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Abstract

Purpose: Voxel-level hypothesis testing on images suffers from test multiplicity. Numerous cor-
rection methods exist, mainly applied and evaluated on neuroimaging and synthetic datasets.
However, newly developed approaches like Imiomics, using different data and less common
analysis types, also require multiplicity correction for more reliable inference. To handle the
multiple comparisons in Imiomics, we aim to evaluate correction methods on whole-body
MRI and correlation analyses, and to develop techniques specifically suited for the given
analyses.

Approach: We evaluate the most common familywise error rate (FWER) limiting procedures
on whole-body correlation analyses via standard (synthetic no-activation) nominal error rate
estimation as well as smaller prior-knowledge based stringency analysis. Their performance
is compared to our anatomy-based method extensions.

Results: Results show that nonparametric methods behave better for the given analyses. The
proposed prior-knowledge based evaluation shows that the devised extensions including ana-
tomical priors can achieve the same power while keeping the FWER closer to the desired rate.

Conclusions: Permutation-based approaches perform adequately and can be used within
Imiomics. They can be improved by including information on image structure. We expect such
method extensions to become even more relevant with new applications and larger datasets.
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1 Introduction

With the advance of imaging technologies, whole-body magnetic resonance imaging (MRI)
has become fast enough to make its use in research and even medical practice feasible. As the
image acquisition time is shortened, this form of examination has begun to play an indispensable
role in diagnostics for exploratory searches as well as tumor detection, staging, and therapy
evaluation.1

Successful utilization of whole-body MRI in oncology applications prompts the question of
possible uses in other areas with fundamentally different pathologies, for example, for systemic
diseases, such as metabolic syndrome and diabetes,1 that are known to involve the whole body.
Despite the valuable insights, however, there are potential pitfalls of using whole-body scans
in practice.
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The decision for medical intervention is usually based on detecting parameters that deviate
significantly from what can be expected for a healthy subject. With regard to imagery, that means
a certain amount of processing (using healthy patient data) aimed at detecting where significant
deviations occur. This is especially true for Imiomics analyses,2 where additional subject-specific
measurements are merged with image data, resulting in numerical maps, with values that are
possibly more informative and comparable among the population than the raw intensities, such
as, for example, correlations.

Depending on the targeted inquiries, the imaging data need to be analyzed statistically, which
is typically done following a massive univariate approach, meaning (in terms of images) that at
every individual voxel, a distinct analysis is carried out. In practice, this comprises conducting
one statistical hypothesis test per each individual image unit (voxel) separately but nonetheless
simultaneously. It produces a map of p values, representing the likelihood of observing given
values, under the assumption of some particular distribution for the null case of no activity in
the image.

Given a significance level (probability of a false discovery we are prepared to tolerate), using
it to threshold the p values leaves us with a binary map indicating significant voxels, knowing
that at each apparently significant (also positive, active) one, the probability of an erroneous
detection is less than or equal to the chosen significance level. From here on, we use the term
“activation” in voxel sense to denote deviations (either true underlying or just detected) from the
statistic of interest in any given analysis. A more formal summary of the theory can be found,
e.g., in Refs. 3–5.

However, when working with images, the whole image tends to be considered as one single
entity and we want to be able to draw sensible conclusions on accuracy of the entire family of
tests it comprises. The error rate of interest is therefore usually the number of erroneous positives
(i.e., type I errors) over the “whole image,” which is the so-called familywise error rate (FWER).
Unfortunately, knowing that each individual active voxel is wrongfully detected with at most
probability p does not impose the same upper bound on FWER. Even worse, the more tests
we conduct (i.e., the more voxels we have), the closer the probability of making at least some
erroneous detection in the image is to 1.

This multiple comparison problem is a well-known problem in statistics, present wherever
multiple simultaneous hypothesis tests are carried out, and as such common to all voxelwise
statistical analyses on images. A very illustrative example of how not dealing with this problem
can have disastrous consequences on the interpretation of the data is the study of a dead salmon
in Ref. 6, where Bennett et al. note how ignoring the problem led to the presence of activity in the
dead, obviously inactive brain. Moreover, some meta-analyses have been performed on pub-
lished research in human neuroimaging, which as well point to inflated detection rates in the
literature.7

Throughout the years, many approaches (called “correction methods”) have been developed
in hopes of resolving this problem,3,4,8 but they depend heavily on the particular data in question,
and failure to comply with their assumptions can again lead to inaccurate results.9–11 For that
reason, multiplicity represents a pressing, omnipresent issue that should not go overlooked, and
the correction to be used should be chosen carefully, depending on the properties of the data used
in the specific analysis. While there is an open call for focusing on better statistical models and
data acquisition instead of the raw p values, corrections, and significance,12 the use of correction
methods is still the standard way of dealing with multiplicity issues and is therefore where the
focus of this paper lies.

Most of the research on the development of new methods, as well as on applicability and
effectiveness of already available ones, have been targeted at neuroimaging data. However, with
the emergence of new concepts and applications of image analysis (such as Imiomics from
Ref. 2), there is a need to evaluate the methods and establish some general consensus/guidelines
for the case of whole-body MR data, too. Not only are there differences in anatomical and image
properties, which already imply a possibly different behavior of the methods in the two cases but
also in the types of analyses of interest. Correlation analyses, for example, are mostly avoided in
neuroimaging due to small datasets. With whole-body MRI on the other hand, correlation can be
particularly interesting from research perspective and studies often adequately powered for
such analyses.
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In this report, a number of methods, controlling the FWERs (at various inference levels; see
Ref. 13) that are most frequently used in practice or tend to perform best with functional MRI
(fMRI)9,14,15 are examined in the context of whole-body MR images: Bonferroni type correc-
tion,16,17 random field theory (RFT),10,18–20 basic permutation-based methods10,21 and threshold-
free cluster enhancement (TFCE),22 as well as the cluster-based analysis (CBA)23 procedure
with several choices of correction. In addition, we explore the possibility of using anatomical
information as a basis for correction.

1.1 Contributions

The main contribution of this report lies in the evaluation of a variety of methods on a real-life
dataset in search for a principled correction procedure, as well as in the introduction of a different
evaluation pipeline.

Furthermore, possible ways of method evaluation are discussed, as the standard approach
calls for a particular (no-activation) type of data that may be impossible to acquire. To the best
of our knowledge, this is the first account of correction method validation on large-scale imaging
data, outside neuroimaging applications, and consequently the first attempt at establishing a
general validation case for it, analogous to the no-activity scan of the fMRI. The need for such
method validation comes from the differences in anatomical and imaging properties of datasets
from within neuroimaging and, e.g., from Imiomics, where whole-body MR scans are used.
In addition, we focus on correlation analysis, which is rarely done in neuroimaging.

We also lay grounds for introducing more anatomy-aware methods of correction, specifically
tailored for our problem at hand. There have been attempts of adding other biological priors (see
Ref. 24), but the present article represents the first account of direct inclusion of large-scale,
spatial anatomical information in the multiplicity correction.

2 Methods and Materials

We first cover previous work on the topic by briefly describing the mechanisms of the methods
we used in this study to facilitate the subsequent reasoning behind their potential pitfalls.
Section 2.1.2 then introduces a simple idea for a novel approach based on prior information
on our whole-body data and shows some theoretical implications of applying this method and
method extensions. To test the appropriateness of different methods for whole-body scans and
Imiomics analyses, we use medical data from the prospective investigation of obesity, energy and
metabolism (POEM) cohort. A discussion on evaluation strategies is provided in Sec. 2.2, fol-
lowed by a detailed description of the dataset in Sec. 2.3.

2.1 Correction Approaches

Different methods can control different overall error rates,14,25 for example, the FWER, false-
discovery rate (FDR), false-discovery proportion (FDP), per comparison error rate, etc. And they
can also work at various inference levels,13 meaning in essence that they treat various amounts
of the input imaging data as individual entities in the inference step (e.g., individual voxels,
clusters, sets).

The majority of the correction methods in wider use within fMRI and neuroimaging, in gen-
eral, are designed to limit the FWER error, which is the probability of at least one error being
made in the whole family of tests. They have different assumptions on data properties and based
on the extent of compliance with them, they result in various stringency levels. In recent years, a
lot of effort has been put into developing the FDR limiting procedures as well,26–28 as they tend to
be more stable and less stringent. However, when using the methods in medical practice, where
presence of a signal at individual voxels (or structures containing only small or varying amounts
of them) is of importance, focusing on an expected rate of errors can hinder confidence in the
medical interpretation of the results.

Available evaluations of multiple comparison correction methods for integrated imaging data
deal, to our knowledge, exclusively with neuroimaging data; the most comprehensive evaluation
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of methods (as well as widely used software tools implementing them) on imaging data to date,
namely using fMRI, was done in Ref. 9. Another extensive evaluation of cluster-based correc-
tion, though only of permutation-based methods, is also available in Ref. 15. For a simulation-
based evaluation of the basic correction methods (for both FWER and FDR) on data with varying
degrees of positive dependence among tests, see Ref. 29.

2.1.1 Controlling FWER—previous work

The following methods are explained briefly, and the interested reader is encouraged to explore
the original references: Bonferroni-style step-down procedures,16,17 RFT,18–20,30 permutation-
based methods,21,22,31 CBA,23 methods for generalized FWER control,32–34 and parametric-boot-
strap joint (PBJ) testing.35

The simplest and oldest method for correction is the Bonferroni method,16 adjusting the sig-
nificance level based only on the number of tests performed. It sets the same significance level
for thresholding at all voxels and corrects it via division by the number of tests. The assumptions
behind it are that all the tests are independent, which is not really the case in images, where some
spatial correlation is almost universally present. The violation of independence still results in
theoretically valid but extremely stringent thresholds that tend to also wipe out the true active
signal. Regardless, it is still used a lot in different fields due to its simplicity.

A simple yet powerful extension of the basic Bonferroni method is the Holm step-down
procedure from Ref. 17. The difference between them is that Holm’s method rejects the tests
sequentially, each one at different thresholds, depending on their order with respect to signal size.
This way it requires more evidence toward rejections for those values that are less extreme. And
only the last value’s threshold for significance is lowered by the factor of all tests, which is in
contrast done for every value in the simple Bonferroni version. There are further extensions to the
Bonferroni method available (for example, Hochberg procedure from Ref. 36) but are omitted
here as the stringency (of Bonferroni-type corrections in general) is very high compared to other
types of correction procedures.

Random field theory,11,18,19,30 built upon the notion of Euler characteristic (EC) in a thresh-
olded image, has been most popular within the neuroimaging community in recent years. Using
the expected value of EC, it derives a closed-form approximation for the tail of the null distri-
bution for the voxel as well as for cluster-based correction. It is thus computationally undemand-
ing but the mathematical theory behind it, on the other hand, is quite sophisticated. It was
developed as a solution to spatial correlation problem of Bonferroni-like procedures, but it intro-
duces other restrictions, such as sufficient smoothness of the image, twice-differentiable auto-
correlation function, and the same parametric distribution independent of the spatial location; all
are often untenable for our images in practice.

In contrast to simply assuming a certain null distribution for the statistic, it can also be esti-
mated from our data. This is the fundamental idea behind the permutation (resampling based)
methods:21,22,31,37,38 randomly permute the data numerous times, calculate the extreme values of
the chosen statistic under the given permutation, and build an empirical distribution from those
values. The FWER corrected p values at a given significance level α are then obtained as
quantiles of this empirically calculated distribution. Such methods are nonparametric and do
not require the data to satisfy the complicated assumptions of RFT for validity. The only require-
ment that needs to be met is the exchangeability of subject/parameters that are being permuted
(and usually, aiming for distributional symmetry is enough). In neuroimaging, these permuta-
tion-based joint testing procedures appear to be the only ones that can reliably control the
FWER9,38,39 and have therefore been the basis for most of the latest development. To relax even
the exchangeability requirement, for example, and to speed up the execution (which is their
major drawback), a version of the method called PBJ testing procedure has been proposed in
Ref. 35. Another possibility for speeding up the permutation tests is doing approximate infer-
ence, as presented in Ref. 40.

Apart from the standard voxel signal, cluster size, and cluster mass statistics, such permu-
tation approaches can also be used for acquiring the distribution of a more complicated statistic,
encoding signal strength as well as spatial extent information. One example of such a method
is called TFCE,22 and the statistic it uses, the TFCE-score, is a voxel-based measure. This way,
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there is no loss of localization power while the spatial extent is still included in the calculations
through the integration of spatial support for the given voxel over a set of thresholds. More
recently, a probabilistic version of TFCE has been proposed,41 which reuses the TFCE idea but
avoids the time-consuming permutations in order to speed up the execution.

Traditionally, when aiming for cluster-based inference,18,21,30 the cluster formation is based
on the raw voxel signals and a cluster-defining signal threshold that can be chosen arbitrarily.
Since the appearance of the so-acquired clusters is very sensitive to the choice of this threshold, it
is important to keep in mind that even slight changes in its value can have unprecedented effects
on the final p values. Another possibility would be to instead prepartition the image into clusters,
assign them a signal value via some summarizing statistic (e.g., mean, maximum), and run any
chosen voxel-based correction method, treating the clusters as new units for correction. The CBA
as proposed in Ref. 23 does exactly that; it predefines clusters based on spatial covariance and
runs an adaptive procedure to control FDR on them (but one could just as well run a simple
Bonferroni-type correction on the clusters as units, to control the FWER). The idea behind the
clustering is to group each voxel together with the neighboring voxel with which it is most highly
correlated, where correlation coefficients for neighbors sharing only an edge or a vertex are
corrected for the larger grid distance with respect to the direct neighbors sharing a face. The
cluster signals are simply the averages of the contained voxel signals. This results in very small
clusters that should not negatively affect the visual interpretation of the image but are never-
theless still large enough to at least halve the multiplicity burden.

The notion of familywise error can be generalized to allow for additional mistakes by the
FDP,32 denoting the ratio of false discoveries among all of the discovered voxels. The expected
value of the FDP, E(FDP), is actually the so-called FDR,42 which is more widely known and
used in the literature. But since FDR represents an expected value of the error on average, its
control does not imply control in every individual experiment; in other words, the actual FDP
is still not prohibited from varying, meaning that the FDR limiting procedures are not applicable
at least for use in medicine when the exact knowledge on the upper bound of the error rate is
desired for each specific experiment, which is why they are out of the scope of this paper.

2.1.2 Controlling FWER—proposed anatomy inspired corrections and
extensions

Since our aim is to test the methods on whole-body scans, which carry specific expected
anatomy, it seems natural to try and include this information in the corrections. However, as
most of the multiple comparison correction development has been targeted at fMRI, where struc-
tures are less well defined, not much work has been done in this direction.

The way prior spatial anatomical information has usually been added in previous work is by
defining smaller regions of interest (ROIs), and thus excluding large parts of images (tissues and
organs), where the activation is not expected to be of interest (for example, Ref. 43). That effec-
tively lowers the multiplicity burden as a preprocessing step, and thus improves the results of
whichever correction method is applied in the end.

While focusing on a specific ROI is an easy, perhaps most straightforward way of alleviating
the multiple comparison problem, it is not always applicable. Whole-body scans are very often
used as exploratory scans, in cases where no good assumption regarding the locality is available,
and therefore, the anatomy has to be included in some other way.

To our knowledge, the only method that aimed for the inclusion of anatomical information
without limiting the correction to a specific region of interest is the one described in Ref. 24,
which was developed explicitly for neuroimaging using a brain-specific prior of hemisphere
symmetry.

We propose some possible directions toward a more structured, anatomy-compliant cor-
rection, which offers additional power with the use of the prior data though it also suffers
from a similar drawback as the ROI focused improvement: uncertainties that stem from
extracting the anatomical priors. As those are a prerequisite for the methods we develop in
this paper, we hereon assume a reasonably accurate segmentation of all tissues in question
is available.
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Limiting FWER on predefined anatomy-based clusters. When working on research
questions involving organ activity, where the activity is, if present, most likely to be found over
the whole organ area, it follows intuitively that treating the organs as units is a good way of
alleviating the multiplicity problem. For this, however, all the delineations of the organs, tissues,
or grouping regions must be known, and activity can in the final step be inferred only for those
whole regions.

Given a segmentation method with a known accuracy (either an automatic tool or a number
of manual segmentations) per organ, and a proper summarizing statistic for the cluster signals,
we can effectively limit the FWER on the cluster level by using, e.g., the Holm procedure. The
question here is how to devise a summarizing statistic for cluster signals that would allow us to
boost the signal-to-noise ratio while somehow including the uncertainty of cluster membership
at each voxel.

While averaging over the organs could potentially help with SNR, it is also sensitive to
including a border of voxels that do not belong to the organ in question. Since the segmentations
we can acquire are never completely accurate, we need to compensate for those errors. We pro-
pose using a weighted average for cluster signals, where weights can be assumed to decrease
toward the edges of the segmentation. This can be done by using a soft segmentation, joining
labelings from a number of annotators (i.e., if n out of N annotators label a voxel as liver, and the
other N − n as kidney, than the weights with which the signal of that particular voxel contributes
to the liver and kidney cluster signals, respectively, are n

N and N−n
N ).

To formalize, let Sk denote the signal of the cluster representing some structure Ck, k ∈
f1: : : Kg. xi the image signal at voxel i and Uk union of all voxels that have a nonzero member-
ship for cluster Ck (or where the accuracy of the binary cluster-background segmentation is
nonzero) in any of the annotations. Then, the signal of a cluster is calculated via the following
weighting average:

EQ-TARGET;temp:intralink-;sec2.1.2.1;116;438Sk ¼
1

jUkj
X
i∈Uk

xi · akðiÞ;

where ak∶Uk → R is the accuracy function for the given structure cluster. In the case of N avail-
able annotations, we then have akðiÞ ¼ ni

N with ni the number of those annotations that label
voxel i as belonging to a cluster of structure Ck. Since gathering multiple annotations is not
always feasible, a way to approximate such an accuracy map akð·Þ (unless it can be directly
produced by the employed segmentation method, e.g., when using neural networks) is to assume
thin border around the boundary of each segmented organ having lower reliability.

Finally, to ensure the FWER control, permutation distribution can be acquired for the defined
cluster/organ statistic and the resulting p values can be adjusted via, e.g., the Holm procedure
(now the multiplicity is low, as only K simultaneous tests were performed and in addition, the
tests tend to be more independent—so, the stringency of this type of procedures is not an issue
anymore). The interpretation of the final p values is then similar to the voxelwise p values: p
value of an organ X with weighted signal S denotes the probability that under the assumption of
no activity in the body, a signal equal to or exceeding S is present in X.

In theory, we could do the correction on the newly defined statistic directly through the maxi-
mal distribution by permutation. However, the statistic values would then need to be somehow
normalized to be comparable among organs, which can sometimes be difficult to achieve (differ-
ent organs can have different amounts of voxels with varying quality or label confidence).

Using anatomical information within CBA, TFCE, and permutationmethods. When
applying the established approaches, anatomical information can sometimes be included via the
specific choice of parameters. For example, using k-FWER, expected sizes (in voxels) of active
clusters (e.g., corresponding to sizes of organs) could be included to some extent by setting their
minimum (or a certain fraction of it) as an upper bound for k. This way we allow as many errors
as possible without hindering the final (per-organ) inference on activity.

This particular example utilizes very little of the organ cluster knowledge (in essence only the
size of the smallest one), however, sizes of all individual objects can be included within CBA and
permutation-based (also TFCE) methods by imposing anatomical restrictions to the support
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growth and clustering, respectively. Naturally, such extension has some implications for TFCE
score due to a large variability in organ size. For example, with the generic choice of TFCE
method parameters, because of the liver being larger than the kidney, its overall signal can
be much lower than the one of the kidney, for both to be detected as active. The workaround
for this is to adapt parameters, giving less power to the size of clusters or scale size by the
maximal possible one (so that a three-voxel signal inside a pancreas of nine voxels is considered
as extensive as a 15-voxel signal in a liver consisting of 45 voxels).

The modified TFCE score for the case of including anatomical extent knowledge is then
equal to

EQ-TARGET;temp:intralink-;sec2.1.2.2;116;628TFCEðxÞ ¼
XT
t¼t0

�
eðtÞ · emax

eX

�
E
tHdt;

where x ∈ X, eX means the extent of the organ X, and eðtÞ is now the extent at threshold t inside
the organ or structure X (instead of the whole picture). And emax ¼ maxX eX is the size of the
maximal object. The parameters E and H that are carried over from the original TFCE method
formulation represent the importance of signal extent and strength, respectively. These can be
tuned depending on what is considered more indicative of true activation in the specific setting.

By dividing the signal extent over organ by the maximal organ extent, we ensure that a spa-
tially smaller activity in a small structure is treated similarly as a spatially more extensive activity
inside a larger object. This, however, means that there will be trouble when trying to detect small
partial activities in larger structures, but that is the cost we may be prepared to pay to alleviate the
problem of unequal object sizes, particularly when activities are expected to span the whole
organs or larger parts thereof. It also does not explicitly sanction the extents that span over the
organ borders but might just be smeared activity (instead of an actual several organ spanning
one). This goes along with the inherent assumption that the activity outside one organ belongs to
another structure (even if contiguous with the active voxels in the first structure).

Another modification that can be made to account for the anatomy is the clustering in the
CBA method. As explained above, the method clusters the base image (not used in the analysis)
depending on the correlation between voxels (taking into consideration also their distances). In
such a clustering, we can expect to obtain smaller clusters. Due to image artifacts, however, it
can easily happen that the clusters span over multiple organs. Once again, we can restrict their
growth during clustering. The anatomy-preserving version of the CBA clusters can then have a
much different appearance, particularly close to the borders of the individual organs. Depending
on how we conduct the clustering process (it is sensitive to choice of the starting point), we might
also produce more smaller clusters, with possibly more spiked signals (since their signal is aver-
aged over a smaller surface).

Within the permutation-based correction, the anatomical prior can be included in a similar
way as above. If the activity extent is of interest, we can carry out the original cluster-extent
permutation-based correction, but again limit the growth of clusters to within individual organs.
As with TFCE, the obtained signals need to be scaled to the organ sizes since the permutation-
based correction works by noting the maximal statistics (here extent) over the body and thus
requires the individual organ-limited cluster extents to be comparable in size.

This is very similar to the method described in the previous paragraph. The difference, how-
ever, is that there the signal is defined over the organ and thus the p values and significance can
be determined on a structural level. Here, one organ can contain multiple sources of activity.
While one can decide whether to join them or use them separately during the permutation
distribution calculation, the resulting p values still correspond only to the voxels of activity,
included in the computation, and not the entire organ. This way we retain more spatial locality
information about the activity.

The interpretation of the acquired p values is now slightly different than that of the original
methods. Then, we were interested in the probability of an activity-cluster of at least some given
extent appearing under the null hypothesis, whereas now the probability in question is that of
a cluster spanning at least some given fraction of any organ (again, given the null hypothesis
is true).
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2.2 Method Evaluation Strategies

In fMRI, the methods can usually be evaluated directly in terms of type I error on the resting
state image sequences. In whole-body images, however, we do not possess proper rest-state, no-
activity images. Due to this, we shall evaluate the methods in two ways: on an approximation of
null activity case for the correlation analyses and by empirically evaluating the type II error on
images with known activity.

The latter approach to evaluation is perhaps not intuitive, as it deals with another error rate.
It is known, however, that the type I and type II errors are related44 and that bounding one can
increase the other. The exact interplay is, on the other hand, not explicitly known as it depends on
the distribution of possible alternative hypotheses. For that reason, even when comparing the
methods that theoretically should impose the same upper bound on the type I error, looking at
their type II error rates can pay off. Under the assumption that the methods work as they should
(i.e., truly keep the false positives at a known level), the appropriateness of their application can
be measured by their effect on truly active data; the more sensitive the method appears to be on
the data at hand, the better.

On top of that, sensitivity can sometimes be more important than specificity in medical
applications;44 for exploratory searches, for example, which are intended to provide a pool
of possible diagnoses, identifying potentially pathological activity is more important than being
particularly exact about its extent and precise location, especially when final diagnosis is not
based entirely on images but rather supplemented with subsequent, more targeted confirmation
strategies. In addition, with such large number of voxels and additional medical knowledge, it is
much easier to find a case where we know from theory that some activation should be present
than it is to find an analogous case for which we can with all certainty claim there should be
none, so a testing case of such type could be easier to come by.

For the first approach to evaluation, we use an artificially constructed null-case image for the
correlation analysis. It is constructed by using a random vector for calculating the correlations
with voxel intensities. Considering the high number of voxels, many spurious responses can be
expected. And the extent to which the methods are able to remove those activations is considered
as the evaluation metric in two ways: similar to Ref. 9, we can observe the nominal error rates
after a number of analyses, but we can also look at a few example analyses to see not only
whether the errors are present or not, but rather how prevalent the errors are in the final results.
This can, together with the known-activity results, be somewhat indicative of the stringency level
and represent important information when we are more concerned with the possibility of an
erroneous interpretation than individual voxel errors. Nonetheless, this way of constructing a
no activity map is not entirely equivalent to the fMRI no activity scan situation, where the
responses under the null hypothesis are actually spurious and occur due to different noise
sources. In our case, however, the construction of the random vector does not necessarily imply
that the null hypothesis holds at every voxel. Thus, it may happen that the amount of activations
after correction is higher than theoretically expected.

We then look at an example amounts of spurious activity that survive the correction as well as
at nominal error values over 200 experiments.

For the second evaluation strategy, we need a reference true activity map. As in Ref. 45, this
could be done by first running the analysis on a much larger sample (in order to ensure rea-
sonable power) and then using the acquired results as the reference. While such a procedure
can lead to a quite reliable reference given a reasonable number of samples, it requires a large
amount of samples to create the reference, and the reference still needs to be corrected for multi-
plicity before use. For this reason, we here instead resort to using a combination of analysis and
data for which we have some prior knowledge on the true activity. We chose a correlation analy-
sis with bioimpedance analysis (BIA, a measure of body fat mass) as the nonimaging parameter.
It represents the total amount of fat within the body, which, of course, correlates highly with the
fat tissue in the fat/water separated MR images. This enables us to approximate the amount
of truly correlated voxels that are retained after correction. The voxels with a sufficient amount
of fat to be used as truly active voxels in the evaluation are acquired by thresholding the fat
image of the reference subject (the same reference as used for the registration).
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2.3 Dataset

The correction methods in this paper are evaluated using the POEM cohort (Ref. 46, PI: L. Lind,
see Ref. 2 for more detail), containing whole-body MR scans of 342 subjects. Ethical approval for
the study was obtained from the Regional Ethical Review Board in Uppsala, Sweden (Approval
numbers: Uppsala Dnr 2009/057 and Dnr 2012/143), and written consent was obtained from
all subjects. Scans were acquired on a 1.5T MR system with a whole-body water-fat imaging
protocol using a spoiled 3D multigradient echo sequence and scan parameters TR∕TE1∕ΔTE ¼
5.9∕1.36∕1.87 ms, three unipolar echoes, and 3 deg flip angle. The images are of size 256 ×
252 × 256, reconstructed voxel size 2.07 × 8.0 × 2.07 mm, and were corrected for intensity inho-
mogeneities by slice-wise normalization of intensity values in the foot–head direction (to avoid
discontinuities between adjacent axial slices) and simultaneous correction, as in Ref. 47.

They are all registered to a common coordinate system by a nonparametric three-step regis-
tration method,2 accounting for the elasticity of the tissue. The registration procedure provides
Jacobian determinants (JDs) of the displacement fields that can be considered a measure of volu-
metric change between subjects. It is, however, accurate down to 2 pixel resolution, which moti-
vates the decision not to use the segmentation boundaries in the evaluations (see Sec. 3 for more
details). It could also be used as a reasoning for smoothing that is or should be done for certain
methods prior to correction.11

In addition to the scans, medically relevant parameters, such as BIA, triglycerides, genetic
traits, etc., are given for every patient, such that correlation maps can be calculated to measure the
level of interconnection between various pieces of information. The correlation analysis in our
experiments includes BIA measures and the JD values. The reasoning behind this choice is the
knowledge we have on expected significant correlations: as BIA represents the total amount of
fat in the body, and the JD shows relative volume, we expect the voxels in the fat tissue to exhibit
high levels of activation while testing for significance. This enables us to directly (even visually)
assess the stringency of the methods.

The subjects in the dataset are of both genders (approximately equally represented in the
sample), 50 years of age. Possible confounding effects from age variation are therefore excluded,
and given a relatively high number of data available, we avoid the gender effects by carrying out
two separate analyses. As we are interested in negative as well as positive correlations, we focus
on two-sided tests in our experiments.

In order to follow the described evaluation strategies and to implement the anatomy-based
corrections, a reference segmentation is also provided for the male and female reference subjects.
It includes around 48 separately labeled structures, including splitting of the fat tissue based on
the more relaxed definition of body parts/areas. More specifically, the categories are the follow-
ing: bladder, bowels, liver, pancreas, spleen, stomach, lungs, heart and large vessels, eyes, brain,
and spinal cord. The muscles, bones, and fat tissue are all in separate categories, split according
to body areas: calves, thighs, gluteus, abdominal area (fat here separated into SAT and VAT, and
muscles on abdominal and back), upper back and shoulder area, and head. Semantic segmen-
tation, particularly on a lower resolution MRI, can be very hard, so we add a tissue category other
in which we join all those voxels that were too uncertain to be labeled as any of the original
structures. Since voxels of this category appear at various spatial locations in the final segmen-
tation, we split this category based on the general body area as well.

Examples of all the images in use are shown in Fig. 1.

3 Results

As mentioned above, for evaluating the stringency of methods, we use a combination of JD
images and nonimaging measurement BIA to produce correlation maps with expected activity
(which here means significantly large correlation values) in the fat tissue. Pearson’s linear cor-
relation coefficient was used to measure correlation. We opted for the given choice after visually
examining a few data points (see examples in Fig. 2) and noticing that the occasionally exhibited
correlation was mostly linear in nature and that the assumptions for using the Pearson coefficient
are satisfied—absence of outliers, approximately normal data distributions for both variables.
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In addition, the examination of variables at individual voxels shows that there is no prevalent
residual heteroscedasticity, so we avoid the need to account for it in the evaluation.

The same correlation coefficient was used in both evaluations, on the original as well as with
the null data. For the null case, we constructed a random vector of measurements (to be used in
the correlation calculations instead of BIA), distributed according to a standard normal distri-
bution. We chose the widely used significance level of α ¼ 0.05 and where needed, a cluster
defining (primary) threshold corresponding to α ¼ 0.001. The parameters used within the TFCE
method were the ones suggested in Ref. 22: H ¼ 2, E ¼ 0.5, and dt ¼ 0.1. For the proposed
simple per-organ method, we assumed (equally) strong confidence for all the inside voxels

Fig. 2 Example scatter plots for correlation between BIA measurements and the JD at a few voxel
locations (chosen randomly from the areas where strong correlation is expected), shown for
(a) male and (b) female subjects separately. We see that the exhibited correlation is approximately
linear and that the data do not seem to suffer extensively from heteroscedasticity.

Fig. 1 Example image slices for male subjects. (a), (b) The original MR fat-water separated
images, showing (a) fat content and (b) water content. (c) The JD of the same slice and (d) the
coarse semantic segmentation of the tissues and body parts.
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(weight of 1) and a low one in the outermost border voxels (weight of 0.1). The correlation-based
clustering that is part of the CBA method was carried out on a reference fat-content image, which
was not included in the analyses.

3.1 Evaluation on Data with Activity

To properly evaluate the methods and their stringency, we approximate the amount of true pos-
itives as the amount of voxels with sufficiently high-fat content in the reference subject image;
i.e., those that were segmented as subcutaneous fat. This value is, of course, not entirely accurate
but serves the purpose of comparison and gives the feeling on method stringency. In order to
account for the uncertainty in the segmentation, we also exclude the outer boundary in the counts
affecting the final evaluations.

Fig. 3 Computing correlation of BIA measurements with JD. The plot shows counts of voxels with
activity after each correction, separated by gender. The straight lines represent the uncorrected
values. Given the choice of the correlates, we aim for retaining the activity in the fat voxels. All
methods marked with (A) are the anatomy-including versions of the original methods.
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A quantitative comparison of retained activity is shown in Fig. 3, presenting a more detailed
view of the voxel counts and method effectiveness. But some of the differences can be noted
already from the visual comparisons of example slices in Figs. 4 and 5. Since in the correlation
analyses, the effect magnitude and significance become somewhat intertwined, we color the
significant voxels by their correlation size to visualize how sensible the significance is.

3.2 Evaluation on Null Data

Creating a random correlate vector produces a fair amount of activity due to the large amount of
voxels in the body. However, those activities tend to be relatively weak and less clustered. We,

Fig. 4 A visual comparison of the effect of correction methods on the BIA measurements versus
JD correlation testing for women. Shown here is the reference fat content image, overlayed with
the original correlation at voxels that are deemed significant at the significance level α ¼ 0.05
under the given multiplicity adjustment. The color corresponds to the strength of the correlation.
Each segment (a)–(k) shows a separate method: (a) the original correlation; (b) Holm corrected;
(c) RFT voxel- and (d) RFT cluster-wise corrected; (e) and (f) permutation-based voxel and cluster-
extent correction, respectively; (g) TFCE corrected; (h) CBA corrected; and finally (i)–(k) the
anatomy-inclusive corrections by (i) permutation, (j) TFCE, and (k) CBA.
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therefore, omit example slices, as individual voxel activity is very hard to detect visually from the
whole-body image and is not particularly informative either.

To get some insight on how things actually worked, we instead look only at the voxel counts.
But since the majority of methods are able to correct for a large extent of those false positive, we
show an example log-scale graph of the voxel counts in Fig. 6 to enable proper comparisons. In
addition, in Fig. 7, we show the nominal error rates for all the methods, calculated over 200 runs.
While that shows the actual rate of error that can be expected over experiments (regardless of the
claimed α-error levels), the histogram example can help with understanding the stringency and
the extent of failure of the methods.

Fig. 5 A visual comparison of the effect of correction methods on the BIA measurements versus
JD correlation testing for men. Shown here is the reference fat content image, overlayed with the
original correlation at voxels that are deemed significant at the significance level α ¼ 0.05 under
the given multiplicity adjustment. The color corresponds to the strength of the correlation. Each
segment (a)–(k) shows a separate method: (a) the original correlation; (b) Holm corrected; (c) RFT
voxel- and (d) RFT clusterwise corrected; (e) and (f) permutation-based voxel and cluster-extent
correction, respectively; (g) TFCE corrected; (h) CBA corrected; and finally (i)–(k) the anatomy-
inclusive corrections by (i) permutation, (j) TFCE, and (k) CBA.
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4 Discussion

The histograms in Fig. 3 are intended to highlight the stringency of the methods—ideally, we aim
to retain all the observed activity in the high-fat content areas and not much else. However, while
the persisting activity in the other areas is some indication on how well the methods dealt with
false positives, they cannot be directly used in the argumentation of method choice since there
are indications that a certain amount of correlation can be expected also in other tissues (for
example, in the lungs2).

It is known that the Bonferroni method (as well as Holm and similar) can be disastrously
conservative when the test multiplicity is very high. However, as it is visible from Figs. 3–5,

Fig. 6 A histogram showing active voxel counts after various corrections, for example, JD versus
random vector correlation analysis. Due to extreme imbalance, the counts are drawn in log scale
to enable a better comparison.

Fig. 7 A histogram showing nominal error rates of the methods on 200 random correlate analyses.
The values are obtained by dividing the count of runs that had any significance after correction with
the number of all runs. The dashed line represents the desired 5% FWER.
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a surprisingly large amount of activity persists after correction in the BIA correlation analysis.
This is not to say the method is appropriate or encourage its use on the whole body analyses by
Imiomics, but rather show that the given analysis produces very high correlations in the fat tissue,
which, in turn, means extremely small p values given the high number of subjects. The appro-
priateness of the other available methods should thus be evaluated with this result (and its theo-
retical stringency) in mind.

In practice, in neuroimaging, most literature uses a version of RFT-based correction. When
resorting to the voxel-based RFT correction, due to the almost inevitable (in imaging) violations
of the assumptions, the method behaves highly conservatively, which is confirmed by the results
in Figs. 4 and 5: voxelwise RFT appears to be even more stringent than the Holm correction also
for whole-body scans and Imiomics analyses.

One of the most obvious violations of the RFT assumptions is the one of smoothness—as the
images are already relatively low resolution (with regard to the sizes of various structures we may
want to investigate) and the spatial locality is mostly of interest, we cannot afford to apply yet
more smoothing as preprocessing. Connected to this is also the highly anisotropic nature of our
data. As RFT has been mainly developed for realizations of isotropic random fields, this is
another possible source of decreased error control in our applications.

When using the cluster-based corrections, however, the results tend to be much more liberal
(see the figures for the results corresponding to RFT and permutation clusterwise correction).
This, together with the argument that the activity tends to cluster together even if in very small
activity areas, speaks toward doing correction on cluster-extent (or other cluster-involving sta-
tistics). But these methods are very sensitive to the choice of the primary threshold and as we can
see from the histogram in Figs. 6 and 7, the cluster defining threshold that was used in this
evaluation (an equivalent of a p value of 0.001) is still too high to provide sufficient error control
under the null hypothesis. Choosing a lower one, on the other hand, would hamper the currently
advantageous sensitivity (seen from the BIA analysis).

The TFCE method, while avoiding the arbitrary threshold setting problem, exhibits a sur-
prisingly liberal control in the BIA case (Fig. 3), considering that it generally tends to be more
conservative than the methods using an arbitrary cluster defining threshold (unless the chosen
threshold is extremely low). At the same time, it keeps a proper control of the nominal error rate,
as seen from Fig. 7.

The original and the anatomy compliant versions of the TFCE method appear to have very
similar effects on the data and problem at hand, though the anatomy including version is slightly
more stringent on the BIA analysis (noticeable even visually in the male subject, Fig. 5). It,
however, correctly identifies all the fat voxels, which means its added stringency can be con-
sidered an advantage (under the assumption that the fat labeled voxels are the only ones, where
activity should be present). The latter holds also for the anatomy-based permutation method.

All of the anatomy-based corrections provide a clearer distinction between active and non-
active areas (Figs. 4 and 5), as they limit them by the underlying tissue extent. The first, per
organ-based correction, performs expectedly well on the given example of JD versus BIA cor-
relation, as the activity depends on the tissue type more than its position. However, the extreme
loss of spatial locality it suffers renders this method inappropriate for use with any problem,
where the activity is more clustered and not regional.

Others among the anatomy including corrections retain the same spatial information as their
nonanatomy including counterparts. But they mostly perform better in terms of error control.
The reason for that could be that the inclusion of anatomical priors helps to avoid detecting any
smeared signal that spans multiple functional areas. In addition, the anatomy-aware permutation
method for clusterwise correction effectively limits the maximal size of the clusters (by the size
of the maximal tissue extent), meaning that smaller clusters now have a higher chance of turning
up as significant, as long as they are a part of a smaller organ.

This additional assumption, that any present activity should be somehow related to the under-
lying organ extent, is common to both the anatomy-aware versions of the permutation and the
TFCE method. The added assumption and an inconvenience of a different meaning of p values
do not, however, affect the anatomy-aware CBA and per-organ methods, whose predefined clus-
ters make them more robust and easily interpretable. They do, in turn, require a smart summa-
rizing statistic choice and more problem-specific handling with regard to cluster formation.
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Comparing the original correlation map with the results of both versions of the CBA method
in Figs. 4 and 5 confirms that the CBA’s clustering produces clusters that are very small and thus
pose no hindrance for general visual inspection and inference. However, the clustering is very
computationally intense and requires a pilot image that is not used in subsequent analyses, which
is perhaps also the reason why the original CBA method has not gained wider use.

A shared disadvantage of all the anatomy-aware methods presented here is the need for a
reference semantic segmentation of the underlying tissues and anatomical areas. But they do also
share another advantageous property: all anatomy-based versions of cluster-based corrections
enable additional parallelization because every anatomical structure can be processed separately.
For some of the methods, making them faster would be a large advantage since they take a long
time to run in order to obtain reliable results. While all resampling methods already allow for
some parallelization due to the independence of different permutations, the CBA method clus-
tering part does not. In the anatomy-based CBA, on the other hand, the clusters can only grow
inside the organs so the parallelization using separate anatomical structures is very natural.

Moreover, despite that the original permutation-based (including TFCE) methods can, in
theory, run permutations in parallel, this is in practice hard to achieve if dealing with large data
since each parallel execution requires a copy of the whole dataset or simultaneous access has to
be supported. Both can be problematic or cause delays. But when parallelizing them based on the
individual organs, the simultaneously considered datasets are smaller and the image data not
shared.

Seeing that the balance between activity retention (Figs. 3–5) and nominal error rates and
sizes (Figs. 6 and 7) is more favorable for the anatomically informed approaches, those would be
the recommended choice of multiplicity correction methods for whole-body MRI analyses.
When higher-level regional activities are of interest, the per-organ correction with appropriate
choice of summarizing statistic and segmentation accuracy based weights should be considered,
whereas the anatomy-aware TFCE method (preferably with the principled setting of the param-
eters, as described in Sec. 3) should be used when spatial specificity is needed.

If a segmented reference image is absolutely not available, one can select the original TFCE
method or the permutation-based cluster-extent correction. However, being sensitive to the clus-
ter-defining threshold, the latter should be applied with caution and using TFCE instead is
advised.

5 Conclusion

We presented a number of anatomically oriented multiplicity correction methods and provided
an extensive evaluation of various FWER limiting procedures on POEM data and correlation
analyses by Imiomics. The inclusion of anatomical structural priors into correction steps is a new
idea that has not been widely researched yet. In addition, the provided evaluation complements
the available literature on correction methods with imaging data (and analyses) outside the neu-
roimaging domain.

It may seem that multiple correction problem is not as severe in the whole body analyses as in
other applications since the structures (organs) are better defined, and thus, a few incorrectly
detected voxels here and there should not be problematic for human observers. But due to a
very high number of tests, it is still quite plausible to get falsely detected voxels that are all
part of a contiguous region. Therefore, establishing a principled choice of correction method
that works well with the whole-body MRI data is very important.

Based on the performed experiments and considerations of method properties, we provided
suggestions for the most suitable approaches to be used. While the anatomy-aware methods that
have been presented are a step forward to the inclusion of the problem-specific information, there
is a lot of space for improvement.

Possible directions for the future work on such improvements include, for example, develop-
ment of new anatomy-aware methods that avoid the downsides of the currently suggested ones
(such as arbitrary choice of method parameters for TFCE) or a detailed investigation into the
effects of registration and/or segmentation method choice and accuracy on the correction
approaches. Furthermore, when considering including prior (anatomical) information, numerous
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variations, and hybrids of the herein described methods are possible, depending on what is the
preferred interpretation and inference level. Their applicability should also be evaluated.
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