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Abstract: The gustation system for sweeteners is well-known to be regulated by nutritional
and metabolic conditions, but there is no or little information on the underlying mechanism.
Here, we examined whether elevation of the blood glucose level was involved in alteration of the
expression of sweet taste receptors in circumvallate papillae (CP) and sweet taste sensitivity in male
Sprague-Dawley rats. Rats under 4 h-fed conditions following 18 h-fasting exhibited elevated blood
glucose levels and decreased pancreatic T1R3 expression, compared to rats after 18 h-fasting treatment,
and they exhibited increased protein expression of sweet taste receptors T1R2 and T1R3 in CP. Under
streptozotocin (STZ)-induced diabetes mellites (DM) conditions, the protein expression levels of
T1R2 and T1R3 in CP were higher than those under control conditions, and these DM rats exhibited
increased lick ratios in a low sucrose concentration range in a brief access test with a mixture of sucrose
and quinine hydrochloride (QHCl). These findings indicate that the elevation of blood glucose level
is a regulator for an increase in sweet taste receptor protein expression in rat CP, and such alteration
in STZ-induced DM rats is involved in enhancement of their sweet taste sensitivity.

Keywords: sweet taste; gustation; taste bud; blood glucose level; diabetes mellites; fasting and
fed condition

1. Introduction

Mono- and di-saccharides such as sucrose, glucose, fructose, etc., are macronutrients and induce
sweet taste sensation as a preferable energy source by stimulating sweet taste receptors expressed by
taste cells in taste buds of the tongue [1,2]. Sweet taste receptors consist of a heterodimer of T1R2 and
T1R3 or a homodimer of T1R3, and are functionally expressed in a variety of organs such as the gut,
pancreas, respiratory tract, brain, etc., in addition to the tongue [3]. For instance, in the gut, activation
of T1R3 expressed by gut mucosa cells induces the release of hormones such as glucagon-like peptide-1
into the blood circulation, and up-regulates expression of the glucose transporter SGLT1 in the brush
border membranes for efficient absorption of monosaccharides as an energy source [3]. In the pancreas,
sweet taste receptors play a role in sensing the blood glucose level to regulate insulin secretion from ß
cells [4–7]. Judging from these findings, sweet taste receptors are necessary for fine tuning of glucose
homeostasis in the body.

Recent accumulating evidence clearly indicates that nutritional and metabolic conditions play
roles in the regulation of sweet taste sensitivity. As the underlying mechanisms, modulation of the
functionality of sweet taste receptors, signal transduction between taste cells in taste buds, neural
transmission, and/or perception by the central nervous system are considered to be involved in. In the
study by Chen et al. [8], rats under fasting conditions exhibited decreased gustatory thresholds for
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sweet taste, while rats with diabetes mellites (DM) induced by streptozotocin (STZ) administration
and obesity induced by a high-fat diet fed exhibited an enhanced response of chorda tympani nerves
to sweeteners. Under hunger and satiety conditions, on the other hand, the primary taste cortex
responsible for taste perception [9] and taste nerve signals [10] are reported to play no or only negligible
roles in alteration of taste sensitivity, while taste buds are suggested to serve as an important target for
gustatory sensitivity modulation [11]. In addition, the sweet taste sensitivity of taste cells appears to be
regulated by satiety-related hormones such as leptin [3 and references therein]. Therefore, regulation
of the functional expression of the sweet taste perception system in the tongue for immediate control
of the sensitivity to sweet taste according to nutritional demands is reasonable.

It has been demonstrated that the expression level of α-gustducin, a downstream molecule in
T1R2/T1R3-mediated sweet taste signaling, in taste buds is correlated with the response to sweet taste
in rats under fasting and fed conditions [8], and in DM rats [12]. In addition, a decreased recognition
threshold for sweet taste was detected in human subjects under fasting conditions compared with after
a meal [13]. Since the blood glucose level shows fluctuation under fasting and fed conditions, there is
a possibility that functional alteration of the sweet taste sensing system, especially taste receptors,
might be induced by alteration in the blood glucose level.

In this study, therefore, we examined whether or not the blood glucose level was involved in
regulation of functional expression of sweet taste receptors in the taste buds of rats under fasting, fed
and STZ-induced DM conditions. In addition, we evaluated sweet taste sensitivity of STZ-induced
DM rats by a brief access test with a mixture of sucrose and QHCl. Based on the finding obtained here,
we concluded that the blood glucose level is a regulator of sweet taste sensitivity by controlling the
sweet taste receptor expression in taste buds.

2. Materials and Methods

2.1. Materials

STZ, citric acid, sucrose and QHCl were purchased from Fujifilm Wako Pure Chemical Corporation
(Osaka, Japan), collagenase D and dispase II from Roche Diagnostics Ltd. (Mannheim, Germany),
and trypsin inhibitor and bovine serum albumin (BSA) from Sigma-Aldrich (St. Louis, MO, USA).
The primer sets were generated by Eurofins Genomics K.K. (Tokyo, Japan) and their sequences are
shown in Table 1. The antibodies used for Western blotting and immunohistochemistry are shown in
Table 2; Table 3, respectively. Except where otherwise noted, the chemicals and reagents were obtained
from Fujifilm Wako Pure Chemical Corporation.

2.2. Animals

Male Sprague-Dawley rats (6–8 weeks old; Japan SLC, Hamamatsu, Japan) were housed with
food and water available ad libitum in a controlled environment with a 12 h/12 h light/dark cycle
in the specific pathogen-free facility. All experiments were performed in strict accordance with
ARRIVE guidelines, and were approved by the Experimental Animal Research Committee of Kyoto
Pharmaceutical University (authorization number: 17-003 from 2017 to 2019). The number of animals
was kept to the minimum necessary for a meaningful interpretation of the data, and animal discomfort
was minimized. After 1 week habituation to the animal facility, rats were randomly divided into two
groups, and to evaluate water intake and food consumption, they were housed individually in a cage.

2.3. Fasting and Fed Conditions

Based on the report of Medina et al. [7], before dissection, rats that fasted for 18 h were defined as
fasting ones, and the fed ones were allowed free access to a regular unrestricted diet (MF, Oriental
Yeast Co. Ltd., Tokyo, Japan) for 4 h following 18 h-fasting. In both groups, rats were allowed to drink
water freely during experimental periods.
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2.4. Development of DM in Rats

In the DM group, rats were administered intraperitoneally (i.p.) a dose of 50 mg/kg of STZ,
which was dissolved in 0.1 M citric acid buffer (pH 4.5), and ones in the control group were administered
i.p. 0.1 M citric acid buffer (pH 4.5) as a vehicle [14,15]. STZ is known to induce type 1 DM in rats
and mice, because they had no insulin secretion from pancreatic cells [16,17]. To confirm development
of DM, blood glucose levels under 2 h-fed conditions following 18 h-fasting were measured 2, 9, 16,
23 and 30 days after the STZ administration using a commercially available kit (Glucocard MyDIA®,
Arkray, Inc., Kyoto, Japan), and rats with levels of 200 or more mg/dL were defined as DM rats [14].
After an additional 2 h-fed treatment, the tongues of rats were obtained for the biochemical analyses
described below.

2.5. Brief Access Test

As reported previously [18,19], we performed a brief-access test to evaluate behavioral responses
to tastants in rats. Since a brief access test is suitable for testing orosensory responses without
a significant post-ingestive contribution, it permits appropriate evaluation of relationship between
blood glucose levels and sweet taste sensitivity and receptor expression. All training and test sessions
were performed during the light phase of the light/dark cycle. The rats had restricted access to water
for 18 h before each training or test session. To obtain a stable lick number, which means motivation
of a rat to drink water with or without a tastant, a training session was performed for 8 days before
initiation of a test session. On the first day of a training session, so that a rat would get used to the
experimental apparatus, it was placed in a test box (a black box to shield from light; width: 36.5 cm,
depth: 21.5 cm and height: 25.5 cm), and was given free-access to distilled water for 15 min from
a polypropylene tube via an elliptical window (major axis: 15 mm, minor axis: 10 mm). A lick counter
system (INECK, Kyoto, Japan) was set up between the edge of the tube and the window, and the
lick number were determined automatically by recording the number of interceptions of the sensor
beam by the tongue of a rat as it licked the solution from the edge of the tube. On the second day of
the training session, the rat was trained to drink distilled water on an interval schedule, consisting
of a 10 s-period of presentation of distilled water and a 20 s inter-presentation interval, and this
schedule was repeated 15–25 times. On the third day, the training was performed with the same
procedure as on the second day except for the use of a 0.3 M sucrose solution instead of distilled
water. On the fourth day, the 0.3 M sucrose solution containing QHCl at the concentration of 0.3 mM
was presented to the rat for 10 s alternatively with 10 s-presentation of distilled water as an interval
between the two taste solutions. The use of a mixture of sweet and bitter taste solutions has been
reported to allow sensitive detection of a change in sweet taste sensitivity, because when a rat cannot
detect the sweet taste in the mixture, it only perceives the bitter taste, and thus avoids drinking the
mixture [20]. On the fifth to seventh days, the training was performed with the same procedure as that
for a test session described below, and the lick numbers obtained on the eighth day were used as the
base data (day 0). After a 18 h-water deprivation period, rats were allowed to drink distilled water
for 2 min freely to quench their excess thirst. Then, each rat was subjected to a test session. In the
test session, the lick numbers were determined 3, 10 and 17 days after STZ administration. The test
session was designed to detect the concentration-dependent response to sucrose for quantification of
sweet taste sensitivity [20]. The taste solutions used in the experiments were prepared as mixtures of
a concentration range of sucrose (0.01 to 1 M) and 0.3 mM QHCl. A series of sucrose-QHCl mixtures
was presented with sucrose concentrations of descending order in the mixtures. During the test session,
the taste solution and distilled water were alternatively presented to the rat for 10 and 5 s, respectively,
presentations of distilled water being designed to rinse the oral cavity. Data were expressed as lick
ratios as a quantitative index of taste sensitivity, which were calculated by dividing the lick number for
a taste solution in 10 s by that for distilled water. This is because the lick number is affected by the
difference in motivation to drink solutions among rats. The lick ratio versus sucrose concentration
curves were non-linearly fitted using GraphPad Prism Software version 6 (GraphPad Software, Inc.,
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La Jolla, CA, USA). We excluded the data for rats that could not accomplish a series of lick tests on
each test day.

2.6. Exfoliation of Epithelial Tissue Including Rat Circumvallate Papillae (CP)

Rats were perfused transcardially with saline under deep anesthesia (pentobarbital sodium,
25 mg/kg, i.p.). As reported previously, rat lingual epithelial tissues containing CP were exfoliated
from the tongue by subcutaneous injection of an enzyme cocktail comprising 2.5 mg/mL dispase II,
1.0 mg/mL collagenase D, and 1.0 mg/mL trypsin inhibitor for 30 min at room temperature, and then
the epithelial tissues were treated with an RNAlater® solution (Sigma-Aldrich) and kept at –20 ◦C
until use [21].

2.7. Reverse Transcription (RT) and Real-Time Quantitative PCR Analyses

Total RNA was extracted and reverse transcribed with a GenElute™ Mammalian Total RNA
kit (Sigma-Aldrich) and a PrimeScript™ RT reagent kit with gDNA Eraser (Takara, Shiga, Japan),
respectively, according to the manufacturers’ instruction manuals. Real-time quantitative PCR was
performed with a LightCycler® 96 System (Roche Diagnostics) using a KAPA SYBR FAST qPCR
Master Mix (2X) Kit (Kapa Biosystems, Wilmington, MA, USA). PCR amplification was performed
using the gene specific primer sets shown in Table 1, and all reactions were carried out with the
following cycling parameters: 94 ◦C for 3 min, and 40 cycles of 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C
for 1 s. mRNA expression levels of target genes were normalized against the corresponding levels of
β-actin mRNA.

Table 1. Primer sets used for quantitative real-time PCR.

Genes Direction Sequence Size (bp) Accession No.

Tas1r2
(T1r2)

Forward 5′-TTCTCATGCTTCTGCCGACAG-3′
105 NM_001271266

Reverse 5′-GCCAATCTTGAAGACACACACGA-3′

Tas1r3
(T1r3)

Forward 5′-AACAACCAATGGCTCACCTCC-3′
202 NM_130818.1

Reverse 5′-AAAGCCATCAAGTACCAGGCAC-3′

Tas2r121
(T2R7)

Forward 5′-ACTCTATGCCACTTACTTCATATCC-3′
120 NM_023997.1

Reverse 5′-AATGAGTGGCTTGAAGGGTAG-3′

Tas2r110
(T2R10)

Forward 5′-GGTCAATGCCAAAGGACCC-3′
301 NM_001166677.1

Reverse 5′-TTAGGGATCCATGATGTGTATATGC-3′

Tas2r108
(T2R16)

Forward 5′-ATTCCATATTCAATCGCTGCC-3′
201 NM_001024686.1

Reverse 5′-TCAGTTACTAACGAAATCCCGC-3′

Tas2r138
(T2R38)

Forward 5′-TATGTGGTGTCATTCTGTGCC-3′
207 NM_001024685.1

Reverse 5′-GACTCTTCTCACCTTTTGCCT-3′

bactin
(β-actin)

Forward 5′-TGACCCTGAAGTACCCCATTG-3′
81 NM_031144.3

Reverse 5′-TGTAGAAAGTGTGGTGCCAAATC-3′

2.8. Western Blotting

Following the method reported previously [22], samples were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and then transferred to polyvinylidene
fluoride (PVDF) membranes. After blocking, each membrane was incubated at 4 ◦C overnight with
primary antibodies diluted with the blocking buffer (Table 2). After several washes, each membrane
was incubated with secondary antibodies diluted with PBS-T (0.1% Tween-20 containing PBS) for 1 h
at room temperature (Table 2). The membrane was then washed and the signal was detected with
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ECL reagent (Perkin Elmer, Inc., Waltham, MA, USA). The optical density of each protein band was
determined with Image J software (ver. 1.48; NIH, Bethesda, MD, USA) [23].

Table 2. Antibodies used for Western blotting.

Proteins Primary Antibody Secondary Antibody

T1R3
rabbit anti-T1R3, dilution: 1:1000

(Cat No.: OST00259, Osenses, Keswick, SA, Australia)
Blocking buffer: 3% BSA in PBS-T anti-rabbit HRP-linked IgG, dilution: 1:10000

(Cat No.: PI-1000, Vector Laboratories,
Burlingame, CA,USA)

ß-actin

rabbit anti-beta actin, dilution: 1:1000
(Cat No.: GTX109639, GeneTex Int. Co.,

Los Angeles, CA, USA)
Blocking buffer: 4% BlockAce® (Cat No.: UK-B40,

KAC Co. Ltd., Hyogo, Japan) in PBS-T

2.9. Immunohistochemical Analysis

Animals were perfused transcardially with 4% paraformaldehyde in 0.1 M phosphate buffer
(pH 7.4) containing 0.2% picric acid under deep anesthesia (pentobarbital sodium, 25 mg/kg, i.p.),
and then their tongues were removed. The tongues were sectioned at 40 µm thickness with a freezing
microtome (Leica CM1850; Leica, Nussloch, Germany), and then the sections were subjected to
immunohistochemical analysis [21,24].

Immunoreactivity of antigens was investigated by free-floating immunohistochemistry.
Free-floating sections were immunoreacted with primary antibodies (Table 3) in PBS containing
1% donkey serum, 0.3% Triton-X-100, 0.3% BSA and 0.05% sodium azide for 3 days at 4 ◦C, followed
by incubation for a day at 4 ◦C with secondary antibodies (Table 3) in the same buffer as that for
the primary antibodies and 1 mg/mL Hoechst 33258 in the blocking buffer for counterstaining of
nuclei. For all immunostaining, a negative control (NC), which was prepared by omitting the primary
antibodies, was prepared, and the reproducibility of immunostaining was confirmed by assessing
sections from four or five rats per immunostaining. The sections were mounted on glass slides and
then enclosed using VECTASHIELD® Mounting Medium (Vector Laboratories, Burlingame, CA,
USA). Photomicrographs were obtained under a confocal laser microscope (LSM800; Carl Zeiss, Jena,
Germany). Fluorescence intensity was measured using the histogram program of the Photoshop
software (Adobe Systems, San Jose, CA, USA) [18,19].

Table 3. Antibodies used for immunohistochemistry.

Proteins Primary Antibody Secondary Antibody

T1R2
rabbit anti-TAS1R2, dilution: 1:200

(Cat No.: NB110-74920-azide,
Novus Biologicals, LLC., Centennial, CO)

Donkey anti-rabbit IgG conjugated with
Alexa Fluor 488, dilution: 1:1000

(Cat. No.: 21206, Life Technologies,
Carlsbad, CA, USA)T1R3 rabbit anti-T1R3, dilution: 1:1000

(Cat No.: OST00259, Osenses)

2.10. Statistical Analysis

All data are expressed as means ± SD. To detect significant differences in biochemical parameters
and behavioral tests between the groups, Student’s t-test (Figures 1 and 2, 4c and 5b) and two-way
repeated measures ANOVA followed by Tukey’s post hoc multiple comparisons test (Figures 3 and 4a),
respectively, were performed. A p-value of 0.05 or less was considered statistically significant.
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3. Results

3.1. Sweet Taste Receptor Expression Under Fasting and Fed Conditions

First, in order to confirm whether or not our fed treatment following fasting of rats induced
the elevated blood glucose levels and increased expression of pancreatic T1R3 as the report
of Medina et al. [7], we evaluated the blood glucose levels and expression of T1R3 in the pancreas
of rats under fasting and fed conditions. The blood glucose levels after the 4 h-fed treatment
following 18 h-fasting were significantly greater than those after 18 h-fasting only treatment (Figure 1a,
t = 17.8, p < 0.001). The expression levels of T1R3 in the pancreas of these rats were determined by
Western blotting (Figure 1b,c). The fed rats exhibited lower expression levels of T1R3 in the pancreas
compared to in fasting rats (t = 3.34, p = 0.0287). These results were almost identical to those reported
by Medina et al. [7], indicating the validity of our experimental setting.

Figure 2 shows the expression of sweet taste receptors T1R2 and T1R3 in CP of fasting and fed
rats. Although there was no significant alteration in the expression levels of mRNAs for sweet taste
receptors (T1R2: t = 0.441, p = 0.675; T1R3: t = 0.780, p = 0.465) (Figure 2a), the protein expression levels
of both T1R2 and T1R3 were greater in the fed rats than in the fasting ones (T1R2: t = 2.31, p = 0.0158;
T1R3: t = 2.57, p = 0.00817) (Figure 2b,c), and were significantly correlated with their blood glucose
levels (T1R2: Pearson’s correlation coefficient (r) = 0.678, t = 2.61, p = 0.0261; T1R3: r = 0.772, t = 3.43,
p = 0.00643) (Figure 2d,e).

Figure 1. Blood glucose levels and expression of T1R3 in the pancreas in rats under fasting and fed
conditions. After 18 h-fasting with or without subsequent 4 h-fed treatment of rats, their blood glucose
levels (a) and expression of T1R3 in the pancreas (b,c) were measured. The results shown in panel
c were obtained based on the band density of T1R3 corrected for by that of ß-actin shown in panel
b. In panel b, #1, #2 and #3 are the rat numbers. Each bar represents the mean ± SD for three rats.
* p < 0.05 and ** p < 0.001 (vs. fasting).
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Figure 2. Expression of T1R2 and T1R3 in rat CP under fasting and fed conditions. After 18 h-fasting
with or without subsequent 4 h-fed treatment of rats, the expression levels of T1R2 and T1R3 in CP
isolated from their tongues were determined by real-time PCR (a) and immunohistochemical analysis
(b,c). In panel a, mRNA expression levels of T1R2 and T1R3 were normalized against the corresponding
levels of β-actin mRNA. In panel b, green and blue signals indicate expression of T1R2 or T1R3 and
nuclei, respectively, and the results for fluorescence intensity derived from the immunoreactivity of
T1R2 and T1R3 are given in panel c. In panel b, we linearly adjusted the contrast of whole images
including the background by changing the input value from 255 to 200 in the images for T1R2 in fasting
and fed groups. NC (negative control) was prepared by omitting the primary antibodies. Bar = 50 µm.
Each bar represents the mean ± SD for 4 (a), and 4 (fasting of T1R3) or 5 (fasting and fed T1R2 and fed
T1R3) (b,c) rats. *p<0.05 and **p<0.01 (vs. fasting). Panels d and e indicate correlation between blood
glucose levels and expression levels of T1R2 or T1R3 in rats.

3.2. Sweet Taste Receptor Expression Under STZ-Induced DM Conditions

The blood glucose level, body weight change and intake of food and water in the control and
STZ-administered rats are shown in Figure 3. Administration of STZ apparently increased the blood
glucose level from 2 to 31 days after the administration (Figure 3a). As for the blood glucose level,
two-way ANOVA revealed a significant main effect of treatment (F(1, 14) = 1799, p < 0.001), a significant
main effect of time (F(5, 70) = 75.0, p < 0.001), and a significant interaction between treatment and time
(F(5, 70) = 81.0, p < 0.001). The STZ-administration decreased the body weight gain (a significant main
effect of treatment (F(1, 14) = 198, p < 0.001), a significant main effect of time (F(5, 70) = 83.8, p < 0.001),
and a significant interaction between treatment and time (F(5, 70) = 20.9, p < 0.001)) (Figure 3b), increased
the water intake (a significant main effect of treatment (F(1, 14) = 778, p < 0.001), a significant main effect
of time (F(5, 70) = 67.9, p < 0.001), and a significant interaction between treatment and time (F(5, 70) =
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44.0, p < 0.001)) (Figure 3c), and food consumption (a significant main effect of treatment (F(1, 14) =

91.6, p < 0.001), a significant main effect of time (F(5, 70) = 118, p < 0.001), and a significant interaction
between treatment and time (F(5, 70) = 17.6, p < 0.001)) (Figure 3d) in rats. These results clearly indicated
that STZ administration induces DM conditions in rats.

Next, we assessed whether sweet taste sensitivity was altered in STZ-induced DM rats. As shown
in Figure 4a, in a low concentration range (from 0 to 0.3 M) of sucrose, the lick ratios were significantly
increased in STZ-induced DM rats on days 3, 10 and 17 compared to in control ones. Regarding
the increase of lick ratios, two-way ANOVA indicated a significant main effect of treatment (F(1, 14)

= 7.83, p = 0.0062), a significant main effect of time (F(5, 70) = 15.5, p < 0.001), and no significant
interaction between treatment and time (F(5, 70) = 1.07, p = 0.387). In these rats, we found the significant
correlation between blood glucose levels and lick ratios at 30 mM sucrose, at which the lick ratios
in STZ-induced DM rats were increased time-dependently from day 0 to day 17 (r = 0.485, t = 2.60,
p = 0.0163) (Figure 4b). Under STZ-induced DM conditions, thus, the sweet taste sensitivity of rats
might be increased, but in the brief access test, we used a mixture of sucrose and QHCl as described in
the Materials and Methods, there being a possibility that a decrease in the bitter taste sensitivity of rats
under the DM conditions resulted in an increase in the lick ratio.

Figure 3. STZ administration induced DM conditions in rats. Blood glucose levels (a), body weight (b),
water intake (c), and food consumption (d) in rats were measured just before (day 0) and weekly for
3 weeks after i.p. administration of STZ (50 mg/kg) to them. Each point represents the mean ± SD for
10 (control) and 6 (STZ) rats. * p < 0.001 (vs. control).

In these rats, thus, we determined the expression levels of mRNAs for sweet and bitter taste
receptors in their CP. As shown in Figure 4c, there was no significant alteration in mRNA expression of
sweet taste receptors in the rat CP between the two groups (T1R2: t = 2.45, p = 0.806; T1R3: t = 2.45,
p = 0.120), while the expression levels of mRNAs for T2R2, T2R10 and T2R38 tended to decrease in
STZ-induced DM rats (T2R7: t = 2.45, p = 0.0974; T2R10: t = 2.45, p = 0.0871; T2R38: t = 2.45, p = 0.0978).
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Figure 4. Alteration of the sensitivity and expression of receptors for sweet and bitter taste in
STZ-induced DM rats. (a) Lick ratios were measured by means of a brief access test just before
(day 0), and 3, 10 and 17 after i.p. administration of STZ (50 mg/kg) to them. Panel b indicates
correlation between blood glucose levels and lick ratios at 30 mM sucrose on Days 0, 3, 10 and 17 in
rats. (c) The expression levels of mRNAs for sweet (T1R2 and T1R3) and bitter (T2R7, T2R10, T2R16
and T2R38) taste receptors in CP isolated from their tongues on day 35 were determined by real-time
PCR. mRNA expression levels of taste receptors were normalized against the corresponding levels of
β-actin mRNA. Each point/bar represents the mean ± SD for 10 (control) and 6 (STZ) rats. * p < 0.05,
** p < 0.01, *** p < 0.001 (vs. control).

Because the expression of sweet taste receptors was altered at the protein, but not mRNA, levels
in rats under fed and fasting conditions (Figure 2), we measured expression of T1R2 and T1R3 in CP of
STZ-induced DM rats in another experimental set, in which STZ-administered rats exhibited greater
blood glucose levels, water intake and food consumption, and less body weight gain as in the case
shown in Figure 3 (data not shown). In this study, we could not evaluate protein expression of bitter
taste receptors in rat CP, because there were no available antibodies for their immunohistochemical
detection. As shown in Figure 5a, the immunofluorescent intensities of T1R2 and T1R3 in CP of
STZ-induced DM rats were greater than those in control ones, and their quantification demonstrated
a significant increase in their protein expression (T1R2: t = 2.45, p = 0.00105; T1R3: t = 2.45, p = 0.00938)
(Figure 5b). The expression levels of T1R2 and T1R3 in these rats were correlated with their blood
glucose levels (T1R2: r = 0.876, t = 4.45, p = 0.00214; T1R3: r = 0.874, t = 4.41, p = 0.00225) (Figure 5c),
and the levels of T1R2 were correlated with their lick ratios (r = 0.821, t = 3.53, p = 0.00778), although
the levels of T1R3 exhibited tendency of correlation with the lick ratios (r = 0.623, t = 1.95, p = 0.0866)
(Figure 5d). Therefore, under STZ-induced DM conditions, rats might exhibit increased sweet and
decreased bitter taste sensitivity, and their increased sweet taste sensitivity was due, at least in part,
to the increased expression of sweet taste receptors.
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Figure 5. Protein expression of sweet taste receptors in CP of STZ-induced DM rats. The expression
levels of T1R2 and T1R3 in CP isolated from the tongues of rats on day 35 were determined by
immunohistochemical analysis. In panel a, green and blue signals indicate expression of T1R2 or T1R3
and nuclei, respectively, and the results for fluorescence intensity derived from the immunoreactivity
of T1R2 and T1R3 are given in panel b. In panel a, we linearly adjusted the contrast of whole images
including background by changing the input value from 255 to 150 in the images for T1R2 and T1R3 in
control and DM groups. Bar = 50 µm. Each bar represents the mean ± SD for 5 (control) or 3 (STZ) rats.
* p < 0.01 (vs. control). Panels c and d indicate correlation between blood glucose levels and expression
levels of T1R2 or T1R3 on Day 35, and between lick ratios at 30 mM sucrose on Day 17 and expression
levels of T1R2 or T1R3 on Day 35, respectively, in rats.

4. Discussion

Here, we found that (1) under fed conditions, rats exhibited greater levels of blood glucose and
expression of T1R2 and T1R3 in taste buds of CP than those under fasting ones, (2) in STZ-induced DM
rats, the lick ratios in the brief access test were increased in the low sucrose concentration range, and the
expression levels of T1R2 and T1R3 in taste buds of their CP were increased compared with in control rats,
and (3) the expression levels of sweet taste receptors in fed and fasting rats, and STZ-induced DM ones were
correlated with their blood glucose levels. These findings suggest that the blood glucose level is a regulator
of the expression levels of sweet taste receptors in the taste buds of rat CP and their sweet taste sensitivity.

In this study, we revealed that the expression levels of sweet taste receptors in taste buds of CP are
up-regulated, at least in part, by elevated blood glucose levels, which were induced not only in fed rats
following fasting treatment, but also by hyperglycemia in STZ-treated rats. Because elevation of the blood
glucose level under the 4 h-fed conditions following 18 h-fasting caused an increase in sweet taste receptor
expression in CP, this alteration is considered to be an immediate response, and this is supported by the
finding of no alteration of mRNA levels for T1R2 and T1R3. This was almost identical to the finding
of Zverev where the recognition threshold for sucrose in human subjects was 1 h higher after a meal
than during 14–16 h fasting [13]. Kyriazis et al. [6] suggested that the expression and function of sweet
taste receptors in pancreatic ß cells, which play a role in sensing plasma glucose levels during fasting to
decrease insulin secretion, are reduced under elevated fasting glucose conditions, leading to basal insulin
hypersecretion, and this alteration of functional expression of sweet taste receptors disappears during
immediate fasting. These findings imply that sweet taste receptors expressed by ß cells play an important
role in maintaining the ambient glucose level in a narrow physiological range by sensing small changes in
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it specifically around distinct short-term fasting glucose levels often seen between meals. In addition,
Mace et al. [25] showed that the protein expression of T1R3 in brush border membranes of the intestinal
mucosa was reduced by short time treatment with high concentrations of glucose. Together, our findings
in this study have suggested the possibility that the increased expression of sweet taste receptors in CP in
immediate response to elevation of blood glucose levels might enhance food intake to obtain more energy
sources by increasing sweet taste sensitivity.

The increase in expression of sweet taste receptors was a rather immediate response under fed
conditions following fasting treatment, and this was considered to be due to post-transcriptional
regulation of their protein, but not gene expression and satiety-related hormonal regulation such as
leptin [26,27] and insulin [28]. In mouse pancreatic islets, a rapid decrease of T1R3 under fed conditions
is suggested to be induced by an increase in degradation of T1R3 protein [7]. A similar scenario
seems to be adopted to regulation of taste receptor expression in taste buds of CP. In STZ-induced
type 1 DM rats, there is a possibility that this post-transcriptional regulation of sweet taste receptor
expression might become chronic, but further investigations are necessary to obtain definitive evidence
on immediate and chronic regulatory mechanisms for taste receptor expression in taste buds of CP.

In addition to altered sweet taste sensitivity, STZ-induced type 1 DM rats are considered to have
decreased bitter taste sensitivity, because the rats exhibited increased lick ratios with the 0 M sucrose
solution, which was a bitter solution consisting of 0.3 mM QHCl in the brief access test with a tendency
of a decrease of mRNA expression for some bitter taste receptors in their CP. This decreased bitter taste
sensitivity might also be observed only in STZ-induced type 1 DM rats, but bitter taste sensitivity plays
an important role in the judgement of whether foods ingested are suitable for consumption or should be
rejected. Moreover, bitter taste sensitivity is correlated positively with the percentage of food dislike [29],
and a bitter taste receptor haplotype is associated with altered glucose and insulin homeostasis [30].
Thus, further detail investigations on bitter taste sensitivity in DM patients are needed.

Based on the findings obtained in this study we suggest that taste sensitivity and expression
of taste receptors, especially for sweet taste, should be evaluated under conditions taking the blood
glucose level into consideration.

5. Conclusions

We demonstrate that elevation of the blood glucose level in rats under fed conditions following
fasting treatment increases the expression levels of sweet taste receptors in their taste buds of CP, and the
same alteration is found in the taste buds of STZ-induced DM rats, whose sweet taste sensitivity is
enhanced, at least in part, by decrease of their recognition threshold for sweet taste due to the increased
expression of sweet taste receptors. Therefore, it is suggested that the blood glucose level is a regulator of
sweet taste sensitivity by controlling the sweet taste receptor expression in taste buds of CP.
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