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A B S T R A C T   

Rationale and objectives: The computed tomography (CT) score has been used to evaluate the 
severity of COVID-19 during the pandemic; however, most studies have overlooked the impact of 
infection duration on the CT score. This study aimed to determine the optimal cutoff CT score 
value for identifying severe/critical COVID-19 during different stages of infection and to 
construct corresponding predictive models using radiological characteristics and clinical factors. 
Materials and methods: This retrospective study collected consecutive baseline chest CT images of 
confirmed COVID-19 patients from a fever clinic at a tertiary referral hospital from November 28, 
2022, to January 8, 2023. Cohorts were divided into three subcohorts according to the time in-
terval from symptom onset to CT examination at the hospital: early phase (0–3 days), interme-
diate phase (4–7 days), and late phase (8–14 days). The binary endpoints were mild/moderate 
and severe/critical infection. The CT scores and qualitative CT features were manually evaluated. 
A logistic regression analysis was performed on the CT score as determined by a visual assessment 
to predict severe/critical infection. Receiver operating characteristic analysis was performed and 
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the area under the curve (AUC) was calculated. The optimal cutoff value was determined by 
maximizing the Youden index in each subcohort. A radiology score and integrated models were 
then constructed by combining the qualitative CT features and clinical features, respectively, 
using multivariate logistic regression with stepwise elimination. 
Results: A total of 962 patients (aged, 61.7 ± 19.6 years; 490 men) were included; 179 (18.6%) 
were classified as severe/critical COVID-19, while 344 (35.8%) had a typical Radiological Society 
of North America (RSNA) COVID-19 appearance. The AUCs of the CT score models reached 0.91 
(95% confidence interval (CI) 0.88–0.94), 0.82 (95% CI 0.76–0.87), and 0.83 (95% CI 0.77–0.89) 
during the early, intermediate, and late phases, respectively. The best cutoff values of the CT 
scores during each phase were 1.5, 4.5, and 5.5. The predictive accuracies associated with the 
time-dependent cutoff values reached 88% (vs.78%), 73% (vs. 63%), and 87% (vs. 57%), which 
were greater than those associated with universal cutoff value (all P < 0.001). The radiology score 
models reached AUCs of 0.96 (95% CI 0.94–0.98), 0.90 (95% CI 0.87–0.94), and 0.89 (95% CI 
0.84–0.94) during the early, intermediate, and late phases, respectively. The integrated models 
including demographic and clinical risk factors greatly enhanced the AUC during the intermediate 
and late phases compared with the values obtained with the radiology score models; however, an 
improvement in accuracy was not observed. 
Conclusion: The time interval between symptom onset and CT examination should be tracked to 
determine the cutoff value for the CT score for identifying severe/critical COVID-19. The radi-
ology score combining qualitative CT features and the CT score complements clinical factors for 
identifying severe/critical COVID-19 patients and facilitates timely hierarchical diagnoses and 
treatment.   

1. Introduction 

Infectious diseases, such as coronavirus disease 2019 (COVID-19), threaten human life and can rapidly deplete and strain medical 
resources. Notably, COVID-19 exacerbated the shortage of medical resources in underdeveloped countries and has caused approxi-
mately seven million deaths worldwide over the past 3 years [1]. Although the World Health Organization (WHO) announced the end 
of the COVID-19 public health emergency in May 2023 [1], intermittent community transmission of this disease continues. 

Chest computed tomography (CT) imaging is useful for diagnosing COVID-19 and is an important complement to nucleic acid tests 
when a patient first visits the hospital [2]. Several CT manifestations, including linear opacity, crazy-paving patterns, the involvement 
of upper lobes, air-bronchogram, and bronchial wall thickening, are associated with severe or critical COVID-19 [3–5]. Yang et al. [6] 
proposed a chest CT severity score in 2020 for quickly evaluating the severity of pulmonary involvement in patients with COVID-19, 
and a higher score was associated with a higher risk of poor hospital outcomes, such as intensive care unit (ICU) admission, mechanical 
ventilation (MVT), and death [6–9]. Nonetheless, these findings were mostly derived from CT scans of patients infected with previous 
strains. Recent studies have shown unique characteristics resulting from infection with the Omicron variant versus the Delta variant; 
for example, a lower incidence of typical COVID-19 CT findings, a reduced chest CT severity score, and an improved hospital outcome 
[10,11]. Therefore, the CT characteristics associated with severe or critical cases after infection with the emerging Omicron strains 
require additional investigation. 

Many studies have shown the promising performance of CT scores for evaluating the disease severity and predicting the short-term 
prognosis of COVID-19 patients. For example, Yang et al. proposed using a CT severity score (0–2 points for 20 lung regions) to quickly 
and objectively evaluate the severity of pulmonary involvement in patients with COVID-19, and obtained an area under the curve 
(AUC) of 0.89 [6]. Other studies have shown that the CT score is correlated with 30-day mortality independent of age, respiratory rate, 
oxygen saturation levels, and comorbidities [8,12]. Elmokadem et al. examined different CT scoring systems for COVID-19 and re-
ported very good-to-excellent (maximum AUC of 0.90) performance in detecting severe cases, and the results exhibited excellent 
interobserver agreement [13]. However, there remains a lack of standardized approaches for CT score use in real clinical settings, and 
the optimal cutoff values for CT scores vary [4,6,8]. One issue that previous studies have mostly overlooked is that the infection 
duration can greatly affect the CT findings associated with COVID-19 [8,14–16]. For example, Francone et al. [8] reported that a 
higher CT score is detected during the late phase (>7 days since symptom onset) of COVID-19 than during the early phase (≤7 days). 
Bernheim et al. [14] reported that consolidation and bilateral and peripheral disease are more common during the late phase (6–12 
days since symptom onset) than during the early phase (0–2 days). Thus, the time interval between symptom onset and the first CT 
examination should be considered to determine the best cutoff value for the CT score for differentiating mild/moderate infection from 
severe/critical infection. Additionally, as clinical factors associated with COVID-19 severity have been well established [17,18], 
evaluating the imaging characteristics of COVID-19 patients alone may be insufficient. 

Therefore, in this retrospective study, we sought to develop (1) a time-dependent model using the visualized CT score to identify 
severe/critical COVID-19 pneumonia and (2) an integrated model using the CT score, qualitative radiological features, demographic 
features, and clinical risk factors for the timely identification of severe/critical COVID-19 upon a patient’s first visit to the hospital to 
facilitate hierarchical diagnosis and treatment. 

Z. Zhu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e27963

3

2. Materials and methods 

The institutional review board of our hospital approved this retrospective study (I-23PJ175), and the requirement for informed 
consent was waived. 

2.1. Study design and population 

Since the Chinese government loosened the national dynamic “zero-COVID” policy in November 2022, Beijing has witnessed the 
unprecedented impact caused by Omicron variants on medical services [19–21]. This retrospective study reviewed all consecutive 
patients who visited the fever clinic at our hospital from November 28, 2022, to January 8, 2023, during the peak Omicron outbreak. 
Following hospital protocol at that time, the fever clinic screened for COVID-19 infection and received all outpatients or emergency 
patients who had body temperatures over 37.3 ◦C or had suspected COVID-19. The inclusion criteria for our study were as follows: 1) a 
diagnosis of COVID-19 by positive real-time polymerase chain reaction detection of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) nucleic acid or a positive antigenic test; and 2) the availability of chest CT scans on the same day as the first visit to our 
hospital. The exclusion criteria were as follows: 1) duration from symptom onset to CT scan exceeding 14 days; 2) interval between the 
CT scan and presentation at the hospital exceeding 24 h; 3) asymptomatic SARS-CoV-2 infection; 4) pregnancy; and 5) pediatric status 
(age <18 years). 

The enrolled patients were divided into mild/moderate COVID-19 and severe/critical COVID-19 groups primarily according to 
their clinical symptoms and oxygenation status as described in the “Diagnosis and Treatment of Novel Coronavirus Infection (10th 
Trial Version)” published by China’s National Health Commission in January 2023 (e-Appendix 1) [22]. The results were indepen-
dently evaluated by a senior physician who specializes in respiratory diseases. The 30-day composite clinical outcomes, including the 
receipt of MVT or extracorporeal membrane oxygenation (ECMO), ICU admission, and in-hospital death, were extracted from the 
follow-up medical records. 

2.2. Data collection and CT image acquisition 

Demographic data (age, sex, smoking history, and vaccination status), preexisting comorbidities, clinical symptoms, initial labo-
ratory findings, and clinical outcomes were extracted from the electronic medical records system. Vaccinated patients had received 

Fig. 1. Demonstration of different CT scores for the extent of RLL involvement in two COVID-19 patients on axial, coronal, and sagittal CT images of 
the lung window. 

Z. Zhu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e27963

4

inactivated vaccines for COVID-19 (Sinovac-CoronaVac; Sinopharm, Beijing, China) during the mass vaccination campaign in the 
summer of 2021. Initial laboratory findings included the hemoglobin concentration, white blood cell count, lymphocyte count, platelet 
count, high-sensitivity C-reactive protein (hsCRP) level, and procalcitonin level. Thrombocytopenia was defined as a platelet count 
below 100 × 109/L. Anemia was defined as a hemoglobin level below 120 mg/dL. The predefined clinical thresholds for procalcitonin 
and high-sensitivity C-reactive protein elevation (hsCRP) were 0.5 ng/mL and 50 mg/L, respectively. The optimal thresholds for the 
neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were determined to be 3.5 and 200, respectively, to 
maximize Youden’s index during the receiver operating characteristic (ROC) curve analysis. 

Chest CT scans were performed during a single inspiratory phase using an InsitumCT 768 from Sinovision (China) or an IQon 
Spectral CT from Philips Healthcare (the Netherlands) multi-detector CT scanners. All CT scans were obtained with the patient in the 
supine position during a single breath-hold. The tube voltage was 120 kV for all of the scans. Automatic exposure-control technology 
was used to adjust the tube current for each patient. All the images were reconstructed with slice thickness/interval values of 5 mm/5 
mm, 1.25 mm/1.25 mm, or 1 mm/1 mm in the axial plane. The images were subsequently transmitted to the Picture Archiving and 
Communication System (Centricity PACS; GE Healthcare, Chicago, IL, USA) for further data analysis. 

2.2.1. Image evaluation 
Image analysis was performed using preselected lung (width, 1200 HU; level, − 600 HU) and mediastinal (width, 450 HU; level, 50 

HU) window settings. Two senior radiologists with 19 and 30 years of experience who were unaware of the patients’ clinical and 
laboratory information reviewed the images separately and independently. Ambiguous findings were discussed to reach a conclusion 
by consensus. The extent of visualized pneumonia in each lobe on the CT scans was scored from 0 to 2 points (0 points, no evidence of 
pneumonia; 1 point, <50% involvement; and 2 points, ≥50% involvement) as proposed by Yang et al. [6] (Fig. 1). The CT score for the 
entire lung was the sum of the five lung lobe scores (0–10 points). Pneumonia patterns on the CT images were categorized per the RSNA 
Expert Consensus Statement [23]. The qualitative image features included previously reported prognostic factors for COVID-19 [7,24], 
such as pleural thickening, pleural effusion, pericardial effusion, lymph node enlargement, the “halo” sign, a “crazy paving” pattern, 
vacuole signs, bronchial distortion, bronchiectasis, bronchial wall thickening, air trapping, mucous plugs, and the “tree-in-bud” sign. 
Emphysema and interstitial lung disease were also evaluated according to typical CT findings and preexisting comorbidities. Pul-
monary artery enlargement and aortic dilation were predefined as a main pulmonary artery diameter of >29 mm and an ascending 
aortic diameter of >34 mm, respectively, as revealed by CT [25,26]. 

2.3. Statistical analysis and sample size calculation 

All analyses were performed using R (version 4.2.2; R Foundation for Statistical Computing, Vienna, Austria). A statistical 
assessment of the differences between groups was determined using the chi-square or Fisher’s exact test (as appropriate) for categorical 
variables and the Wilcoxon rank-sum test for continuous variables. Multiple imputations (“mice” in R) were performed to handle the 
missing laboratory test results. 

For the radiological feature analysis and model construction, the cohort was divided into three subcohorts depending on the 
duration from symptom onset to CT examination: early phase (0–3 days), intermediate phase (4–7 days), and late phase (8–14 days). In 

Table 1 
Group comparison of demographic characteristics and past medical history of patients with COVID-19.  

Demographic and past medical history All cohort Mild/moderate Severe/critical P 

Number of cases 962 783 (81.4) 179 (18.6)  
Sex (%)    <0.001 

Male 490 (50.9) 371 (47.4) 119 (66.5)  
Female 472 (49.1) 412 (52.6) 60 (33.5)  

Age (mean (SD)) 61.7 (19.6) 58.75 (19.39) 74.50 (14.53) <0.001 
Smoking history    <0.001 

Never smoker 513 (53.3) 430 (54.9) 83 (46.5)  
Current smoker 16 (1.7) 10 (1.3) 6 (3.4)  
Ever smoker 28 (2.9) 14 (1.8) 14 (7.6)  
Missing 405 (42.1) 329 (42.0) 76 (42.5)  

Comorbidities 704 (73.2) 535 (68.3) 169 (94.4) <0.001 
Diabetes 203 (21.1) 141 (18.0) 62 (34.6) <0.001 
Cardiovascular disease 418 (43.5) 307 (39.2) 111 (62.0) <0.001 
Cerebrovascular disease 114 (11.9) 72 (9.2) 42 (23.5) <0.001 
Chronic lung disease 176 (18.3) 122 (15.6) 54 (30.2) <0.001 
Chronic liver or kidney disease 94 (9.8) 66 (8.4) 28 (15.6) 0.005 
Immunocompromised status/malignancies 274 (28.5) 218 (27.8) 56 (31.3) 0.41 

Vaccination status    0.34 
Unvaccinated 104 (10.8) 80 (10.2) 24 (13.4)  
1–2 shots 63 (6.5) 52 (6.6) 11 (6.2)  
Booster shot 81 (8.4) 69 (8.8) 12 (6.7)  
Missing 714 (74.2) 582 (74.3) 132 (73.7)  

Note—Except where indicated, data are numbers of patients, with percentages in parentheses. Booster shot refers to the receipt of 3 or 4 shots. 
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each of the subcohorts, a multivariate regression analysis with stepwise backward elimination (“stepAIC” in R) was applied to establish 
the radiology score (CT score and qualitative CT features), the integrated model (radiology score and demographic features), and the 
integratedCRF model (radiology score, demographic features, and clinical risk factors). A univariable logistic regression was used to 
evaluate the association between the CT/radiology scores and clinical outcomes. ROC analysis was then performed, and the AUC was 
compared using the Delong test. Time-dependent cutoff values and a universal cutoff value were determined to maximize Youden’s 
index in each sub-cohort and the entire cohort separately, and the associated accuracies were compared using the McNemar test. A P 
value < 0.05 was considered to indicate a significant difference throughout the study. The sample sizes used for the predictive models 
were calculated as described by Riley et al. [27] and determined using the “pmsampsize” package in R with the following parameters: 
type = ‘b’, Rsquared = 0.199, parameters = 6, and prevalence = 0.19. The minimum sample size required for new model development 
with our settings was 241 cases with 46 events. 

3. Results 

3.1. Participation and baseline characteristics 

A review of 1782 infected patients from the fever clinic was conducted. After excluding ineligible patients, 962 (mean age, 61.7 ±
19.6 years, 490 men) were included in our analysis. Severe/critical COVID-19 at presentation accounted for 18.6% (179/962) of the 
entire cohort. As summarized in Table 1, the severe/critical COVID-19 patients were more likely to be male, older, smokers, and to 

Table 2 
CT features of patients with pneumonia at different phases by clinical stage.  

CT features Entire 
cohort 

Early phase (0-3 d）） Intermediate phase (4-7 d）） Late phase (8-14 d）） 

Severe/ 
critical 

Mild/ 
moderate 

Severe/ 
critical 

P Mild/ 
moderate 

Severe/ 
critical 

p Mild/ 
moderate 

Severe/ 
critical 

P 

N 179 310 51  292 68  181 60  
CT score (mean (SD)) 

LUL 0.95 (0.6) 0.2 (0.4) 0.8 (0.6) <0.001 0.5 (0.5) 0.9 (0.8) <0.001 0.6 (0.5) 1.2 (0.5) <0.001 
LLL 1.27 (0.6) 0.3 (0.5) 1.3 (0.6) 0.6 (0.5) 1.2 (0.6) 0.7 (0.5) 1.3 (0.6) 
RUL 0.95 (0.6) 0.2 (0.4) 0.8 (0.6) 0.5 (0.5) 0.9 (0.6) 0.6 (0.5) 1.1 (0.6) 
RML 1.03 (0.7) 0.1 (0.3) 0.8 (0.7) 0.4 (0.5) 1.1 (0.7) 0.5 (0.5) 1.2 (0.6) 
RLL 1.2 (0.6) 0.3 (0.5) 1.1 (0.6) 0.6 (0.5) 1.3 (0.6) 0.8 (0.4) 1.3 (0.6) 
Total 5.4 (2.3) 0.95 (1.6) 4.7 (2.4) <0.001 2.5 (2.1) 5.4 (2.3) <0.001 3.2 (2.1) 6.1 (2.1) <0.001 

Lobe number 
(mean (SD)) 

4.2 (1.3) 0.9 (1.5) 3.8 (1.5) <0.001 2.5 (2.0) 4.1 (1.4) <0.001 3.1 (2.0) 4.6 (0.9) <0.001 

Pleural thickening 115 
(64.2) 

51 (16.5) 32 (62.7) <0.001 64 (21.9) 42 (61.8) <0.001 47 (26.0) 41 (68.3) <0.001 

Pleural effusion 97 (54.2) 35 (11.3) 32 (62.7) <0.001 39 (13.4) 35 (51.5) <0.001 22 (12.2) 30 (50.0) <0.001 
Pericardial 

effusion 
64 (35.8) 36 (11.6) 22 (43.1) <0.001 33 (11.3) 26 (38.2) <0.001 28 (15.5) 16 (26.7) 0.18 

Lymph node 
enlargement 

31 (17.3) 4 (1.3) 9 (17.6) <0.001 12 (4.1) 12 (17.6) <0.001 17 (9.4) 10 (16.7) 0.37 

Halo sign 20 (11.2) 3 (1.0) 7 (13.7) <0.001 25 (8.6) 9 (13.2) 0.25 23 (12.7) 4 (6.7) 0.24 
Crazy-pavement 48 (26.8) 10 (3.2) 6 (11.8) 0.02 56 (19.2) 18 (26.5) 0.19 56 (30.9) 24 (40.0) 0.21 
Vacuole sign 54 (30.2) 13 (4.2) 10 (19.6) <0.001 62 (21.2) 22 (32.4) 0.06 58 (32.0) 22 (36.7) 0.53 
Bronchial 

distortion 
107 
(59.8) 

21 (6.8) 27 (52.9) <0.001 46 (15.8) 42 (61.8) <0.001 43 (23.8) 38 (63.3) <0.001 

Bronchiectasis 109 
(60.9) 

16 (5.2) 20 (39.2) <0.001 61 (20.9) 47 (69.1) <0.001 55 (30.4) 42 (70.0) <0.001 

Bronchial wall 
thickening 

147 
(82.1) 

84 (27.1) 44 (86.3) <0.001 111 (38.0) 59 (86.8) <0.001 77 (42.5) 44 (73.3) <0.001 

Air trapping 56 (31.3) 47 (15.2) 21 (41.2) <0.001 42 (14.4) 21 (30.9) 0.002 22 (12.2) 14 (23.3) 0.06 
Mucous plugging 27 (15.1) 15 (4.8) 12 (23.5) <0.001 21 (7.2) 8 (11.8) 0.22 5 (2.8) 7 (11.7) 0.012 
Tree-in-bud 

nodularity 
19 (10.6) 22 (7.1) 10 (19.6) 0.007 38 (13.0) 8 (11.8) >0.99 8 (4.4) 1 (1.7) 0.46 

Aortic dilation 104 
(58.1) 

61 (19.7) 35 (68.6) <0.001 107 (36.6) 41 (60.3) 0.001 87 (48.1) 28 (46.7) 0.88 

Pulmonary artery 
enlargement 

64 (35.8) 37 (11.9) 20 (39.2) <0.001 35 (12.0) 24 (35.3) <0.001 22 (12.2) 20 (33.3) 0.001 

Emphysema 55 (30.7) 25 (8.1) 16 (31.4) <0.001 36 (12.3) 22 (32.4) <0.001 33 (18.2) 17 (28.3) 0.101 
Interstitial lung 

disease 
23 (12.8) 23 (7.4) 5 (9.8) 0.57 12 (4.1) 12 (17.6) <0.001 12 (6.6) 6 (10.0) 0.401 

Note—Except where indicated, data are numbers of patients, with percentages in parentheses. Percentages were calculated by dividing the current 
number by the number of n within the same column. For example, pleural thickening was present in 51 patients in the mild/moderate group in the 
early phase and the percentage was calculated as 51/310 = 16.5%. P values were calculated for the difference of variable between groups unless 
otherwise indicated. 
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have at least one preexisting comorbidity. As shown in e-Table 1, the severe/critical COVID-19 group exhibited significantly higher 
incidences of fever lasting over five days (45.8%), chest tightness (57.5%), drowsiness (15.6%), and cognitive disorders (14.5%), while 
the mild/moderate COVID-19 group exhibited higher incidences of myalgia (22.6%) and chills (27.2%). Increased white blood cell and 
neutrophil counts, decreased lymphocyte and eosinophil counts, elevated NLR, hsCRP, and procalcitonin were more prevalent in the 
severe/critical COVID-19 group than in the mild/moderate COVID-19 group (P < 0.001) (e-Table 2). The association between age and 
COVID-19 severity is shown in e-Fig. 1. The percentage of severe/critical COVID-19 was lower in the booster vaccination group (6% 
nonelderly individuals; 27% elderly individuals) than in the unvaccinated group (vs. 11%, P = 0.69; vs. 30%, P = 0.79), regardless of 
age (e-Fig. 2). 

According to the RSNA COVID-19 classification, a typical appearance was noted in 35.8% (344/962) of the patients, and an 
indeterminate appearance was noted in 22.8% (219/962). The dynamic change in the proportion of patients in each COVID-19 
classification is illustrated in e-Fig. 3. 

3.2. Time-dependent chest CT scores and qualitative features of severe/critical COVID-19 patients 

As shown in Table 2, compared to the mild/moderate COVID-19 group (0.95 ± 1.6, early phase; 2.5 ± 2.1, intermediate phase; 3.2 
± 2.1, late phase), the severe/critical COVID-19 group had higher CT scores (vs. 4.7 ± 2.4, P < 0.001; 5.4 ± 2.3, P < 0.001; 6.1 ± 2.1, 
P < 0.001) across the study period. As the interval between the CT scan and symptom onset increased, the CT scores increased 
significantly in both the mild/moderate COVID-19 and severe/critical COVID-19 groups (Fig. 2). In addition, the significant difference 
in the total CT score between the lower lobes and upper lobes observed during the early stage of COVID-19 gradually disappeared over 
time (Fig. 3). 

Fig. 2. Box-and-whisker plots showing CT scores according to time phase for the mild/moderate and severe/critical groups. *: P < .05; **: P < .01; 
***: P < .001; ****: P < .0001; ns: no statistical significance. 

Fig. 3. CT scores of the individual lobes in the severe/critical group. (A) Represents the left lobe and (B) represents the right lobe. Abbreviations: 
LLL, left lower lobe; LUL, left upper lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe. *: P < .05; **: P < .01; ***: P < .001; 
****: P < .0001; ns: not significant. 
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The incidence of pleural effusion was 18.6% (67 of 361) for patients in the early disease phase. Distinctive CT features that were 
more prevalent in the severe/critical group in the early-to-intermediate phase included pericardial effusion, lymph node enlargement, 
aortic dilation, and emphysema. The halo sign, crazy-paving pattern, vacuole sign, and tree-in-bud nodularity were significantly more 
frequent in the severe/critical COVID-19 patients only during the early phase. The distributions of the remaining qualitative CT 
characteristics are shown in Table 2. 

3.3. CT score-based model for identifying severe/critical COVID-19 

The ROC analysis (Fig. 4) revealed that the AUCs of the CT scores reached 0.91 [0.88–0.94], 0.82 [0.76–0.87], and 0.83 
[0.77–0.89] during the early, intermediate, and late phases, respectively. The optimal cutoff values of the CT scores to maximize the 
ROC curve Youden index were 1.5, 4.5, and 5.5 during the early, intermediate, and late phases, respectively. Once the calculated score 
surpassed the corresponding threshold, the patient was classified as a severe/critical case. Compared to that using the universal cutoff 
value (3.6), the accuracy of the model using the time-dependent cutoff values significantly increased from 78% to 88% (McNemar test, 
P < 0.001), 63% to 73% (McNemar test, P < 0.001), and 57% to 87% (McNemar test, P < 0.001). 

The radiology models used during the three phases consisted of the CT score, pleural effusion, pericardial effusion, emphysema, 
bronchial distortion, air trapping, and crazy-paving patterns during the early phase; the CT score, pleural thickening, pleural effusion, 
emphysema, bronchial distortion, and bronchial wall thickening during the intermediate phase; and the CT score, pleural thickening, 
pleural effusion, and pulmonary artery enlargement during the late phase (Table 3). The ROC analysis (Fig. 4) revealed that the AUCs 
of the radiology scores were significantly greater than those of the CT scores alone (P < 0.05 for all), reaching 0.96 [0.94–0.98], 0.90 
[0.87–0.94], and 0.89 [0.84–0.94] during each of the sequential phases. As shown in Fig. 5, the radiology scores during each phase 
were calculated by combining the abovementioned features with linear polynomial equations. Fewer areas overlapped between the 
density curves of the radiology scores between the mild/moderate and severe/critical COVID-19 groups than between the density 
curves of the CT scores across all phases (Fig. 6). 

3.4. Multivariate analysis of the CT scores, radiology scores, and clinical features 

The multivariate analysis results (e-Table 3) revealed an increased risk for severe/critical COVID-19 when a higher radiology score 
is present during the early (adjusted odds ratio (OR) 3.0, 95% CI 2.1–4.3, P < 0.001), intermediate (adjusted OR 2.4, 95% CI 1.8–3.2, P 
< 0.001), and late (adjusted OR 2.4, 95% CI 1.7–3.4, P < 0.001) phases. 

The demographic features included sex and age. Clinical risk factors included comorbidities, a high white blood cell count, a high 
NLR, a low eosinophil count, and a high hsCRP level. Smoking status, vaccination status, and procalcitonin levels were not included 
due to a large proportion of missing values. When combining the radiology scores with preexisting comorbidities and the hsCRP, the 
AUC of the integratedCRF model was significantly greater (from 0.90 to 0.93, P = 0.024) during the intermediate phase. During the late 
phase, the integratedCRF model that combined the radiology score, age, preexisting comorbidities, and the NLR significantly enhanced 
the AUC of the predictive model (from 0.89 to 0.93, P = 0.008) (Table 4). Nonetheless, the prediction accuracy did not improve and 
even decreased during the intermediate phase (from 83% to 80%). The performances of the models that combined the CT scores and 
clinical features are shown in e-Tables 4 and 5 in the supplementary material. 

3.5. Relationship between the 30-day composite clinical outcomes and the radiology score 

Among the 195 patients with known 30-day clinical outcomes, 31.8% (62/195) had experienced composite adverse outcomes 
(eight died, 31 required MVT or ECMO, and 23 were admitted to the ICU). E-Table 6 illustrates that an increased risk of experiencing 
adverse clinical outcomes is associated with a higher radiology score (adjusted OR for death, 1.8; 95% CI, 1.1–2.8; P = 0.01; MVT/ 
ECMO, 2.0; 1.5–2.6; P < 0.001; ICU admission, 1.3; 1.0–1.7; P = 0.06). Significant differences in the CT scores between the early and 
intermediate phases and between the early and late phases were observed in patients without adverse events (Fig. 7). In patients with 
composite adverse clinical outcomes, the total CT score was relatively lower during the early phase than during the later phases, 
although significance was not reached. No evidence of a difference between the total CT scores during the intermediate and late phases 
was observed. 

4. Discussion 

The high transmission rate of the COVID-19 variant poses significant challenges for the clinical management of COVID-19 patients. 
In this study, we found that the percentage of severe and critical COVID-19 patients at presentation was 18.6%, which increased with 
age regardless of preexisting comorbidities. The optimal cutoff values for the CT score for differentiating severe/critical COVID-19 and 
mild/moderate COVID-19 were 1.5 during the early phase and 5.5 during the late phase. Pleural effusion was observed in 18.6% of 

Fig. 4. Receiver operating characteristic curves of CT score, radiology score, radiology score + demographic model (integrated model), and 
radiology score + demographic + clinical risk factors model (integratedCRF model) for identifying severe/critical COVID-19 in the early phase (A), 
intermediate phase (B), and late phase (C). 
Note: Radiology score+demographic model does not exist in the intermediate phase and was not shown in the figure on purpose. 
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Table 3 
Multivariate logistic model determining the radiology score in three subcohorts across three phases.  

Multivariable analysis Early phase (0–3 days from symptom onset) Intermediate phase (4-7days from symptom onset) Late phase (8–14 days from symptom onset) 

Characteristics OR 95%CI P OR 95%CI P OR 95%CI P 

CT score 1.99 1.59–2.51 <0.001 1.73 1.4–2.15 <0.001 2.06 1.54–2.75 <0.001 
Pleural thickening / / / 2.02 0.99–4.12 0.05 2.31 1.02–5.2 0.04 
Pleural effusion 6.71 2.68–16.82 <0.001 3.25 1.56–6.75 <0.001 4.81 2.07–11.19 <0.001 
Pericardial effusion 2.45 0.95–6.35 0.07 / / / / / / 
Emphysema 4.55 1.49–13.86 0.01 2.75 1.24–6.09 0.01 / / / 
Bronchial distortion 3.56 1.33–9.53 0.01 1.85 0.9–3.81 0.1 / / / 
Bronchial wall thickening / / / 3.66 1.52–8.83 <0.001 / / / 
Air trapping 2.75 1.06–7.1 0.04 / / / / / / 
Crazy-pavement 0.2 0.04–0.94 0.04 / / / / / / 
Pulmonary artery enlargement / / / / / / 2.19 0.84–5.7 0.11 
Radiology score formula − 5.43 + 0.69 × CT_score +1.9 × Pleural_effusion+0.89 

× Pericardial_effusion+1.51 × Emphysema 
+1.27 × Bronchial_distortion 
− 1.62 × Crazy-pavement+1.01 × Air_trapping 

− 5.78 + 0.55 × CT_score +0.7 ×
Pleural_thickening+1.18 × Pleural_effusion+1.01 ×
Emphysema 
+0.61 × Bronchial_distortion 
+1.3 × Bronchial_wall_thickening 

− 5.58 + 0.72 × CT_score +0.84 × Pleural_thickening+1.57 ×
Pleural_effusion+0.79 × Pulmonary_artery_enlargement 

Integrated model formula 0.45 + 1.01 × radiology_score-1.05 × Female Demographic features were not selected in the final model. − 0.66 + 0.98 × radiology_score+ 0.89 × Elder 
IntegratedCRF model formula 0.22 + 1.13 × radiology_score − 0.91 × Female-1.21 ×

Comorbidities*+1.74 × high_NLR$ 
− 2.02 + 0.88 × radiology_score +1.14 ×
Comorbidities*+1.44 × high_hsCRP# 

− 4.17 + 0.84 × radiology_score +0.92 × Elder+1.43 ×
Comorbidities*+2.56 × high_NLR$ 

Abbreviations: OR = odds ratio, CI = confidence interval, NLR = neutrophil-to-lymphocyte ratio, hsCRP = high-sensitivity C-reactive protein. Categorical variables were attributed to value 1 as indicated. 
*: The existence of any of the following comorbidities: diabetes, cardiovascular disease, cerebrovascular disease, chronic lung disease, cardiovascular disease and immunocompromised status or ma-
lignancies. $: High NLR was defined as the ratio of neutrophil count and lymphocyte count was above 3.5. #f: High hsCRP was defined as hsCRP>50 mg/L. Integrated model was consisted of radiology 
score and demographic feature. IntegratedCRF model was consisted of radiology score, demographic feature, and clinical risk factors. 
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Fig. 5. Illustration of different radiology scores of the whole lung in two COVID-19 patients. (A): Early phase, clinical type = severe pneumonia, 
total CT score = 2, pleural effusion = 1 (red solid arrow), pericardial effusion = 1 (red hollow arrow), emphysema = 0, bronchial distortion = 0, 
crazy paving patterns = 0, air trapping = 0; Radiology score = -5.43 + 0.69 × 2 + 1.9 × 1 + 0.89 × 1 + 1.51 × 0 + 1.27 × 0 – 1.62 × 0 + 1.01 × 0 
= − 1.26 (>-2.3) classification correct. (B): Intermediate phase, clinical type = severe pneumonia, total CT score = 3, pleural thickening = 1 (yellow 
solid arrow), pleural effusion = 1 (red arrow), emphysema = 0, bronchial distortion = 1 (yellow arrowhead), bronchial wall thickening = 1 (yellow 
hollow arrow); Radiology score = − 5.78 + 0.55 × 3 + 0.7 × 1 + 1.18 × 1 + 1.01 × 0 + 0.61 × 1 + 1.3 × 1 = − 0.34 (>-1.5), correct classification. 

Fig. 6. CT and radiology scores of the entire cohort (n = 962). The left panel shows the relationship between age and CT score (A) or radiology score 
(B). Each dot represents one patient. Light blue denotes the mild/moderate type of COVID-19, and coral denotes the severe/critical type. The density 
curves on the top axis of each plot reflect the distribution of different clinical types of COVID-19. C–E: Correlations among CT score, age, and clinical 
type of COVID-19 in the early phase (C), intermediate phase (D), and late phase (E). F–H: Correlations among the radiology score, age, and clinical 
type of COVID-19 in the early phase (F), intermediate phase(G), and late phase (H). 
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patients in the early phase. Additionally, lymph node enlargement, pericardial effusion, a halo sign, a vacuole sign, and tree-in-bud 
nodularity were significantly more common in the severe/critical patients during the early phase but gradually decreased during 
later phases. The radiology score combined with the CT score and qualitative radiological features exhibited excellent performance in 
identifying severe/critical COVID-19 during all three phases and was also associated with an increased risk for requiring MVT or 
ECMO. The demographic features and clinical risk factors enhanced the AUC of the radiology score during the intermediate phase and 
late phase, but the accuracy of the models did not significantly improve. 

Although reduced hospitalization rates and severity degrees of CT pneumonia associated with Omicron strains compared to Delta 
strains have been noted, our study documented substantially greater rates of severe/critical COVID-19 at presentation to the hospital 
and worse 30-day composite clinical outcomes than previous Omicron studies [28,29]. Rates of 18.6% for severe/critical COVID-19 
and 31.8% for 30-day adverse clinical outcomes were found in our study, whereas only 5% of severe/critical COVID-19 patients 

Table 4 
Parameters of ROC curves of CT score, radiology score, integrated model, and integratedCRF model.   

Characteristics 
Early phase (0–3 days from symptom onset) 

Cutoff AUC (95%CI) Accuracy (95%CI) Sensitivity Specificity PPV NPV P1 (AUC) P2 (AUC) 

CT score 1.5 0.91 (0.88–0.94) 88% (84%–91%) 88% 76% 38% 98% Ref. / 
CT score* 3.6 0.91 (0.88–0.94) 78% (73%–82%) 73% 90% 55% 95% / / 
Radiology score − 2.3 0.96 (0.94–0.98) 85% (81%–89%) 96% 83% 49% 99% <0.001 Ref. 
Integrated model 0.52 0.96 (0.94–0.98) 84% (80%–88%) 98% 82% 47% 100% <0.001 0.896 
IntegratedCRF model 0.52 0.97 (0.95–0.98) 87% (83%–90%) 98% 85% 52% 100% <0.001 0.497 
Intermediate phase (4–7 days from symptom onset) 
CT score 4.5 0.82 (0.76–0.87) 73% (68%–77%) 71% 73% 38% 91% Ref. / 
CT score* 3.6 0.82 (0.76–0.87) 63% (58%–68%) 78% 60% 31% 92% / / 
Radiology score − 1.5 0.90 (0.87–0.94) 83% (78%–87%) 85% 82% 53% 96% <0.001 Ref. 
Integrated model Demographic features were not selected in the final model. 
IntegratedCRF model 0.53 0.93 (0.90–0.95) 80% (75%–84%) 94% 77% 48% 98% <0.001 0.024 
Late phase (8–14 days from symptom onset) 
CT score 5.5 0.83 (0.77–0.89) 87% (82%–91%) 57% 97% 87% 87% Ref. / 
CT score* 3.6 0.83 (0.77–0.89) 57% (51%–64%) 92% 46% 36% 94% / / 
Radiology score − 0.8 0.89 (0.84–0.94) 87% (82%–91%) 78% 90% 71% 93% 0.005 Ref. 
Integrated model 0.54 0.90 (0.85–0.94) 82% (77%–87%) 85% 81% 60% 94% 0.004 0.442 
IntegratedCRF model 0.57 0.93 (0.89–0.97) 87% (82%–91%) 83% 88% 69% 94% <0.001 0.008 

Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval. *: Without 
considering the time window, the optimal cutoff of total CT score was 3.6 if all patients were combined to build the model. Radiology score was 
consisted of total CT score and qualitative CT characteristics. Integrated model was consisted of radiology score and demographic feature. Inte-
gratedCRF model was consisted of radiology score, demographic feature, and clinical risk factors. 

Fig. 7. Box-and-whisker plots of the CT score (A–C) and radiology score (D–F) by time phases for 30-day composite clinical outcomes. The data are 
shown from left to right as follows: alive vs. deceased (A, D), mechanical ventilation (MVT)/ECMO vs. no MVT/ECMO (B, E), and admission to 
intensive care unit (ICU) vs. no ICU (C, F). The bar in the box represents the median. The upper and lower limits of the whiskers indicate 1.5 times 
the interquartile range above and below the upper and lower quartiles, respectively, and the dots indicate each patient. *: P < .05; **: P < .01; ***: 
P < .001; ****: P < .0001; ns: no statistical significance. 
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developed pneumonia in a large cohort study performed by Lu et al. [30] on patients in Shanghai, China. In addition, Lee et al.‘s [28] 
study of patients in Korea indicated that 14% (12 of 88) reached the 30-day composite outcome. Tsakok et al. [10] found that, upon 
hospitalization for Omicron infection, only 2% (vs. 11.8% in our study) of patients required critical care. These contradictory findings 
might be attributable to several factors. First, patients with mild symptoms might choose not to undergo chest CT imaging upon 
presentation to the hospital, leading to a selection bias. Second, most patients in our study had no prior exposure to SARS-CoV-2, and 
their vaccination interval potentially exceeded the protection time window, increasing their vulnerability to the current variants. 
Third, the enhanced neutralization resistance and replicative kinetics of BA.5.2 and BF.7 further weakened their immune protection 
[31,32]. Despite these limitations, our study highlights the enormous pressure that a tertiary hospital in China faced during the 
Omicron wave and the need for the timely identification and management of severe/critical COVID-19 cases [33]. 

Although pleural effusion has been regarded as a risk factor for ICU admission and mortality in previous studies, the reported 
incidence is generally less than 10% in the early phase [7,34]. However, we found that the incidence of pleural effusion associated with 
Omicron infection reached 18.6% (67 of 361) in the early phase. This difference may be explained by the older age and greater 
incidence of comorbidities, especially cardiovascular diseases, in our cohort. In addition, several distinctive CT features of severe/-
critical COVID-19 at an early disease stage were identified. Lymph node enlargement and pericardial effusion correlate with an acute 
inflammatory response and are reportedly associated with increased mortality and prolonged hospitalization in COVID-19 patients 
[15,35]. The vacuole sign is caused by dilation of the alveolar duct and sac and indicates alveolar destruction and the potential 
development of fibrosis [36]. Notably, the incidences of the tree-in-bud and halo signs ranged from 10 to 20% in the severe/critical 
group in the early phase, while the incidences decreased significantly in the late phase. The halo sign is consisted of the peripheral 
ground-glass opacity and the central consolidation zone. Previous studies have indicated that the incidence of the halo sign nears 34%; 
however, few have demonstrated a correlation between COVID-19 severity and the halo sign [37]. It is suggested that the ground-glass 
opacity results from extensive damage to the pulmonary microcirculation, which can induce fibrosis in the later phase [38]. The 
tree-in-bud sign is an atypical CT characteristic of COVID-19 with an incidence of approximately 4% [37]; however, we demonstrated 
an occurrence of 19.6% among severe/critical COVID-19 patients in the early phase. The tree-in-bud sign indicates bronchiolar 
luminal impaction with mucus, pus, or fluid and is nonspecific for SARS-CoV-2 infection. Its early presence implies pathogen spread 
within airways or coinfection with other pathogens. 

The mean CT score of severe and critical patients was significantly lower during the early phase than during the intermediate and 
late phases. Previous studies have developed different thresholds for total CT scores to identify severe or critical COVID-19 patients, 
but none have considered the impact of the interval between symptom onset and the initial CT examination [3,6,8]. Additionally, our 
study revealed a waning difference in the CT score between different lobes as time elapsed after symptom onset, underscoring the 
importance of tracking the time since symptom onset to accurately identify patients with severe/critical COVID-19 pneumonia. 

Moreover, by combining the total CT score with qualitative CT features, we developed a radiology score with a significantly greater 
AUC than that of the CT score alone, especially for the intermediate phase. The addition of qualitative evaluations to increase the 
performance of the predictive models is not new [4,39]. Features such as emphysema represent preexisting chronic lung diseases that 
may render patients vulnerable to viral attacks [40,41]. Bronchial distortion and bronchial wall thickening can reflect ongoing or past 
fibrotic changes that signal a comorbid factor that precipitates the development of severe/critical pneumonia [42]. This difference 
might also be attributable to diffuse alveolar damage during the acute/subacute disease stage. 

This study had some limitations. First, this was a retrospective study of data from a single center in Beijing during a specific time 
window, and the patients tended to be older and were more likely to have preexisting comorbidities. In the future, multicenter data 
from a larger age spectrum should be used to validate the proposed models. Second, a comparison of the CT features between the 
studied strains and previous strains was not conducted because we could not access the data from the previous strains. Third, we did 
not have the exact date of vaccination for each patient, which could have affected the vaccine efficacy analysis. Fourth, information 
regarding smoking history, prior infection history, and medication history was mostly unavailable due to the study’s retrospective 
nature. Nonetheless, our findings indicate that the CT score is a relatively independent index that reflects the overall health condition 
of the lung. Future studies could assess the correlation between the CT score and the abovementioned clinical factors. Finally, the CT 
characteristics of our study were based on two specific Omicron strains circulating during the Beijing pandemic in November 2022 and 
January 2023, and whether these findings apply to the forthcoming strains remain unknown. Nonetheless, our findings suggest a 
correlation between infection duration and the CT score that is not restricted to these two specific strains. 

In summary, in this study we constructed three CT score-based models for three different disease phases to accurately identify 
severe/critical COVID-19. In addition, the study revealed that the best cutoff values of the CT score for identifying severe/critical 
COVID-19 pneumonia are associated with the interval between symptom onset and CT examination. We envision that such an 
approach could be applied to local health emergencies caused by new variants of SARS-CoV-2 and other acute infectious diseases. 
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