reported to increase the cell number of blastocysts and the proportion of

blastocysts formed after Day 4 (when embryos were at the morula stage of development) in

porcine and bovine models [19, 23]. As a result of this temporal difference and in order to

establish a more exact action period, hrG-CSF was added to cultures during the first 89 h

(Days 0–3), the second 89 h (Days 4–7), and the entire 179 h (Days 0–7) of embryonic culture.

Interestingly, our current study demonstrated that hrG-CSF supplementation increased the

ratio of IVF embryos that became blastocysts, regardless of the treatment period. The

Table 6. Effects of hrG-CSF treatment for entire stage culture duration on in vitro development of cloned

embryos.

Groups No. of oocytes No. (%) of embryos developed to

cultured (9)� � 2-cells (%) † Blastocysts (%) †

Control 259 181(71.06) 48(18.04) a

10 ng/mL 258 185(72.77) 63(24.60) b

Values with different superscripts within the same column are significantly different (P = 0.103).

The data represent means ± SEM.

hrG-CSF: human recombinant granulocyte-colony stimulating factor.

� Number of replicates.

N Number of blastocysts examined.

† Percentage of total cultured oocytes.

https://doi.org/10.1371/journal.pone.0230247.t006

PLOS ONE Effects of hrG-CSF treatment during in vitro culture on porcine pre-implantation embryos

PLOS ONE | https://doi.org/10.1371/journal.pone.0230247 March 17, 2020 10 / 16

https://doi.org/10.1371/journal.pone.0230247.t006
https://doi.org/10.1371/journal.pone.0230247


continuously treated group showed the highest proportion of blastocyst stage embryos. This

may be related to the CSF3 expression found in both follicular and luteal phase oviducts and

uteri as well as cumulus cells.

Fig 2. Total cell number and apoptosis of cloned blastocyst after hrG-CSF treatment. Representative laser scanning confocal microscopy

images (400×) of nuclei (blue) and fragmented DNA (green) in porcine blastocysts after culturing for 7 days with (10 ng/mL) or without (Control)

hrG-CSF treatment. Scale bar = 100 μm (A). The total cell number of nuclei (B), apoptotic nuclei (C), and apoptotic index (D) in porcine cloned

blastocysts developed in vitro. Ctrl: no treatment; hrG-CSF 10 ng/mL: human recombinant granulocyte-colony stimulating factor 10 ng/mL

treatment for entire stage (Days 0 to 7). The number of embryos examined in each experimental group is shown in parentheses. �: P< 0.05.

https://doi.org/10.1371/journal.pone.0230247.g002
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Defects in DNA modification and chromosome remodeling have been detected frequently

in embryos cultured in vitro, especially those derived from SCNT [42, 44]. These complicated

defects in pre-implantation embryos may lead to a series of additional defects, such as aberrant

expression of POU5F1, which is important for establishing the distinct identity of the ICM in

early embryogenesis [45, 46]; they also have a role in the control of embryonic developmental

pluripotency [47]. A previous study reported that POU5F1 stealth siRNA-injected porcine

embryos were arrested at 8 cell stage [48] and the embryos that expressed a low level of this

gene lost pluripotency and were nearly exclusively differentiated into the TE [47]. Nuclear

reprogramming involves resetting the epigenetic mechanisms that maintain stable gene

expression—for instance, DNA methylation and histone modifications [49]. Incomplete

reprogramming in embryos derived from SCNT may lead to the abnormal development of

cloned embryos [50]. One candidate is the incomplete reactivation of POU5F1 and several

POU5F1-related genes [51]. In this study, we observed an increased expression of POU5F1 in

hrG-CSF-treated blastocysts. Overall, we speculated that hrG-CSF may overcome some of the

reprogramming deficiencies and plays a positive role in the maintenance of sufficient pluripo-

tency during porcine pre-implantation embryonic development.

Embryos cultured in vitro can be affected by environmental stressors that are potential

inducers of unplanned apoptosis. This apoptosis may lead to embryo arrest or influence

embryo viability [52]. BCL2 is associated with anti-apoptotic effect and has been primarily

detected after embryonic genome activation [53]. In bovines, healthy pre-implantation

embryos have been reported to express high levels of BCL2, while fragmented embryos exhibit

low expression levels [54]. In our investigation, hrG-CSF enhanced BCL2 expression levels in

PA, IVF, and SCNT-derived blastocysts. Accordingly, our study indicated that hrG-CSF may

have anti-apoptotic effects.

The role of G-CSF on proliferation according to different cell types remains controversial.

Miyamay et al. suggested that G-CSF plays a role in promoting the proliferation of trophoblast

cells [55]. G-CSF has been shown to have different roles in various cell types; for instance,

Kumar et al. showed that it does not affect the proliferation of ovarian cancer cell lines but

does protect against apoptosis [56]. PCNA is an essential component of the DNA replication

and repair machinery [57] and has been used as a proliferative marker during bovine embry-

onic development [58]. Our findings suggested that the expression of PCNA is only signifi-

cantly enhanced in hrG-CSF-treated SCNT embryos, not in PA and IVF embryos. This is in-

line with previous reports that embryos originating from different reproductive technologies

display distinguishable global gene expression [42, 59]. Therefore, hrG-CSF exhibited different

proliferation effects on these three types of in vitro blastocysts that are shown not only in the

total cell number of blastocysts but also in the transcription level of PCNA.

Fig 3. Analysis of gene expression levels in porcine Day 7 blastocysts. The transcriptional levels of PCNA, POU5F1, BCL2, and BAX genes were analyzed in

porcine blastocysts derived from parthenogenetic activation (A), in vitro fertilization (B), somatic cell nuclear transfer (C) by real-time PCR. Data are

means ± SEM. �P< 0.05, �� P = 0.0709.

https://doi.org/10.1371/journal.pone.0230247.g003
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In conclusion, we found that hrG-CSF enhanced porcine pre-implantation embryonic

developmental competence in vitro. In other words, G-CSF may play a role in porcine embry-

onic development by maintaining embryo pluripotency and exhibiting anti-apoptotic and pro-

liferative effects. G-CSF is likely a maternal factor secreted by maternal reproductive tissues.
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