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Abstract: Malaria is an infectious disease caused by protozoan parasites of the Plasmodium genus
through the bite of female Anopheles mosquitoes, affecting 228 million people and causing 415 thou-
sand deaths in 2018. Artemisinin-based combination therapies (ACTs) are the most recommended
treatment for malaria; however, the emergence of multidrug resistance has unfortunately limited their
effects and challenged the field. In this context, the ocean and its rich biodiversity have emerged as a
very promising resource of bioactive compounds and secondary metabolites from different marine
organisms. This systematic review of the literature focuses on the advances achieved in the search
for new antimalarials from marine sponges, which are ancient organisms that developed defense
mechanisms in a hostile environment. The principal inclusion criterion for analysis was articles with
compounds with IC50 below 10 µM or 10 µg/mL against P. falciparum culture. The secondary metabo-
lites identified include alkaloids, terpenoids, polyketides endoperoxides and glycosphingolipids.
The structural features of active compounds selected in this review may be an interesting scaffold to
inspire synthetic development of new antimalarials for selectively targeting parasite cell metabolism.

Keywords: Plasmodium; malaria; sponge; resistance; antimalarial

1. Introduction

Human malaria is an infectious disease caused by single-celled protozoan parasites of
the Plasmodium genus (P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi) through
the bite of female Anopheles mosquitoes [1]. It affected 228 million people in 2018, and
nearly half of the world’s population is still at risk for this disease [2]. Symptoms can range
from being mild to very severe, causing chronic illness, physical disability, death and a
huge health burden, especially to the most vulnerable populations.

Antimalarials based in quinolines scaffolds (i.e., chloroquine, mefloquine, amodi-
aquine, and piperaquine) possess a complex mechanism of action. One well-studied
mechanism involves compromising the detoxification of hemoglobin degradation with
heme polymerization for hemozoin crystal formation in digestive vacuole by protonated
forms of quinolones [3]. It was noted that some strains of P. falciparum triggered resistance
to protonated drugs due to a genetic mutation in the transporter (PfCRT) and could lead to
antimalarial drug extrusion from the organelle [3].

Artemisinin-based combination therapies (ACTs) are the most recommended treat-
ment for uncomplicated P. falciparum malaria, while artesunate is considered the most
effective antimalarial drug for severe cases [4], with several biochemical processes reported
as targets in parasite cells [3,5]. Despite the safety and efficiency that have been proven for
the use of these drugs, the emergence of multidrug resistance has unfortunately limited
their effects and challenged the field [6]. The resistance to ACTs is already spreading from
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Southeast Asia, as reported in 2008 [7], giving rise to a danger alert to other high-poverty
regions in the world, and the identified resistance phenotype is associated with mutation of
kelch domain protein gene (k13), which is postulated to be involved in protein trafficking
organelles in the parasite during intraerythrocytic cycle [8], [3].

In this context, the ocean, with its rich biodiversity, has been emerging as a very
promising resource of bioactive compounds and secondary metabolites from different
marine organisms (bacteria, fungi, micro-algae, mollusks and other invertebrates) with
multiple pharmacological properties [9–11]. Among them, the phylum Porifera (sponges)
is the most promising for providing raw material for the development of biotechnological
products for multiple human health problems [12–14]. Marine sponges are very primitive
sessile animals with origins dated at least from the late Proterozoic over 580 million
years ago [15]. Being considered representatives of the first multicellular animals, these
filter-feeding organisms evolutionarily developed morphological and chemical defense
mechanisms constituted mainly by secondary metabolites, compounds with a wide range
of effects such as antitumor, antiviral, anti-inflammatory and antibiotic effects, which have
been investigated for the treatment of human health problems [15,16]. Additionally, some
authors have demonstrated the antimalarial effects of the secondary metabolites of marine
sponges and have shown that these components present inhibitory activity against the
malaria parasite Plasmodium falciparum [6,17].

Many studies have investigated the structural diversity of marine natural products
from sponges worldwide showing strong evidence of their antimalarial effects; however,
there is still limited understanding of their biological effects. To explore the complete
therapeutic potential of marine-sponges-derived compounds, more inputs are required,
especially from the comparison of the antiplasmodial potential of all of these biocompounds.
Previous reviews have contributed discussion of potential antimalarial compounds from
marine sources and have helped to cover the growing number of new compounds studied
every year and parasite resistance to currently used antimalarials [3,18,19]. In this context,
the purpose of this study was to perform a systematic review updated of the literature to
examine the multiple studies reporting the in vitro antiplasmodial activity of extracts and
molecules from species of marine sponges, exploring the molecules scaffold and differential
target mechanisms in cell physiology.

2. Results and Discussion
2.1. Study Selection and Analysis

The flow diagram (Figure 1) demonstrated the search strategy (identification, inclusion
and exclusion) used in the present study. A total of 77 articles were retrieved from the
databases (PubMed, Web of Science and Scopus). Then, the duplicated records were
excluded (n = 14). Thus, 66 full-text articles were assessed for eligibility, and 30 studies
were excluded for different reasons, such as the following: some studies reported only the
extraction of compounds and did not report the antiplasmodial activity; others described
only the mechanism of the compounds; some studies were only computational. Finally,
36 studies were included and analyzed in this systematic review (Figure 1).

A summary of the studies is presented in Table 1. The articles analyzed were published
from 1992 to 2019 in different countries. The antimalarial activity was assessed in vitro
using Plasmodium falciparum culture [20] for quantification of cell viability over 24-96 h. For
the in vitro assays, different lab strains were used (such as 3D7, W2, DD2, NF54), and a
wide variety of methods were used for assessing P. falciparum viability ([3H] hypoxanthine,
LDH, Microscopy, SYBR Green) presenting as IC50 values instead of the option of XC50.
The Demospongiae sponge class was the most explored, where 30 studies evaluated their
antiplasmodial activity. Among the genera in Table 1, most belong to the Demospongiae
class except for Plakortis (Plakortis simplexs, Plakortis lita, Plakortis halichondrioides), which
is from the Homoscleromorpha class. In addition, a great geographical variety was ob-
served, which shows that sponges from different regions of the globe have this potential
antiplasmodial activity. The inhibitory concentration for 50% of the parasites (IC50) varied



Mar. Drugs 2021, 19, 134 3 of 26

from low micromolar to low nanomolar range, and the species Xestospongia sp showed the
best bioactive potential, from which the compound Saringosterol was extracted, which
had an IC50 of 0.25 nM. The individual IC50 for each extracted compound is reported in
Table 1. The IC50 value units in µg/mL and ng/mL were converted to µM and nM for data
comparison, and then some of compounds in Table 1, which IC50 was below 10 µg/mL
became higher than 10 µM (see Section 3.2.2, exclusion criteria), as were compounds 10
and 11 [21], 52 [22], 2 and 3 [23], 99 [24].
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Table 1. Summary of descriptions of characteristics of included articles.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)

Campos et al.,
(2019) [21]

Fascaplysinopsis
reticulata Mayotte (Indian Ocean)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)

Parra et al., (2018)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Jiménez-Romero et 

al.,  

(2010) [44] 

Plakortis halichondrioides Puerto Rico 

         

       

 

Samoylenko et al.,  

(2009) [45] 

Acanthostrongylophora 

ingens 
Pacific  

        

Ueoka et al.,  

(2009) [46] 
Agelas gracilis southern Japan 

 



Mar. Drugs 2021, 19, 134 11 of 26

Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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Table 1. Cont.

Author Sponge Genus Material Collection Location Extracted Material (P. falciparum Strain and IC50 Value)
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To assess the study quality, we used the GRADE method [55]. The 36 studies ana-
lyzed were categorized as moderate quality (17) because (i) there were no controls in the
experiments; (ii) the toxicity of the compounds was not assessed in parallel, which made
it impossible to determine the selectivity of compounds; (iii) all compounds analyzed
presented a high cytotoxicity, which demonstrates the unspecified use against P. falciparum;
(iv) the methods used to measure the antiplasmodial activity were not described. A total of
19 studies were classified as being of high quality (Table S1).

After this detailed review of the articles reporting the activity of compounds from
marine sponges, we made a brief survey of data in the literature to compare the number of
articles published reporting the activity of marine organisms with the number of articles
published reporting the activity of extracts from plants. To do so, the following combi-
nations of keywords were used: “new antimalarials and plants” or “new antimalarials
and marine” and selected the works published in the last 10 years. Figure 2 represents the
number of studies reporting antiplasmodial activity of new compounds found. The search
for new compounds from marine sources is still uncommon compared to the search for
natural products from plants. Other recent reviews have also reported this comparison,
which reinforces the importance of seeking new products from marine sources, especially
considering that the diverse nature of metabolites produced by these alternative sources
presents a compelling case for intensive exploration [56].
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Figure 2. Number of published papers reporting the antimalarial activity of new compounds from
marine sources or plants in the past 10 years.

2.2. Classes of Compounds Found in Marine Sponge Extracts

The compounds isolated from marine sponges presented in the articles analyzed with
antiplasmodial effect belong to alkaloids, terpenes and polyketides class of secondary
metabolites. Most of the compounds with potential activity against Plasmodium sp. are
alkaloids (69% of 259), followed by terpenoids (17%) and polyketides endoperoxides (13%)
(Figure 3). There are also reports of glycosphingolipids (GSL) from sponges able to inhibit
the malaria parasite as well. The structures with their potency are described, and some of
them present the known mechanism of action, which are discussed below.
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2.2.1. Alkaloids

Alkaloids from marine sponges have shown potential against infectious diseases,
particularly against malaria. The natural alkaloids identified are grouped as pyrrole-
imidazole [23,27], indole-imidazole [33], indole [21], manzamine [45,57], ingamine al-
kaloids [39], bromotyrosine [43], guanidine [28,30,32] phloeodictynes [51], pentacyclic
quinones [50], pyrroloiminoquinone [38], thiazine alkaloids [34], and diterpene alka-
loids [48,58].

Pyrrole-imidazole-related alkaloids (1–3) were verified in Demospongiae class (Porifera,
horny sponges) from Agelas oroides (Agelasidae family) [23]. Moreover, a bromopyrrole
alkaloid known as pseudoceratidine (4) with antiplasmodial potential (IC50 of 1.1 µM) was
isolated from Tedania brasiliensis (Tedaniidae, Poecilosclerida) and Pseudoceratina purpurea
(Pseudoceratinidae, Verongida) [27]. The (E)-oroidin (1) was a potent alkaloid against
P. falciparum strains in vitro (IC50 of 10 µM), being revealed as a Pf FabI inhibitor (IC50
of 0.77 µM) with uncompetitive behavior (Figure 4) [23]. The P. falciparum enoyl-ACP
reductase (Pf FabI) is an essential enzyme responsible for the catalyzes of the last step of
the fatty acid pathways [59].

Indole alkaloids (5–9) from Spongosorites genus (Halichondriidae family) [33] and
(E)-6-bromo-2’-demethyl-3’-N-methylaplysinopsin (10) and (Z)-6-bromo-2’-demethyl-3’-N-
methylaplysinopsin (11) from Fascaplysinopsis reticulata (Thorectidae family) (Table 1)[21],
were also shown to be inhibitors of P. falciparum, with nortopsentin A (5) as the most
potent and selective compound (IC50 = 0.46 µM and SI 14.3). In addition, nortopsentin
blocked trophozoite development, suggesting the inhibition of DNA synthesis in the early
trophozoite stage [33].

A bioguided fractionation of Pacific marine sponge Acanthostrongylophora ingens (Pet-
rosiidae family) using in vitro assay with P. falciparum yielded the isolation of manzamine
alkaloids (12–15) (IC50 values between 0.010 and 0.060 µM) [45]. Manzamine A (13) and
8-hydroxymanzamine A (12) are highlighted for transcending the observed potential
of antimalarial drugs in vivo on P. berghei-infected mice compared to chloroquine and
artemisinin but with high cytotoxicity [57]. Alkaloids from Hyrtios Cf. erecta sponge
containing β-carboline ring (16 and 17) but lacking polycyclic moiety were also active on P.
falciparum in vitro [53]. Unlike manzamine A, polycyclic alkaloids without the β-carboline
ring exhibited high selectivity index and maintained antimalarial effectiveness, as observed
in gamine alkaloids (18 and 19) from Petrosid Ng5 Sp5 [39].
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Figure 4. Alkaloids from marine sponges with antimalarial effect revealed moderate inhibitory activity on P. falciparum
protein kinases (Pf PK5 and Pf nek-1) and P. falciparum enoyl-ACP reductase (Pf FabI).

Bromotyrosine alkaloids containing spiroisoxazoline scaffold (20–26) identified in the
Hyatella (Spongiidae family), Aplysinella strongylata (Aplysinellidae family), Pseudoceratina
(Pseudoceratinidae family) and Verongula genus (Aplysinidae family), have been reported
as inhibitors of malaria parasite as well [40,41,43]. Among them, psammaplysin H (20)
showed the best IC50 potency against 3D7 line of P. falciparum at 0.41 µM and the best
selectivity (SI > 97) [43].

Guanidine alkaloids are representative antimalarial NPs [28,30,32,60], including ne-
tamines G–S from Madagascar sponge Biemna laboutei (Biemnidae family, Poeciloscle-
rida) (27–34) [28,30,32] and phloeodictynes mixtures (35–42) from Oceanapia fistulosa [51]
(Table 1). Compounds containing guanidine moiety with pentacyclic skeleton (29–34) were
demonstrated to be more potent, particularly ptilomycalin F (30) and fromiamycalin (34)
(IC50 of 0.23 and 0.24 µM, respectively) [28].

Pentacyclic quinone alkaloids from Xestospongia sp revealed moderate inhibitory ac-
tivity on P. falciparum protein kinases (Pf PK5 and Pf nek-1) (Figure 4), enzymes involved
in cell division of parasite, but xestoquinone (43) was able to slightly inhibit the parasite
in vivo [50]. From Australian Marine sponge Zyzzya sp. (Acarnidae), a new compound,
tsitsikammamine C (44), was revealed together with six known pyrroloiminoquinone
alkaloids [38]. Of the seven, four were potent in vitro against resistant strains of P. falci-
parum (3D7 and Dd2, IC50 < 100 nM) highlighting compound 44 with high potency and
lower toxicity (SI 200), which was able to act on both blood stages of parasite, ring and
trophozoite [38]. Later, Davis and co-workers [34] isolated tricyclic alkaloid from Plakortis
lita with thiazine-fused quinone, thiaplakortones A–D (45–48). Once more, alkaloids with
quinone core revealed antimalarial potential in the nanomolar range (IC50 < 651 nM) with
moderate toxicity.

Diterpene alkaloids from Agelas cf. mauritiana (49 and 50) exhibited slight antimalarial
potential [48], besides [58] reported a diterpene alkaloid, monamphilectine A (51) (Hy-
meniacidon sp.) containing a distinct β-lactam core with high potential (Table 1).
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2.2.2. Terpenes

Terpenes from sponges with antiplasmodial activity belong to the class of norter-
pene endoperoxides [17,25], sterols [25,26] meroterpenes [49], diterpenes [37,47,58], and
sesquiterpenes [54,61]. Norterpene with cyclic endoperoxides scaffold is very common
in Diacarnus genus (family Podospongiidae, order Poecilosclerida) of the marine sponges.
Several norditerpene and norsesterterpene peroxide metabolites (52–62) with antimalarial
potential were isolated from Diacarnus megaspinorhabdosa and Diacarnus erythraeanus species,
whose peroxide moiety may be related to their activities [17,22,29]. The presence of endoper-
oxide in sterols from Coscinoderma sp., such as (24S)-5α,8α-epidioxy-24-methylcholesta-
6-en-3β-ol (63) and 5α,8α-epidioxy-24-methylcholesta-6,9(11), 24(28)-trien-3β-ol (64), re-
vealed activity against a resistant strain of P. falciparum (Dd2) as well (Table 1) [25]. En-
doperoxide bridge is a pharmacophore that is well known in artemisinin drug, whose
cleavage generates reactive oxygen species (ROS) inducing parasite death [62]. However,
sterols from Xestospongia sp. (Petrosiidae family) lacking peroxide (kaimanol (65) and a
saringosterol (66) were able to reduce parasite development expressively (IC50 values of
359 and 0.250 nM) [26].

Meroterpenes (67–70) from a new Caledonian sponge with antiplasmodial effect
showed inhibitory potential against plasmodial kinase Pf nek-1 and a farnesyl transferase
(Figure 5) [49]. As we described in the section above, xestoquinone (43), a quinone alkaloid
from Xestospongia sp., is also a protein kinase inhibitor (Pf PK5 and Pf nek-1), and it was
suggested by Desoubzdanne and colleagues [49] that quinone/phenolic scaffold in the
meroterpenes may be related to Pf nek-1 inhibition [50].
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Figure 5. Meroterpenes from a marine sponge with antimalarial effect revealed inhibitory activity on P. falciparum protein
kinase (Pf nek-1) and P. falciparum farnesyl transferase.

Diterpenes and sesquiterpenes containing isonitrile moiety with antimalarial potential
have been isolated from sponges such as Stylissa cf. massa (71–73) [37], Hymeniacidon
sp. (74) [58], Cymbastela hooperi (75) [47] and Acanthella klethra (76–80) [54] (Table 1). The
isonitrile scaffold has been suggested as important for the effect of these compounds
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against P. falciparum; besides, there are sesquiterpenes lacking isonitrile moiety, as well as
compounds smenotronic acid (81), ilimaquinone (82) and pelorol (83) from Hyrtios erectus
with antimalarial potential (IC50 values ranging from 0.8 to 3.51 µM) [61].

2.2.3. Polyketides

Polyketides are common secondary metabolites identified in marine sponges with
vast structural diversity. Trisoxazole macrolides (84–90) are large macrocyclic polyketides
from Pachastrissa nux (Calthropellidae family) [36,42]. The macrolides and polyketides with
skeletons containing endoperoxides (six- or five-membered 1,2-dioxygenated rings), mostly
found in the Plakinastrella and Plakortis genus (Plakinidae family), have been revealed to
have antimalarial potential [24,31,44,52,63].

A series of polyketides with endoperoxides with potential against P. falciparum strains
were isolated from Plakortis simplex (91–97), a Caribbean sponge (IC50 values ranging
from 0.39 to 6.18 µM) [31,52], and from Plakortis sp. (98, 99) and Plakortis halichondrioides
(100–105), whose compounds 103 and 105 are endoperoxides derivatives (lactones) (IC50
values ranging from 0.756 to 15.1 µM) (Table 1) [24,44]. The endoperoxide moiety has
been described as a pharmacophore and by computational study was suggested to be a
mechanism similar to the artemisinin drug, involving radical reactions as a result of the
ROS [31].

Derivatives of plakortin named gracilioetheres A–C from Agelas gracilis were isolated
from a bioassay-guided approach from an active extract using P. falciparum assay in vitro,
highlighting gracilioether B (106) with a IC50 value of 1.41 µM and moderate cytoxicity [46].

2.2.4. Glycosphingolipids

Glycosphingolipids (GSL) are glycolipids with sugar moiety well known for the
immunomodulating activity, and they have been identified in marine sponges from Agelas
and Axinyssa genus [35,64]. Although there are few reports of GSL from marine sponges
with antimalarial potential, Farokhi and co-workers [35] isolated a GSL with antiplasmodial
activity in the low micromolar range (IC50 of 0.53 µM) and with low cytotoxic effect. The
active mixture of GSL consists of different carbon chain lengths named axidjiferoside-A, -B
and -C (107) from Axinyssa djiferi (Dictyonellidae family).

2.3. Mechanisms of Action of the New Compounds Found in Marine Sponge Extracts

We explore the mechanism of action of each class in the literature among other cell
models to present a possible mechanism involved in the inhibition of Plasmodium develop-
ment (Figure 6) because of the absence of this information in many articles described in
Table 1.

The alkaloids are the largest group of compounds mentioned in this review; however,
they contain a significant number of molecules (17%) with unknown mechanisms. Some
alkaloid compounds can be related with inhibition of signaling pathways, and induction of
apoptosis and changes in gene expression are also indicated (14–37%) [23,65–77]. Alkaloids
could present oxidant and antioxidant effects depending on the biosynthetic precursor. For
example, bromothyrosine derivatives can induce apoptosis by the formation of reactive
oxygen species or selective inhibition of histone deacetylases in eukaryotic cell lines [65].
This effect can be also observed with a marine metabolite (Psammaplin A) and analogues,
resulting in disruption of the epigenetic cell control and compromising the gene expression
and cell survival [73,78].



Mar. Drugs 2021, 19, 134 20 of 26

 

6 

2.2.4. Glycosphingolipids 

Glycosphingolipids (GSL) are glycolipids with sugar moiety well 

known for the immunomodulating activity, and they have been 

identified in marine sponges from Agelas and Axinyssa genus [35,64]. 

Although there are few reports of GSL from marine sponges with 

antimalarial potential, Farokhi and co-workers [35] isolated a GSL with 

antiplasmodial activity in the low micromolar range (IC50 of 0.53 µM) 

and with low cytotoxic effect. The active mixture of GSL consists of 

different carbon chain lengths named axidjiferoside-A, -B and -C (107) 

from Axinyssa djiferi (Dictyonellidae family). 

2.3. Mechanisms of Action of the New Compounds Found in Marine Sponge 

Extracts 

We explore the mechanism of action of each class in the literature 

among other cell models to present a possible mechanism involved in 

the inhibition of Plasmodium development (Figure 6) because of the 

absence of this information in many articles described in Table 1.  

 

Figure 6. Histogram of related mechanisms of action for each chemical compound class in different 

cell models indicated by the literature. 

The alkaloids are the largest group of compounds mentioned in 

this review; however, they contain a significant number of molecules 

(17%) with unknown mechanisms. Some alkaloid compounds can be 

related with inhibition of signaling pathways, and induction of 

apoptosis and changes in gene expression are also indicated (14–37%) 

[23,65–77]. Alkaloids could present oxidant and antioxidant effects 

depending on the biosynthetic precursor. For example, bromothyrosine 

derivatives can induce apoptosis by the formation of reactive oxygen 

species or selective inhibition of histone deacetylases in eukaryotic cell 

lines [65]. This effect can be also observed with a marine metabolite 

(Psammaplin A) and analogues, resulting in disruption of the 

Figure 6. Histogram of related mechanisms of action for each chemical compound class in different cell models indicated by
the literature.

Quinoline analogs have been extensively studied concerning their role as the cell
targets in cancer, bacteria, virus, fungi and parasites. Some of its described mechanisms
are related to key cellular processes (replication, transcription, protein metabolism, etc.)
because of the interaction of quinolines compounds with DNA and inhibition of topoiso-
merase enzymes [79,80]. Endoplasmic reticulum stress, autophagy, and cell signaling with
inhibition of several enzymes (i.e., N-acetyltransferase, cyclin dependent kinase, telom-
erase, caspase proteases) have also been observed [77]. The impairment of cell signaling
and ionic homeostasis can be observed with the antagonist effect of voltage-dependent
calcium channel by guanidine derivatives alkaloids [68] and Na+ homeostasis by selective
inhibition of Plasmodium falciparum P-type ATPase with indole-based natural alkaloids
in a low micro-molar range [81,82]. Another important cell target is cytoskeleton fila-
ments, which are essential for transport, cell division and organization. Some marine
sponge compounds (trisoxazole-containing macrolides) can bind to F-actin subdomains
by mimicking the interaction of actin-capping gelsolin family proteins, compromising the
filament dynamics and leading to cell death [70,76]. The fatty acids biosynthesis is another
important process for eukaryotic cells and is responsible for building membrane structures
and energy metabolism. Pyrrole-imidazole alkaloids from marine sponge Agelas oroides
present an inhibition effect at low micromolar range in Plasmodium falciparum enoyl-ACP
reductase assay [23], which belongs to type II fatty acid pathway (FAS-II).

The second representative group is terpenes (43), which possess action related to
oxidative stress and signaling pathways (30–34%) [49,50,83,84], as reported in normal and
cancer cells lines, where ROS production was increased after a norterpene endoperoxide
compound treatment [85]. A third group corresponds with the polyketides compounds (34),
which have been shown to interact with Fe(II)heme, compromising the cell survival [86].
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The available antimalarials (i.e., artemisinin) belong to the sesquiterpene group, and
to some degree, the action mechanism of related sponge metabolites in Plasmodium was
found to be consistent with that observed with artemisinin affecting the cell oxidative
stress state and hemoglobin metabolism [3,81,87]. Hemoglobin metabolism as the principal
parasite amino acid source in the host cell leads to the formation of toxic metabolites
(reactive oxygen species-ROS and ferriprotoporphyrin IX). The unbalanced detoxification
of these metabolites in parasite cytosol promoted by artemisinin or analogs affects many
aspects of the cell physiology [81,87] as oxidative damage in different cell molecules. Some
covalent protein interactions were identified with artemisinin in P. falciparum, indicating
a broad action in cell metabolism, such as ornithine aminotransferase, pyruvate kinase,
L-lactate dehydrogenase, spermidine synthase and S-adenosylmethionine synthetase [81].
In the same class of the endoperoxides, plakortin-related compounds from the sponge
genus Plakortis bind to Fe(II) resulting in the formation of oxygen radicals and creates a
cell-damaging environment for the parasite [86].

The current scenario of the development of new antimalarial drugs shows a promising
molecule source from marine organisms such as sponges. However, these organisms
have some weaknesses in discovering and developing antimalarial drugs: (i) the large
amount of sponges’ weight needed for each compound’s identification and isolation; (ii)
sponges are organisms’ symbionts with sponge-specific microbiota (unicellular eukaryotes,
bacteria, fungi, virus) [88], which increases the variability from each specimen and makes
it very difficult to reproduce in laboratory cultivation for identifying the source of active
compounds. However, due to the ancient relationship with the hostile environment, these
organisms can present a large molecule library against pathogens, which would be useful
for the development of synthetic derivatives and analogs with selective inhibition of human
pathogens. The cost-accessible molecular strategies available in center facilities (i.e., high-
throughput genome sequencing and mass spectrometry, molecular docking) could surpass
these limitations to the identification of compounds from complex organisms. An upscaling
number of articles on marine source compounds every year presenting molecules reveals its
importance with different action mechanisms in eukaryotic cell physiology, as mentioned
in this review.

3. Methodology
3.1. Review Protocol

A systematic review of the literature was performed according to the SYRCLE guide-
line [89]. The following databases were consulted for this research: PubMed, Web of
Science and Scopus. The search was carried out according to the orientations of PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analysis). To start the review,
some descriptors of the MeSH (Medical Subject Headings) were defined: “Plasmodium
falciparum”, “P. falciparum”, “antimalarial” and “sponge”. In addition, two independent
reviewers (J.R.P., A.C.C.A.) searched the databases, analyzing title and summary of the
results, and identified them from the inclusion and exclusion criteria, and the selected
studies were further reviewed during the full-text screening.

3.2. Eligibility Criteria
3.2.1. Inclusion Criteria

1. Studies that report the antiplasmodial activity (IC50) of extracts and molecules from
marine sponges against any strain of P. falciparum in vitro;

2. Any method for determining the IC50 was included (SYBR Green, Hypoxanthine,
Microscopy, ELISA);

3.2.2. Exclusion Criteria

1. Animal experiments, clinical trials, reviews, case reports;
2. Studies that reported an IC50 value above 10 µM or 10 µg/mL;
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3. Studies of chemical synthesis of new derivatives that were previously extracted
from marine sponges;

4. Computational studies that did not report in vitro biological activity.

3.3. Data Extraction

The analyzed data included the IC50 value, which refers to the 50% growth inhibition
of the parasite in vitro after incubation with different natural products extracted from
marine sponges, according to the method applied to measure the antimalarial activity
with the particular Plasmodium lab strain used. In addition, the sponge species, class and
extraction location were also included in the analysis.

3.4. Types of Reported Results

Due to the heterogeneity of the primary studies, it was not possible to perform a
meta-analysis. In order to compare the effect size (ES) of both techniques, we calculated
the normalized average difference considering the values before and after the interven-
tion. They were further classified as small (<0.20), moderate (about 0.50) or large (>0.80),
according to Cohen criteria.

4. Conclusions

In conclusion, marine sponge extracts represent a large arsenal of bioactive prod-
ucts with antimalarial potential. Different substances, such as alkaloids, endoperoxides
(terpenes and polyketides), terpenoids and glycosphingolipids, have been isolated and
identified in the extracts of different sponges around the globe. The structural features
of active compounds can be an interesting core for synthetic development of new anti-
malarials for selectively targeting parasite cell metabolism. However, studies that aim to
elucidate the mechanism of action of these new compounds are still scarce in the literature.
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