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To improve the performance in multiclass classification for small datasets, a new approach for schizophrenic classification is
proposed in the present study. Firstly, the Xgboost classifier is introduced to discriminate the two subtypes of schizophrenia
from health controls by analyzing the functional magnetic resonance imaging (fMRI) data, while the gray matter volume
(GMV) and amplitude of low-frequency fluctuations (ALFF) are extracted as the features of classifiers. Then, the D-S
combination rule of evidence is used to achieve fusion to determine the basic probability assignment based on the output of
different classifiers. Finally, the algorithm is applied to classify 38 healthy controls, 16 deficit schizophrenic patients, and 31
nondeficit schizophrenic patients. 10-folds cross-validation method is used to assess classification performance. The results
show the proposed algorithm with a sensitivity of 73.89%, which is higher than other classification algorithms, such as
supported vector machine (SVM), logistic regression (LR), K-nearest neighbor (KNN) algorithm, random forest (RF), BP
neural network (NN), classification and regression tree (CART), naive Bayes classifier (NB), extreme gradient boosting
(Xgboost), and deep neural network (DNN). The accuracy of the fusion algorithm is higher than that of classifier based on the
GMV or ALFF in the small datasets. The accuracy rate of the improved multiclassification method based on Xgboost and
fusion algorithm is higher than that of other machine learning methods, which can further assist the diagnosis of clinical
schizophrenia.

1. Introduction

Schizophrenia (SZ) is a serious mental illness that interferes
with a person’s ability to think clearly, manage emotions,
make decisions, and relate to others [1]. The positive symp-
toms, such as hallucinations and delusions, can lead to sui-
cidal or aggressive behavior, while negative symptoms and
cognitive impairment lead to a decline in quality of life
and social function; all these symptoms will cause tremen-
dous human suffering and economic burden [2]. However,
SZ is diagnosed on the basis of clinical evaluation of symp-
toms and functional, no objective diagnostic biomarker set.
In addition, there are two main types of schizophrenia,
which are called deficit schizophrenia (DS) and nondeficit

schizophrenia (NDS) [3]. Deficit syndrome of schizophre-
nia, also called negative symptoms of schizophrenia,
includes social withdrawal, loss of motivation, poverty of
speech, and blunting of affect. Compared with NDS, DS
has greater cognitive impairment, worse long-term progno-
sis, and lower recovery rates, which persist or are found even
during psychotic remissions [4, 5]. Therefore, it is quite
important to diagnose SZ accurately and discriminate the
two subtypes of SZ from healthy control (HC), particularly
the discrimination between the DS and NDS.

Classification is a machine learning algorithm where we
get the labeled data as input and we need to predict the out-
put into a class [6]. If there are two classes, then it is called
binary classification [7]. If there are more than two classes,

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 1581958, 11 pages
https://doi.org/10.1155/2022/1581958

https://orcid.org/0000-0001-5480-0888
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1581958


then it is called multiclass classification. Nowadays, classifi-
cation algorithm is widely used in the medical diagnosis,
especially in the field of mental disorders. Early published
research applied support vector machines with radial basis
function kernel method to classify 15 schizophrenic patients
and 15 HCs based on the structural image of the hippocam-
pal complex only with 63% classification accuracy [8]. With
the rapid development of computational psychiatry, a grow-
ing body of classification approaches are applied to discrim-
inate SZ in recent years, such as logistic regression (LR),
support vector machine (SVM), neural network (NN), ran-
dom forest (RF), extreme gradient boosting (XGBoost),
and deep learning [9]. In the early studies, many researchers
focused on the binary classification problem in SZ. Green-
stein et al. proposed the logistic regress classifier to discrim-
inate 99 SZ patients from 99 HCs with 73.7% accuracy [10].
Nieuwenhuis et al. proposed the SVM classifier to discrimi-
nate 128 SZ patients from 111 HCs and achieved an accu-
racy of 71.4% [11]. Thereby, in the past years, feature
reduction approaches were discussed and applied to
improve the performance of classification. Ershad and
Hashemi proposed the dispelling reduction approaches
[12], Juneja and his colleagues obtained the discriminative
features by using SVD model and a novel multivariate fea-
ture selection algorithm [13]. However, the accuracy was
not high enough based on the classical classification algo-
rithms, which was usually less than 75%. Then, many new
classifiers and feature selection approaches are proposed to
improve the classification performance. Up to 2018, Wang
et al. developed the SVM model to discriminate SZ from
HCs and achieved an accuracy of 92.4% [14]. In 2020, Kim
et al. proposed the feature reduction method when there
are redundant or correlated features based on the FDR value
and achieved an accuracy of 96.2% [15]. Patel et al. proposed
a classification algorithm to discriminate SZ versus HCs by
busing deep learning in fMRI, and the accuracy was 92%
[16]. Nowadays, the binary classification is not a hard work
in the field of mental disorders. However, there is not only
one type of SZ, such as DS and NDS, which is more difficult
to discriminate each other or from HCs. In order to solve
this problem, multiple classification methods for schizo-
phrenic subtypes are necessary.

Few previous literatures have reported multiclass classifica-
tions for different types of psychiatric patients, and most of
these classifications used traditional machine learning methods
such as SVM and LR. For examples, Zhu et al. proposed the
SVM model to classify first-episode, drug-naive SZ, ultrahigh
risk for psychosis and HC with the global balanced accuracy
only 73.37% and the sensitivity only 68.42%, using the fivefold
cross-validationmethod [17]. Soon afterwards, multiple classifi-
cation methods have been explored, such as three SVMmodels
to classify the SZ, bipolar disorder, and HC [18] and classify
depression, bipolar disorder, and HC [19]; an SVM combined
with recursive feature elimination was used to classify first-
episode SZ, chronic SZ, and HC [20]. Unfortunately, almost
all the accuracy rate of the multiclass classification is less than
70%. In addition, because of the poor coordination in psychiat-
ric patients, the amount of imaging data is generally small,
which leads to an accuracy far below 70%.

In recent years, deep learning is widely used in the pat-
tern recognition. Zeng et al. proposed a deep discriminant
autoencoder network to learn imaging site-shared functional
connectivity features to discriminate SZ from normal sub-
jects. In their work, the accuracy of 85% is achieved [21].
Oh et al. collected 873 structural MRI datasets and discrim-
inate the SZ from normal subjects by using a deep convolu-
tional neural network [22]. Srinivasagopalan et al. proposed
a deep learning algorithm for diagnosing SZ [23]. These
deep learning algorithms are based on the original image
data, such as CNN and DNN. However, the original image
data is usually quite difficult to obtain. Many deep learning
algorithms on small dataset is usually overfitting. Therefore,
the machine learning algorithms are more suitable to
improve the performance of the classical classifiers.

To the best of our knowledge, there is no study to imple-
ment the multiclass classification of DS, NDS, and HC based
on multimodal imaging data of schizophrenia. Therefore, in
order to achieve multiclass classification of schizophrenia
and obtain higher classification results in small data, a new
classification algorithm is proposed in this paper. In this
algorithm, GMV and ALFF are selected as the features to
construct multiclassifier based on Xgboost, respectively.
Then, the fused model is built to improve the accuracy for
the small datasets. The D-S fusion model is used to combine
the output from different classifiers to determine the proba-
bility assignment for different subtypes and HC. The rest of
this paper is structured as follows. In Section 2, the Xgboost
classifier is proposed to discriminate DS and NDS from HC
and the fusion model is introduced to combine information
of output. The results obtained by applying our model are
shown in Section 3. In Section 4, the main contribution of
this paper is summarized.

2. The Fused Classification Algorithm Based on
Xgboost for Three-Class Classification

In this section, a fused classification algorithm is proposed to
improve the accuracy for the small datasets. This algorithm
is applied to discriminate the subtypes of SZ from HC. There
are three labels (DS, NDS, and HC) that should be assigned
to each collected subject. To solve this problem, an improved
multiclassification algorithm is introduced. Firstly, Xgboost
algorithm is applied to classify them, which is one of the
most widely used machine learning algorithms in classifica-
tion problems [24]. The classifiers are constructed based on
the features of GMV or ALFF, which is extracted from fMRI
data. Then, the fusion model is used to combine the output
information of the different classifier to determine the prob-
ability assignment of each class. Finally, the test subject will
be classified into the class with the maximum probability.
The flow chart of the proposed algorithm is shown in
Figure 1.

2.1. Classifier Based on the Xgboost Algorithm. The Xgboost
algorithm is composed of many weak classification and
regression trees (CARTs). Taking the ith dataset (xi,yi) as
an example, xi is the input variable with several attributes
of fMRI data and yi is the real value of the given subject.
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For example, yi = ð1, 0, 0Þ means the ith subject is HC, yi =
ð0, 1, 0Þ means the ith subject is DS, and yi = ð0, 0, 1Þ means
the ith subject is NDS.

Then, an Xgboost model can be mathematically
expressed in the following form [25]:

ŷi = 〠
K

k=1
f k xið Þ, ð1Þ

where K is the number of the CARTs, f k is the predicted
value of each independent CART, and ŷi is the predicted
value with respect to input xi.

The additive training model of Xgboost can be expressed
as

ŷ 0ð Þ
i = 0,

ŷ kð Þ
i = 〠

k

t=1
f t xið Þ = ŷ k−1ð Þ

k + f k xið Þ,

8
>><

>>:

ð2Þ

where ŷðkÞi is the predicted value of the kth CART.
The objective function of Xgboost includes a loss func-

tion and regularization term, which is expressed as

obj = 〠
n

i=1
l yi, ŷið Þ + 〠

K

k=1
Ω f kð Þ, ð3Þ

where lðyi, ŷiÞ can be used to measure the error between pre-
dicted value and real value, n is the number of the subjects,
and Ω is the regularization item to avoid overfitting.

The specific form of Ωð f kÞ of the kth CART is given as

Ω f kð Þ = γT +
1
2
λ wk k2, ð4Þ

where γ and λ present the penalty coefficients, T is the num-
ber of leaf nodes, and w is the weight of the leaf nodes.

Then, the objective function of the tth step objðtÞ can be
calculated by Equation (5) based on the previous step objðt−1Þ
based on the Equations (2) and (3).

obj tð Þ = 〠
n

i=1
l yi, ŷ

t−1ð Þ
i + f t xið Þ

� �
+ 〠

t−1

k=1
Ω f kð Þ +Ω f tð Þ: ð5Þ

By applying the second-order Taylor expansion to above

equation, the objective function can be transformed into

obj tð Þ = 〠
n

i=1
l yi, ŷ

t−1ð Þ
i

� �
+ gi f t xið Þ + 1

2
hi f

2
t xið Þ +Ω f tð Þ + Const:

ð6Þ

In the above expression, Const is a constant term at the
step t; the parameters pair gi and hi can be calculated as

gi =
∂l yi, ŷ

t−1ð Þ
i

� �

∂ŷ t−1ð Þ
i

,

hi =
∂2l yi, ŷ

t−1ð Þ
i

� �

∂ŷ t−1ð Þ
i

� �2 :

8
>>>>>>><

>>>>>>>:

ð7Þ

Becauselðyi, ŷðt−1Þi Þis the constant item, the objective
function can be rewritten as

obj tð Þ = 〠
n

i=1
gi f t xið Þ + 1

2
hi f

2
t xið Þ

� �

+ γT +
1
2
λ〠

T

j=1
w2

j + const′,

ð8Þ

where const′ is a new constant item at step t.
According to the definition of f k, f k can be written in the

following form as

f k xð Þ =wq xð Þ: ð9Þ

Then, Equation (8) can be rewritten in the following
form as

obj tð Þ = 〠
T

j=1
〠
i∈I j

gi

 !

wj +
1
2

〠
i∈I j

hi + λ

 !

w2
j

" #

+ γT + const′,

ð10Þ

denoted by∑i∈I jgi =Gjand∑i∈I jhi =Hj; then, the objective

function is expressed as

obj tð Þ = 〠
T

j=1
Gjwj +

1
2

Hj + λ
� �

w2
j

� �

+ γT + const′: ð11Þ

The leaf nodes of the tth CART are each independent; Gj
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?
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Figure 1: Flow chat of improved multiclassification algorithm.
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and Hj are the determined items. Then, minimizing the
function equation (11), the optimal parameter wj can be cal-
culated as

w∗
j = −

Gj

Hj + λ
: ð12Þ

Therefore, the final objective function is shown in the
following form as

obj∗ = −
1
2
〠
T

j=1

G2
j

H j + λ
+ γT + const′: ð13Þ

The splitting algorithm [26] based on the above function
is used to find the best split in Xgboost by

Gain =
1
2

G2
L

HL + λ
+

G2
R

HR + λ
−

GL + GRð Þ2
HL +HR + λ

" #

− γ: ð14Þ

The gain function has four terms: the first two terms are
the profits of left and right parts of a node, where GL and GR
are the left and right parts of Gj and HL and HR are the left
and right parts of Hj; and the third item is the total profit of
that node. The last item is the regularization item for pre-
venting overfitting. The greedy algorithm determines
whether a node obtains the maximum gain. Thus far, the
optimal tree structure that maximizes the gain can be
generated.

The above description leads to the split finding algo-
rithm for Xgboost presented as Algorithm 1.

2.2. The Fusion Model Based on the D-S Evidence Theory.
Analyses of the amplitude of low-frequency fluctuations
(ALFF) and gray matter volume (GMV) are two important
methods used in fMRI studies. Selecting GMV as the feature
to construct the classifier based on the Xgboost algorithm,
the predicted value of the ith subject can be obtained and

denoted as ŷð1Þi , while the other predicted value ŷð2Þi can be

calculated by selecting ALFF as the feature,ŷð1Þi ≠ ŷð2Þi usu-
ally. Taking the ith subject as an example, the output infor-

mation of the classifiers is ŷð1Þi = ð0:7,0:3,0:9Þ and

ŷð2Þi = ð0:7,0:5,0:6Þ. According to the output of classifier
based on the feature of GMV, this subject should be classi-
fied into NDS, while the classifier based on the feature of
ALFF will classify this subject into HC.

To overcome the conflict of different classifiers, the D-S

evidence model is used to fuse the information of ŷð1Þi and

ŷð2Þi [27]. The softmax function [28] is used in many
machine learning applications for multiclass classifications
to assign probability for each subject. The softmax function
is expressed in the following form as Equation (15), which
is used to calculate the probability assignment of each class.

ŷ 1∗ð Þ
ij =

eŷ
1ð Þ
i j

∑3
j=1e

ŷ 1ð Þ
i j

,

ŷ 2∗ð Þ
ij =

eŷ
2ð Þ
i j

∑3
j=1e

ŷ 2ð Þ
i j

,

8
>>>>>>><

>>>>>>>:

ð15Þ

where ŷð1Þij is the element in the set ŷð1Þi and j = 1, 2, 3 repre-

sents HC, DS, and NDS, respectively. For example,ŷð1∗Þi1 is the
probability that theith subject is HC according to the GMV

feature, andŷð2∗Þi1 is the probability that theith subject is HC
according to the ALFF feature.

Though softmax function, the probability assignment of
the ith subject can be obtained as

ŷ 1∗ð Þ
i = 0:3458, 0:2318, 0:4224ð Þ,
ŷ 2∗ð Þ
i = 0:3672, 0:3006, 0:3322ð Þ:

ð16Þ

Then, the combined strategy based on the D-S evidence
is expressed as

ŷ 1∗ð Þ
i ⊕ ŷ 2∗ð Þ

i HCð Þ = 1
K

× ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 ,

ŷ 1∗ð Þ
i ⊕ ŷ 2∗ð Þ

i DSð Þ = 1
K

× ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 ,

ŷ 1∗ð Þ
i ⊕ ŷ 2∗ð Þ

i NDSð Þ = 1
K

× ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 :

8
>>>>>><

>>>>>>:

ð17Þ

Require: I, instance set of current node; d, feature dimension
Ensure: Split with max score
1. Gain⟵ 0, G⟵∑i∈I j gi, H⟵∑i∈I j hi
2. fork = 1 to mdo
3. GL ⟵ 0, HL ⟵ 0
4. for alli in sorted I by xjkdo
5. GL ⟵GL + gj, HL ⟵HL + hj
6. GR ⟵G −GL, HR ⟵H −HL

7. score⟵max ðscore, ðG2
L/HL + λÞ + ðG2

R/HR + λÞ −G2/H + λÞ
8. end for
9. end for

Algorithm 1: Greedy algorithm for split finding.
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The probability of subject into each group ŷð1∗Þi ⊕ ŷð2∗Þi
∈ ½0, 1�, where K reflects the conflict level of evidences and
can be represented as

K = ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 + ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 + ŷ 1∗ð Þ
i1 × ŷ 2∗ð Þ

i1 : ð18Þ

The result of the above example is ŷð1∗Þi ⊕ ŷð2∗Þi = ð
0:3768,0:2068, 0:4164Þ by Equation (17). According to the
output of the fusion information, this subject will be classi-
fied into the class of NDS.

3. Experiments and Results

To evaluate performance of the proposed classification
method, we scan 246 brain regions of 85 subjects by fMRI
to extract the features of GMV and ALFF, including 16
DS, 31 NDS, and 38 HC. Obviously, it is a hard task to clas-
sify them in these small datasets. We apply the proposed
algorithm to classify all the subjects.

The present study classifies all subjects into three classes
by applying linear regression (LR), supported vector classi-
fier (SVC), K-nearest Neighbor (KNN), neural network
(NN), naive Bayes (NB), classification and regression tree

HC

1 2 ...... 10

1 2 ...... 10

1 2 ...... 10

1 2 ...... 10

1 2 ...... 10

1 2 ...... 10

Test

Train

1st

2nd

1 2 ...... 10 1 2 ...... 10 1 2 ...... 1010th

DS NDS

Figure 2: Flow chat of 10-fold cross-validation.

1.0
Logistic model (GMV)

Micro-average ROC curve (area = 0.65)
Macro-average ROC curve (area = 0.74)
ROC curve of class 0 (area = 0.50)
ROC curve of class 1 (area = 0.85)
ROC curve of class 2 (area = 0.67)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 3: Results of logistic classifier (GMV).

5Computational and Mathematical Methods in Medicine



(CART), random forest (RF), extreme gradient boosting
(Xgboost), deep neural network (DNN), and the proposed
fusion algorithm. The flow of 10-fold cross-validation is
shown in Figure 2. The results of 10-fold cross-validation
of different classifiers are shown as below.

The receiver operating characteristic (ROC) curve is
considered to evaluate the performance of classifiers. For dif-
ferent classification thresholds, the true-positive rate (TPR)

(Equation (19)) is plotted against the false-positive rate
(FPR) (Equation (20)). The area under the ROC curve
(AUC) indicates the classifier’s ability to distinguish between
classes. The value of the AUC is in the range [0,1]. AUC is 1
for a perfect classifier. In this work, the ROC curve is plotted
for each class, as this is a multiclass problem. The microaver-
age and macroaverage are also computed by summing the
individual values for true positive (TP), true negative (TN),

1.0
Logistic model (ALFF)

Micro-average ROC curve (area = 0.84)
Macro-average ROC curve (area = 0.82)
ROC curve of class 0 (area = 0.50)
ROC curve of class 1 (area = 1.00)
ROC curve of class 2 (area = 0.83)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 4: Results of logistic classifier (ALFF).

1.0
SVM (GMV)

Micro-average ROC curve (area = 0.85)
Macro-average ROC curve (area = 0.81)
ROC curve of class 0 (area = 0.71)
ROC curve of class 1 (area = 0.85)
ROC curve of class 2 (area = 0.72)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 5: Results of SVM with kernel of RBF (GMV).
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false positive (FP), and false negative (FN). Then, the accu-
racy (Equation (21)), recall (Equation (22)), precision
(Equation (23)), and F1-score (Equation (24)) are selected
as the important metrics to evaluate the performance of dif-
ferent classifiers [29].

TPR =
TP

TP + FN
, ð19Þ

FPR =
FP

FP + TN
, ð20Þ

Accuracy =
TP + TN

TP + TN + FP + FN
, ð21Þ

Precision =
TP

TP + FP
, ð22Þ

1.0
SVM (ALFF)

Micro-average ROC curve (area = 0.72)
Macro-average ROC curve (area = 0.73)
ROC curve of class 0 (area = 0.57)
ROC curve of class 1 (area = 0.80)
ROC curve of class 2 (area = 0.67)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 6: Results of SVM with kernel of RBF (ALFF).

1.0
XGboost (GMV)

Micro-average ROC curve (area = 0.90)
Macro-average ROC curve (area = 0.90)
ROC curve of class 0 (area = 0.86)
ROC curve of class 1 (area = 0.94)
ROC curve of class 2 (area = 0.80)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 7: Results of Xgboost (GMV).
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Recall =
TP

TP + FN
, ð23Þ

F1‐score = 2 × precision × recall
precision + recall

: ð24Þ

The ROC of the above classifiers are shown in Figures 3–
8. In these figures, DS is the class 0, HC is the class 1, and

NDS is the class 2. The key classification metrics are
extracted from the results listed in Table 1.

Due to the limited number of the DS, the AUC of class 0
is lower than other classes in the above figures. Therefore, it
is hard to discriminate DS from NDS and HC. Taking
Figure 5 as an example, the macroaverage AUC score is
0.81 and the microaverage AUC score is 0.85 based on the
feature of GMV by using the SVM classifier, which are better

1.0

XGboost (ALFF)

Micro-average ROC curve (area = 0.80)
Macro-average ROC curve (area = 0.84)
ROC curve of class 0 (area = 0.71)
ROC curve of class 1 (area = 0.88)
ROC curve of class 2 (area = 0.87)

0.8

0.6

TP
R

0.4

0.2

0.0
0.0 0.2 0.4 0.6

FPR

0.8 1.0

Figure 8: Results of Xgboost (ALFF).

Table 1: Classification metrics of different methods.

Methods Accuracy Precision Recall F1-scores AUC

LR (GMV) 64.8611% 65.0509% 64.8611% 0.6237 0.8160

LR (ALFF) 65.9722% 65.5394% 65.9722% 0.6388 0.7743

SVC (GMV) 61.5278% 51.5602% 61.5277% 0.5508 0.7403

SVC (ALFF) 67.0833% 59.4147% 67.0833% 0.6114 0.6114

KNN (GMV) 63.4722% 61.4259% 63.4722% 0.5899 0.7174

KNN (ALFF) 58.6111% 67.3175% 58.6111% 0.5601 0.6731

NN (GMV) 55.4167% 56.4749% 47.2222% 0.5425 0.8066

NN (ALFF) 64.4444% 67.0764% 60.8333% 0.6266 0.7618

NB (GMV) 53.8889% 55.8657% 53.8889% 0.5216 0.7389

NB (ALFF) 68.8889% 74.0139% 68.8889% 0.6781 0.8308

CART (GMV) 45.8333% 47.7870% 51.9444% 0.4721 0.6375

CART (ALFF) 60% 57.6075% 56.6667% 0.5667 0.6542

RF (GMV) 62.6389% 60.0883% 62.6389% 0.5874 0.7722

RF (ALFF) 65.6944% 57.1042% 65.6944% 0.5943 0.7969

Xgboost (GMV) 62.6389% 60.4445% 62.6389% 0.5888 0.7958

Xgboost (ALFF) 68.0556% 62.9610% 68.0556% 0.6364 0.8351

DNN 62.7083% 40.3380% 62.7083% 0.5152 0.6723

Our classifier (fusion) 73.8889% 65.4242% 73.8889% 0.6746 0.8524
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than the performance based on the feature of ALFF. The
AUC score of HC is 0.85 based on the feature of GMV,
which is better than the AUC scores of DS and NDS. The
Xgboost classifier showed better performance than the
SVM and logistic classifier. The microaverage AUC score is
0.90 and 0.80, respectively, on the feature of GMV and
ALFF. The macroaverage AUC score is 0.90 and 0.84,
respectively, on the feature of GMV and ALFF. The ROC
of the fusion algorithm is shown in Figure 9. In this figure,
we find the AUC score of the class 0 is 1, which means it

is a perfect classifier. This classifier combines the advantages
of the classifier based on feature of GMV and ALFF. There-
fore, the performance of this fusion classifier is much better
than others.

From Table 1, 10-fold cross-validation showed our algo-
rithm with an accuracy of 73.89%, which is higher than
other classifiers. Many metrics of the proposed classifier
are better than other classifiers. In many present studies,
the accuracy of the present classifier is usually less than
70% when the datasets are small. In this paper, the proposed
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Figure 9: Results of Xgboost (fusion).
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fusion classifier will improve the performance effectively for
the small datasets by combining the advantages of each fea-
ture. The accuracy of different classifiers is shown in
Figure 10.

4. Conclusion

In this paper, a new multiple classifier method was proposed
for the small datasets and applied to discriminate the two
subtypes of schizophrenia and health controls based on the
fMRI data. Due to the limitation data and indexes, this study
constructed the Xgboost algorithm based on the different
features. To improve the accuracy, the fusion model was
used to combine the information from different classifiers.
Finally, the subject would be classified into the class with
the maximum probability. This method was applied to clas-
sify 38 healthy controls, 16 deficit schizophrenic patients,
and 31 nondeficit schizophrenic patients. 10-fold cross-
validation showed our algorithm with a sensitivity of
73.89%, which was much higher than other classification
algorithms when the datasets were small. In addition, the
proposed algorithm can be used to discriminate different
classes for the large datasets. The performance of the pro-
posed algorithm would be effective than other algorithms
when the datasets are small. It will bring the better perfor-
mance in diagnosing subtypes of schizophrenia. Although
the findings in our study are rigorous, there are some limita-
tions: (1) relatively small sample size; (2) interference caused
by antipsychotic drugs during experiment; and (3) limita-
tions of the algorithm itself. In the future work, more sub-
jects will be collected in the project, including different
subtypes and HC. The original image data should be
obtained in the processing of experiments, and more deep
learning approaches will be proposed to solve this multiclass
classification problem.
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