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Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly con-
served cytosolic pattern recognition receptors that perform critical functions in surveying
the intracellular environment for the presence of infection, noxious substances, and meta-
bolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization
into large macromolecular scaffolds and the rapid deployment of effector signaling cas-
cades to restore homeostasis. While some NLRs operate by recruiting and activating
inflammatory caspases into inflammasomes, others trigger inflammation via alternative
routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory
factor pathways. The critical role of NLRs in development and physiology is demonstrated
by their clear implications in human diseases. Mutations in the genes encoding NLRP3
or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that
encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide associa-
tion studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a
host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease,
asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in
elderly women. Animal models have allowed the characterization of underlying effector
mechanisms in a number of cases. In this review, we highlight the functions of NLRs in
health and disease and discuss how the characterization of their molecular mechanisms
provides new insights into therapeutic strategies for the management of inflammatory
pathologies.
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INTRODUCTION
The mammalian immune system encompasses an ancient
genome-encoded innate immune system and a more recently
acquired adaptive immune system capable of combating
pathogens with exquisite specificity and long-term memory. The
innate immune system remains a pivotal player in controlling
host resistance. This system is equipped with an arsenal of pat-
tern recognition receptors (PRRs) that translate microbial and
danger sensing into immediate host defenses as well as provides
signals to prime the adaptive immune response for long-lasting
protection (1, 2). Nucleotide-binding and oligomerization domain
(NOD)-like receptors (NLRs) are a group of evolutionarily con-
served intracellular PRRs that play a vital role in innate immunity
and host physiology, as reflected by their prevalence among liv-
ing organisms of both the plant and animal kingdoms (3–9).
In humans there are 22 known NLRs, and the association of
mutations and single nucleotide polymorphisms (SNPs) in their
genes with human diseases reflect their vital role in host defense.
The function of NLRs is not restricted to immunity, as they also
play important roles in reproduction and embryonic development
(10–12).

The characteristic feature of NLRs is a central NOD (or
NACHT) domain, required for oligomerization, an N-terminal
homotypic protein–protein interaction domain and a C-terminal
series of leucine-rich repeats (LRRs) involved in agonist sensing or

ligand binding. Mammalian NLRs are sub-divided into four sub-
families based on the variation in their N-terminal domain: NLRA
or Class II transactivator (CIITA) contains an acid transactivation
domain, NLRBs or neuronal apoptosis inhibitor proteins (NAIPs)
possess a baculovirus inhibitor of apoptosis protein repeat (BIR),
NLRCs have a caspase-recruitment domain (CARD), and NLRPs
a pyrin domain (PYD). NLRX1 contains a CARD-related X effec-
tor domain (Figure 1). Upon ligand binding, the auto-inhibitory
LRR undergoes a conformational change, which exposes the N-
terminal domain allowing interaction with downstream signaling
adaptors or effectors and formation of an oligomeric complex (13,
14). NLR platforms that recruit and activate the inflammatory
protease caspase-1 are referred to as inflammasomes. Caspase-1
is required for the processing and maturation of inflammatory
cytokines IL-1β and IL-18 and the induction of an inflammatory
form of cell death termed pyroptosis (15, 16). Among the NLRs,
NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, and NAIP
have been reported to operate via inflammasomes (Figure 2).
Other NLRs such as NOD1, NOD2, NLRP10, NLRX1, NLRC5,
and CIITA do not directly engage the inflammatory caspases,
but instead activate nuclear factor-κB (NF-κB), mitogen-activated
protein kinases (MAPKs), and interferon (IFN) regulatory fac-
tors (IRFs) to stimulate innate immunity. Below, we discuss the
different NLRs along with their mechanisms of activation and
diseases associated with defects in their activities (Figure 3).
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INFLAMMASOME-FORMING NLRs
In 2001, the causative mutation of Muckle–Wells Syndrome
(MWS), a rare autosomal recessive auto-inflammatory disease,
was mapped to NLRP3 (CIAS1) (17). In 2002, Tschopp and col-
leagues were the first to characterize the inflammasome, defining
it biochemically as a complex consisting of an NLR (NLRP1),
the bipartite adaptor protein ASC (which contains both a CARD
and a PYD), and the two inflammatory caspases, caspases-1
and -5 (18). In 2004, the discovery of the links between the
NLRP3 mutations, NLRP3 inflammasome hyper-activation, and
excessive production of IL-1β has set the stage for the use
of IL-1 blockade strategies, such as recombinant IL-1 receptor
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FIGURE 1 |The human NLR gene family. The human NLR gene family
consists of 22 members that share a tripartite structure, consisting of an
N-terminal signaling domain, a central nucleotide-binding and
oligomerization domain, and a C-terminal agonist sensing/ligand-binding
domain. The NLR family is sub-divided into four sub-groups NLRA, NLRB,
NLRC, and NLRP based on the nature of the N-terminal domain consisting
respectively of an acidic transactivation domain, a baculovirus IAP repeat
(BIR), a caspase-recruitment and activation domain (CARD), and a Pyrin
domain (PYD).

antagonist (anakinra) or anti-IL-1β antibodies (canakinumab),
to cure patients inflicted with hereditary periodic fever syn-
dromes [reviewed in Ref. (19)]. Concurrently, Dixit and colleagues
reported the generation of the first inflammasome knockouts,
namely mice deficient in IPAF (NLRC4) or the adaptor ASC,
and showed that macrophages from these mice had a defect
in IL-1β production following infection with flagellated bacte-
ria (20). As more inflammasome-forming NLRs are continuously
being characterized and studied, their importance in activating
immune responses and consequently in conferring host resistance
is becoming evident.

NLRP1
The NLRP1 protein has a unique structure amongst other NLRs.
Human NLRP1 contains a PYD on the N-terminus and a CARD on
the C-terminus, with ZU5 and UPA domains in the internal region
which confers proteolytic activity upon the protein (21). Three
murine NLRP1 homologs – Nlrp1a, Nlrp1b, and Nlrp1c – have
been identified, although they lack the N-terminal PYD domain
present in human NLRP1. Few ligands have been found for NLRP1
to date, and include bacterial products such as lethal toxin (LT)
produced by Bacillus anthracis which activates murine NLRP1b
(22), muramyl dipeptide (MDP), a component of bacterial pep-
tidoglycan that activates human NLRP1; and reduced levels of
cytosolic ATP (23–27).

Defects in NLRP1 have been linked to a variety of autoim-
mune disorders. Candidate gene analysis and Genome-wide asso-
ciation studies (GWAS) have shown a significant association of
polymorphic variants in the extended promoter and/or coding
regions of NLRP1 with familial cases of generalized vitiligo (28,
29), celiac disease (30), Addison’s disease and type 1 diabetes
(31, 32), autoimmune thyroid disorders (AITDs) (33), systemic
lupus erythematosus (SLE) (34), systemic sclerosis and giant
cell arteritis (35, 36), congenital toxoplasmosis (37), rheumatoid
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FIGURE 2 |The NLR inflammasomes. The three biochemically characterized
inflammasomes are depicted. The NLRP1 inflammasome consists of NLRP1,
ASC, and caspases-1 and -5. Little is known about the agonists that activate
NLRP1. Anthrax lethal toxin, MDP, and decreased cytosolic ATP have been

reported to stimulate this inflammasome. NAIP and NLRC4 form a caspase-1
inflammasome in response to bacterial flagellin and T3SS rod proteins.
NLRP3, on the other hand, is activated by a wide range of agonists including a
number of MAMPs and DAMPs.

Frontiers in Immunology | Molecular Innate Immunity October 2013 | Volume 4 | Article 333 | 2

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive
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arthritis (38), and Alzheimer’s disease (39) (Figure 3). A novel
missense mutation M77T in NLRP1, which destabilizes the pro-
tein, has been recently shown to cause corneal intraepithelial
dyskeratosis (40).

In a recent analysis of high-risk haplotypes with substitutions
in human NLRP1, Levandowski et al. demonstrated that periph-
eral blood monocytes from heterozygous carriers of the haplo-
type 2A (which contains three non-synonymous substitutions:
L155H-V1059M-M1184V) process significantly greater amounts
of pro-IL-1β into mature IL-1β under basal conditions. It was
thus proposed that the enhanced production of IL-1β predis-
poses carriers to a wide spectrum of autoimmune diseases (41).
Consistently, patients diagnosed with vitiligo commonly suffer
from other autoimmune disorders such as SLE (28, 42). However,
the molecular mechanisms underlying the link between NLRP1
genetic variations and these disorders are still unknown. It is

plausible that deregulation of an NLRP1 inflammasome effec-
tor function is at the basis of the autoimmunity phenotypes.
This is consistent with recent results from mice. Masters et al.
have recently reported that mice with an activating mutation
in Nlrp1a exhibited increased T-cell progenitor death (pyrop-
tosis) at the steady state, which rendered them cytopenic (43).
In contrast, Nlrp1a-deficient mice, which may experience less
pyroptosis, develop an over-exuberant immune response (43).
However, while Masters et al. demonstrated that the inflamma-
tory disease in Nlrp1a mutant mice was dependent on caspase-
1, additional proof is needed to show that Nlrp1a formed an
inflammasome complex in vivo (43). While anakinra has been
shown to be successful in treating patients with SLE in prelimi-
nary studies, IL-1 blockade strategies have not been tested to date
for other autoimmune diseases such as vitiligo or celiac disease
(42, 44).
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FIGURE 3 | Continued
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FIGURE 3 | NOD-like receptors and disease. NLRs have been
implicated in a plethora of diseases. Genetic studies have uncovered a
number of variants in genes encoding NLRs or their signaling mediators
associated with human diseases. Animal models have served as a key
discovery platform to characterize the underlying functions and

molecular mechanisms of NLRs in these diseases and associated
pathologies. Together, these efforts have led to therapeutic success in
the clinic for a subset of NLR-dependent auto-inflammatory diseases.
When available, the mutations and SNPs linked to disease are listed and
animal phenotypes are presented.
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NLRP3
The NLRP3 inflammasome is arguably the most studied inflam-
masome to date. NLRP3 is predominantly expressed in splenic
neutrophils, macrophages, monocytes, and conventional dendritic
cells, and its expression is inducible in response to inflamma-
tory stimuli (45). There is evidence suggesting that a two-step
process is required for NLRP3 activation. The first, or priming
signal, converges on the activation of NF-κB and transcriptional
induction of inflammasome components including NLRP3 itself
and pro-IL-1β. The second, or activating signal, in the form of a
microbial or danger signal, is then able to directly activate inflam-
masome assembly (46). NLRP3 is able to recognize a wide variety
of exogenous and endogenous stimuli such as microbial agonists,
ATP, and particulate matters (47, 48). There is, however, scarce
evidence that NLRP3 binds directly to its activators. Instead its
activation is thought to be triggered by signaling intermediates
(46). For instance, Shenoy et al. proposed that guanylate binding
protein 5 (GBP5) may play a vital role in activating inflammasome
assembly and promoting caspase-1 processing in response to live
bacteria and bacterial cell wall components (49). A recent study
by Zhong et al. suggested that particulate stimuli might induce
mitochondrial production of reactive oxygen species (ROS), which
triggers a calcium influx mediated by transient receptor poten-
tial melastatin 2 (TRPM2) to activate NLRP3 (50). The role of
ROS in NLRP3 activation is consistent with earlier results by
Zhou et al. who showed that ROS also leads to the dissociation of
thioredoxin-interacting protein (TXNIP) from thioredoxin, free-
ing it to interact with and activate NLRP3 (51). In addition, it
has been reported that NLRP3 activators are able to disrupt the
mitochondria, resulting in the release of oxidized mitochondrial
DNA and/or cardiolipin, which can bind to and activate NLRP3
(52, 53). Alternatively, it was argued that mitochondrial disruption
is not required for NLRP3 activation; instead K+ efflux is suffi-
cient to stimulate this NLR (54). NLRP3 inflammasome activation
may involve at least two adaptors, ASC and the mitochondria-
associated adaptor MAVS. It was recently shown that MAVS
recruits NLRP3 to the mitochondria for activation in response to
non-crystalline activators (55) and that microtubule-driven traf-
ficking of the mitochondria is necessary for NLRP3-ASC complex
assembly and activation (56).

Gain-of-function mutations in the NLRP3 gene were first
associated with cryopyrin-associated periodic fever syndromes
(CAPS), which are a group of rare hereditary auto-inflammatory
diseases including familial cold urticaria, MWS, and neonatal
onset multisystem inflammatory disease [reviewed in Ref. (19)].
Mutations in NLRP3 were reported to induce an overproduc-
tion of IL-1β that triggers the subsequent development of severe
inflammation (57, 58). A knock-in mouse model of MWS have
validated the observations made in human patients, and showed
that equivalent mutations in murine Nlrp3 lead to the produc-
tion of massive amounts of IL-1β, which mediates the disease (59,
60). IL-1 blockade therapies are frequently used to treat auto-
inflammatory diseases. Anakinra and canakinumab, for example,
have been used to treat CAPS patients with great success, as sev-
eral groups have reported long-lasting clinical responses as well as
the restoration of IL-1β production levels to normal amounts in
patients after treatment (61, 62).

NLRP3 was also linked to gout, which is a result of uric acid
crystal deposition in the joints as a consequence of a rich diet high
in purines (63). The exact mechanism of NLRP3 activation by uric
acid crystals is still unknown, but monosodium urate and calcium
pyrophosphate dihydrate crystals were found to induce NLRP3
and caspase-1 activation and the subsequent processing of IL-1β

and IL-18 (64). Since uric acid can also be released from dying
cells as a DAMP (65), there has been speculation that NLRP3 may
also detect danger signals released from dying cells (66).

Single nucleotide polymorphisms in the NLRP3 locus have
been associated with a wide range of disorders, including type 1
diabetes (67), celiac disease (67), psoriasis (68), and increased sus-
ceptibility to HIV-1 infections (69). While no SNP in the NLRP3
region is directly associated with inflammatory bowel disease
(IBD), a SNP downstream of NLRP3 has been previously iden-
tified as a risk allele in Crohn’s disease (70). Lewis and colleagues,
however, were unable to reproduce this result, as they found no
significant association between NLRP3 SNPs and Crohn’s disease
(71). A recent GWAS meta-analysis has shown that SNPs that
affect receptors downstream of NLRP3 such as IL18R1, IL1R1,
IL1RL1, IL1RL2, and IL1R2, are associated with susceptibility to
IBD (72). Thus, although there is conflicting data regarding the
effects of NLRP3 variants in IBD, defects in inflammasome signal-
ing likely play a role in IBD pathogenesis. Consistently, Nlrp3−/−

mice or mice deficient in inflammasome components were found
to be significantly more susceptible to experimental models of col-
itis compared to wild-type mice (73–76). Together, these studies
indicate that NLRP3 may be involved in intestinal tissue repair
mechanisms following injury.

The NLRP3 inflammasome has also been implicated in differ-
ent metabolic pathologies. For instance, the NLRP3 inflamma-
some has been linked to obesity, insulin resistance, atherosclerosis,
and Alzheimer’s disease. It has been shown that activation of
caspase-1 and IL-1β processing downstream of NLRP3 lead to
inhibition of adipocyte differentiation and contributes to high fat
diet-induced obesity (77). Several studies have also shown that the
NLRP3 inflammasome may play a crucial role in insulin resistance
and the potential development of type 2 diabetes (51, 77, 78). Con-
sistently, Nlrp3−/− or Asc−/−mice were reported to have improved
glucose tolerance and insulin sensitivity when fed a high fat diet.
Ceramide, a specific product from the metabolism of long-chain
saturated fatty acids, and the saturated free fatty acid, palmitate,
have been shown to induce IL-1β in an NLRP3-dependent fashion
[Ref. (78) and reviewed in Ref. (63)]. IL-1β produced downstream
of the NLRP3 inflammasome, which is also stimulated by islet
amyloid polypeptide (79), promotes beta-cell dysfunction, and
cell death (80), linking NLRP3 activation to insulin resistance.
Crystalline cholesterol was proposed to cause atherosclerosis by
acting as a danger signal and initiating inflammation through the
NLRP3 inflammasome. Consistently, Duewell et al. observed that
mice deficient in components of the NLRP3 inflammasome did
not undergo acute inflammation after the injection of cholesterol
crystals, and had markedly decreased atherosclerosis compared to
wild-type animals (81). There is, however, some controversy in
this area, as Menu et al. reported no differences in disease progres-
sion in Nlrp3−/− mice compared to wild-type animals (82). In
Alzheimer’s disease, amyloid-β aggregates were shown to activate
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NLRP3 ex vivo in primary macrophages and microglia (83). This
was supported by in vivo results by Heneka et al. who demonstrated
that NLRP3 deficiency protected mice with familial Alzheimer’s
disease mutations from memory loss (84).

NLRP6
Preliminary immunofluorescence data has proposed that the for-
mation of the NLRP6 inflammasome is dependent on the recruit-
ment of NLRP6 to ASC specks in the cytosol via its N-terminal
PYD (85, 86). While much of its functions still remain unknown,
recent studies have demonstrated that NLRP6 is important in the
self-renewal and integrity of the intestinal epithelium, as Nlrp6−/−

mice exhibited insufficient wound healing after injury (87, 88)
and were more susceptible to carcinogen-induced tumor develop-
ment compared with wild-type mice (89, 90). While the precise
mechanisms by which NLRP6 protects against tumorigenesis is
not clear. It is known that Nlrp6−/− mice are able to sustain
increases in intestinal epithelial proliferative activity over longer
periods of time along with the observed lower efficiency in wound
repair – in other words, the repair mechanism in Nlrp6−/− mice
fails to promote wound healing but is still able to promote gen-
eral cell proliferation, leading to higher incidents of dysplasia and
tumorigenesis (91).

In a study by Elinav et al., Nlrp6−/− mice showed an altered
gut microbiota with an increase in colitogenic bacterial strains
such as Prevotellaceae and TM7, which are also found in increased
numbers in IBD patients, indicating a role for NLRP6 in the
regulatory sensing system in the gut as well (92). The authors spec-
ulated that NLRP6 may act as a “gate keeper” by sensing bacterial
products or cell damage and promoting the production of IL-18
during homeostasis which in turn supports the normal micro-
bial flora in the gut to prevent dysbiosis (92). While this proposal
raised some interesting points as to the functions of NLRP6 in
the gut, a conclusion cannot be drawn as to whether the altered
microbiota in Nlrp6−/− animals is due to the absence of the
protein, as no littermate analysis or maternal microbiota trans-
fer experiments were conducted by the authors to further their
hypothesis. A study by Henao-Mejia et al. later linked changes in
Nlrp6−/− mice microbiota to metabolic diseases (93). Namely,
NLRP6 seems to negatively regulate the progression from non-
alcoholic fatty liver disease to non-alcoholic steatohepatitis by
preventing the increase in colitogenic bacteria (93). Additionally,
Anand et al. observed that Nlrp6−/− mice were highly resistant
to a variety of pathogens including Listeria monocytogenes and
Escherichia coli (94). Nlrp6−/− mice had increased numbers of
immune cells in their circulation, as well as enhanced activation of
MAPK and NF-κB signaling, though Toll-like receptor (TLR) acti-
vation, suggesting that NLRP6 may suppress TLR pathways after
the recognition of pathogens to prevent amplified inflammatory
pathology (94). The exact mechanisms of how NLRP6 functions,
however, still remain to be studied.

NLRP7
NLRP7, a human NLR with no murine orthologs, is character-
ized by an N-terminal PYD along with a NACHT domain and a
C-terminal LRR region. Mutations in the NLRP7 gene are associ-
ated with recurrent hydatidiform moles and reproductive wastage

(substitutions R693W, R693P, and N913S) (11, 95–97). Further-
more, NLRP7 expression is increased in certain type of cancers
such as testicular (98) and endometrial (99) cancers. However, the
mechanisms underlying these phenotypes are not clear. Messaed
et al. showed that PBMCs from patients with NLRP7 mutations
(at G118X, G380R, C399Y, R693W, A719V) secreted significantly
lower levels of IL-1β and TNF in response to LPS despite high
intracellular levels of pro-IL-1β and unimpaired pro-IL-1β pro-
cessing. The authors concluded that NLRP7 might play a role in
cytokine trafficking and secretion from the cell (100). Conversely,
others have shown that overexpression of NLRP7 inhibited pro-
IL-1β synthesis and secretion (88, 101). Moreover, it was recently
reported that bacterial acylated lipopeptides (acLP) activated
NLRP7 and stimulated formation of an NLRP7-ASC-caspase-1
inflammasome (102). Thus, further studies are needed to clarify
NLRP7 mechanisms of actions and functions in reproduction and
immunity.

NLRP12
NLRP12 was previously reported to form an inflammasome as well
as function in modulating NF-κB signaling (see below). A recent
study by Vladimer et al. has shown that the NLRP12 inflamma-
some has a key role in controlling IL-1β and IL-18 production
after Yersinia pestis infection, where NLRP12-deficient mice were
more susceptible to infection compared to the controls (103).
Other pathogens such as Klebsiella pneumoniae and Mycobac-
terium tuberculosis and bacterial components such as LPS do not
seem to depend on NLRP12 for infection or pathology (104).

While many of the functions and activators of NLRP12 remain
unknown, mutations in the NLRP12 gene have been associated
with auto-inflammatory diseases such as atopic dermatitis (105)
and hereditary periodic fever syndromes (106, 107). Anti-IL-1
therapies, similar to those administered to patients with NLRP3
mutations, have been conducted on patients with NLRP12 muta-
tions with limited success. Patients treated with anakinra showed
improvements early on during the treatment process, but devel-
oped resistance to the drug within months and suffered from
severe myalgia as a side effect (107). Similarly, levels of IL-1β in
these patients returned to pre-treatment levels after 14 months of
treatment (107). Further clinical studies are needed before con-
clusions are drawn regarding the efficacy of anti-IL-1 agents in the
treatment of diseases associated with NLRP12.

There is currently much debate as to the role of NLRP12 in
inflammation, and both stimulatory and inhibitory functions have
been proposed. Some studies have suggested that NLRP12 may
negatively regulate the NF-κB pathway (86, 108, 109). Nlrp12−/−

mice were found to be more susceptible to colitis and colon cancer,
and polyps isolated from these mice showed significantly higher
non-canonical activation of NF-κB with an increased expression
of inflammation and cancer-related genes (109, 110). Conversely,
Arthur et al. demonstrated in a murine model of allergic dermati-
tis that proinflammatory cytokine production was unaffected in
Nlrp12−/− mice (111). Instead, dendritic cells in Nlrp12−/− mice
exhibited a much-reduced migratory capacity, and neither periph-
eral dendritic cells nor neutrophils in Nlrp12−/− mice responded
to chemotaxic signals or chemokines in in vitro experiments (111).
Yet another function for NLRP12 was proposed by Jéru et al.,
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who discovered that mutations in NLRP12 did not affect NF-
κB activation, but rather increased ASC speck formation and
caspase-1 activation (112). Altogether, these results suggest that
NLRP12 plays a role in suppressing NF-κB while stimulating the
inflammasome and assisting in the migration of immune cells.

NLRC4 AND NAIPs
NLRC4 possesses an N-terminal CARD that allows direct inter-
action with caspase-1 independently of ASC (113, 114). A recent
study by Qu et al., showed that the phosphorylation of Ser533
in NLRC4 by PCKδ was crucial for the activation of the NLRC4
inflammasome (115). NAIPs, members of the NLRB sub-family,
have been identified as critical components of the NLRC4
inflammasome. They are required for the recognition of bacte-
rial components, as well as the scaffolding of the NAIP-NLRC4
inflammasome. Activators of this inflammasome include bacterial
flagellin and components of the bacterial type III secretion system
(T3SS) (113, 116, 117). Notably, murine Naip5 and Naip6 were
shown to recognize bacterial flagellin and subsequently bind to
NLRC4 to trigger the formation of the inflammasome, whereas
Naip2 and human NAIP serve as receptors for the rod and the
needle components, of the bacterial T3SS (118, 119).

NLRC4 plays an essential role in host survival and pathogen
clearance following host infection with pathogens such as
Legionella pneumophila (120, 121), Candida albicans (122), and
Burkholderia pseudomallei (123). More recently, Cai et al. showed
that, upon K. pneumoniae infections, Nlrc4−/− mice exhibited
decreased survival compared to wild-type animals (124). Similarly,
Franchi et al. reported that Nlrc4−/− mice were highly susceptible
to orogastric Salmonella infections (125). Interestingly, Nlrc4−/−

mice do not develop spontaneous colitis in response to the com-
mensal microbiota (126), likely due to low soluble flagellin levels in
the gut and a primary role of TLR5 in dealing with gut flagellated
bacteria. NLRC4 thus serves as an additional sentinel against path-
ogenic enteric infections (126, 127). NLRC4 has been previously
been shown to act in sync with NLRP3 during Salmonella infec-
tion (114). More recently, it was demonstrated that both NLRs play
non-redundant roles in B. pseudomallei infection and melioidosis,
where NLRC4 is critical for pyroptosis and NLRP3 for the produc-
tion of IL-1β and IL-18 (123). Ceballos-Olvera et al. demonstrated
that while IL-18 and pyroptosis are both essential for host resis-
tance, the production of IL-1β by NLRP3 was deleterious, as it
triggered excessive neutrophil recruitment and exacerbated the
disease (123). Thus NLRC4 seems to act synergistically with both
TLR5 and NLRP3, but its contributions to their functions seems
to be secondary.

NON-INFLAMMASOME-FORMING NLRs
NOD1/2
NOD1 and 2, have been studied primarily in the context of
their signaling activity following recognition of the peptidoglycan
components diaminopimelic acid (DAP) and MDP from Gram-
negative and Gram-positive bacteria (128–132). Despite this focus,
much of the nature of the NOD1 and 2 interaction with these
structures remains unknown, although recent findings suggest
that NOD2 directly binds MDP with high affinity (133), with
the N-glycosylated form specific to the mycobacterial cell wall

triggering an exceptionally strong immunogenic response com-
pared to N-acetyl MDP (134). The possibility of a role for NOD2
in non-bacterial infections has also been suggested, with NOD2
having been shown to induce an IFNβ-driven antiviral response
following recognition of single-stranded viral RNA (135). Indeed,
viral ssRNA from respiratory syncytial virus (RSV), vesicular
stomatitis virus (VSV), and influenza virus has been shown to
trigger a non-canonical NOD2-directed signaling pathway that
requires mitochondrial antiviral signaling protein (MAVS) and
induces IRF3 activity, leading to the production of type I IFNs
(135) (Figure 4). However, it is still unclear whether lack of NOD2
results in susceptibility to viral infection in humans.

NOD1 and 2 are encoded by the CARD4 and CARD15 genes
respectively, and as NLRCs, both contain the shared NOD and
LRR domains in addition to an amino-terminal CARD. Despite
the strong similarities between the two receptors, differences exist;
NOD1 contains one CARD domain, while NOD2 contains two
(136) and expression of NOD1 is detected in a wide variety
of cell types, whereas NOD2 expression is restricted to myeloid
cells (136–138), keratinocytes (139) and intestinal, lung, and oral
epithelial cells (140–142).

Activation of NOD1 and 2 follows the cytosolic recognition
of peptidoglycan ligands that triggers oligomerization of the
receptors via their NOD domain and the recruitment of mediators
needed to form a signaling complex referred to as the nodosome
(143). The nodosome is directed to the point of bacterial entry on
the plasma membrane of polarized epithelial cells by the regulatory
protein FRMBP2 (144). NOD1 and 2 both interact with RIPK2,
via a CARD–CARD homotypic interaction (145–148). This asso-
ciation results in the recruitment of a number of E3 ubiquitin
ligases, including TNF receptor-associated factors (TRAFs) (149),
cellular inhibitor of apoptosis (cIAP)1 and cIAP2 (150), X-linked
inhibitor of apoptosis (XIAP) (151, 152), and ITCH (153). K63-
linked ubiquitination of RIPK2 has been established as a means to
construct protein scaffolds that transduce downstream signaling.
In a step-wise fashion, ubiquitination of RIPK2 leads to activa-
tion and recruitment of the TAK1 complex, consisting of TAK1 in
association with TAK1-binding protein (TAB)2 and 3. The kinase
activity of TAK1 leads to phosphorylation events that activate AP-1
and NF-κB. In parallel to cIAP-induced ubiquitination of RIPK2,
XIAP’s enzymatic activity results in the formation of polyubiqui-
tin chains on RIPK2, serving as a platform to engage another E3
ligase complex known as the Linear Ubiquitin Assembly Complex
(LUBAC) (152, 154). LUBAC attaches linear ubiquitin chains to
the regulatory protein NEMO, allowing for activation of the IKK
complex. The kinase activity of IKKβ results in the phosphoryla-
tion and degradation of the inhibitor of NF-κB (IκB), allowing for
NF-κB dimers to translocate to the nucleus and induce proinflam-
matory gene expression (155). Besides activating NF-κB, NOD1
and NOD2 have also been shown to activate the p38, JNK, and
ERK MAPK pathways (147, 156, 157) and to interact with other
NLRs such NLRP1 and NLRP12 (158, 159) (Figure 4).

NOD1 and 2 have been implicated in a number of chronic
inflammatory diseases. Mutations and SNPs in CARD15 in par-
ticular, have been linked to a multitude of inflammatory diseases
including Crohn’s disease (160,161),Blau Syndrome (162),asthma
(163, 164), atopic eczema (165), atopic dermatitis (105), arthritis
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FIGURE 4 | NOD1/2 signaling pathways. The NOD1 and 2 receptors
recognize the bacterial peptidoglycan derivatives DAP and MDP. The events
involved in signal transduction are depicted and involve the formation of a
nodosome complex that is stabilized through a series of ubiquitin scaffolds
mediated by a number of E3 ligases including cIAP1/2, XIAP, LUBAC, and
ITCH. These scaffolds serve to engage effector kinases, including TAK1 and
the IKK complex to activate NF-κB and MAPK pathways. NOD2 is additionally

activated by single-stranded RNA viruses and stimulates an antiviral innate
immune response by engaging MAVS and activating IRF3. The NOD receptors
have also been shown to synergize with NLRP sensors to activate the
inflammasome. Conversely, they have also been implicated in triggering
autophagy though association with ATG16L1, and in response to viral
infection, to inhibit the inflammasome by upregulating ULK1-dependent
mitophagy.

(166, 167), and sarcoidosis (168). In the context of Crohn’s dis-
ease, the most common mutation that confers susceptibility is
a frameshift mutation in the LRR region of the receptor (160),
while the mutations conferring susceptibility to Blau syndrome
occur in the NOD region (162). While the contribution of these
mutations to disease is unknown, further work on understand-
ing NOD2 function could unveil the link between the gene and
the disease, as well as allow for the creation of new therapies for
these chronic and often devastating diseases. Several NOD2 loss-
of-function mouse lines have been generated in an attempt to
elucidate its role in Crohn’s disease. Pauleau and Murray gener-
ated the first NOD2 knockout mice (156). Surprisingly, these mice
lacked symptoms associated with spontaneous intestinal inflam-
mation, although stimulation of primary macrophages from these
animals with MDP failed to trigger inflammatory responses, con-
firming loss of NOD2 activity (156). Other NOD2 mouse mutants

were later generated to express common Crohn’s disease suscepti-
bility mutations (157, 169). While these mice did not develop any
gut inflammation resembling that of Crohn’s disease patients, they
did display increased susceptibility to bacterial infection, and were
shown to produce decreased amounts of β-defensins when chal-
lenged with L. monocytogenes (157, 170). Similarly, mice deficient
in NOD1, NOD2, or RIPK2 also exhibited enhanced susceptibil-
ity to bacteria including Helicobacter pylori (171–173), Chlamy-
dophila pneumoniae (174), L. pneumophila (172, 175, 176), and B.
anthracis (177). This susceptibility often resulted from an inabil-
ity to control bacterial burden, possibly due to a reduced ability to
recruit neutrophils as well as a decrease in the production of proin-
flammatory and antimicrobial molecules (176, 177). Despite the
prevalence of NOD2-deficient models, there remains controversy
as to whether Crohn’s disease-linked mutations in NOD2 dimin-
ish or enhance its activity in the context of the disease. Common
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Crohn’s disease-associated NOD2 variants expressed in HEK293T
kidney cells are unable to detect MDP and activate NF-κB (178)
and monocytes from Crohn’s disease patients with the 1007fs vari-
ant displayed defects in the secretion of TNFα, IL-6, IL-8, and IL-10
(179, 180) and many of these NOD2 variants seem to act reces-
sively (181). While these findings point to a loss-of-function effect
of the mutations, Karin and colleagues have argued that the mod-
els used in these studies lack resemblance to the natural course
of the disease in humans and that the Crohn’s disease-associated
NOD2 mutations may in fact result in a gain-of-function. Indeed,
Crohn’s disease has been associated with the presence of activated
NF-κB and inflammatory NF-κB target gene products in epithe-
lial cells and lamina propria macrophages (182, 183) rather than
in circulating blood monocytes used in studies with cultured cells,
and results from experiments using tissue samples have differed
from those using monocytes (179).

The study of NOD2 linkage to Crohn’s disease has been
extended to encompass a key role of NOD1 and 2 in the regula-
tion of autophagy. Autophagy is a housekeeping process in which
organelles or other cellular components are degraded and recycled
into nutrients during times of starvation or stress. This process
results in the formation of a double membrane vacuole known
as the autophagosome, which fuses with lysosomes to degrade its
contents (184). The role of NOD1 and 2 in this process was initially
proposed following GWAS findings of an association between a
key component of the autophagy process, ATG16L1, and suscep-
tibility to Crohn’s disease (185, 186). Not only have NOD1 and 2
been shown to interact with ATG16L1 (187), but murine Paneth
cells expressing the ATG16L1 mutation associated with Crohn’s
disease were unable to produce antimicrobial peptides despite
NOD2 stimulation (188). Additionally, the autophagic machinery
is involved in loading antigen onto MHC Class II, a process that has
been observed to be defective in Crohn’s disease (189). Recently,
Lupfer et al. further substantiated the link between NOD2 and
autophagy by demonstrating a role for NOD2-RIPK2 signaling
in the regulation of the NLRP3 inflammasome following infec-
tion with influenza A virus. By triggering the phosphorylation of
the autophagy inducer ULK1, RIPK2 induces autophagy of dis-
rupted mitochondria (mitophagy), preventing the accumulation
of ROS and NLRP3 inflammasome activation. Mice lacking Nod2,
Ripk2, or Ulk1 were hypersusceptible to influenza A infection due
to a hyperactive NLRP3 inflammasome and excessive IL-18 lev-
els (190) (Figure 4). Collectively, these studies provide evidence
for a key role of NOD2 in autophagy-associated processes such as
xenophagy, antigen presentation, antimicrobial peptide secretion,
and mitophagy.

Other diseases have also been associated with genetic variants
in loci encompassing the genes encoding NOD1 and/or 2. GWAS
have linked SNPs in CARD15 to prostate (191) and endometrial
(192) cancer, as well as to gastric lymphoma induced by H. pylori
infection (173). Similarly, SNPs in CARD15 were linked to sus-
ceptibility to leprosy (193, 194) and tuberculosis (195, 196). The
observation that CARD15, RIPK2, and NF-κB have been linked to
leprosy (193), tuberculosis (195, 197, 198), and IBD (150, 199) by
GWAS and other genetic studies in humans and mice, has led to
speculation of a common etiology between mycobacterial diseases
and Crohn’s disease (197, 200, 201).

NLRP10
NLRP10 was discovered based on its homology to NLRP3 and
APAF1 (202). Lack of LRRs in NLRP10 may indicate a role for this
protein as a signaling adaptor rather than an NLR sensor. NLRP10
has been found in human and murine skin (203), colon, kidney,
and testis (204), with mRNA and protein expressed in epithe-
lial cells (202, 205) and hematopoietic cells (206). NLRP10 was
previously proposed as a negative regulator of NF-κB, cell death,
and IL-1β release (202). These results have been supported by
NLRP10 over-expression studies in Nlrp10 knock-in mice and in
in vitro studies. In the murine model, Nlrp10 knock-in mice were
found to be resistant to LPS-induced endotoxic shock, due to a
decreased release of inflammatory cytokines (203). This was con-
sistent with the observation that cells from these animals secreted
reduced amounts of IL-1β following infection with Salmonella
or TLR7 stimulation (203). However, another group proposed a
role for NLRP10 in augmenting the NOD1 immune response to
Shigella flexneri, indicating the possibility of an inflammasome-
independent function for NLRP10 (205). While this mechanism
is still poorly understood, the ability of NLRP10 to interact with
NOD1 as well as its signaling targets RIPK2, TAK1, and NEMO,
suggests that NLRP10 may be involved in optimizing cytokine
release following bacterial infections. Furthermore,Flavell and col-
leagues reported a role of NLRP10 in adaptive immunity. Using
NLRP10 knockout mice, this group examined T-cell responses to
ovalbumin and aluminum hydroxide, complete Freund’s adjuvant
with myelin oligodendrocyte glycoprotein, and LPS. Interestingly,
Nlrp10−/− mice displayed major defects in TH2, TH17, and TH1
responses, potentially due to a defect in the ability of dendritic cells
to transport antigen to draining lymph nodes (207). These find-
ings, as well as those of another group that reported hematopoietic
compartment-dependent susceptibility of Nlrp10−/− mice to C.
albicans (206), highlight a role for NLRP10 in bridging innate and
adaptive immunity. Despite these findings, understanding the role
of NLRP10 in immunity is still in its infancy, and applications of
this protein to human diseases are limited while the function of
NLRP10 remains largely uncharacterized. However, GWAS have
linked NLRP10 to atopic dermatitis (105, 165, 208), an interesting
find considering the abundant expression of NLRP10 in the skin.

NLRX1
NLRX1 is unique among NLRs in that it contains an N-terminal
mitochondrial targeting sequence (209, 210). The protein is
broadly expressed in the mitochondria, although it is yet unclear
whether it is localized to the matrix or to the outer membrane
(209, 211). NLRX1 has been shown to enhance ROS production
when it is overexpressed (212), following Chlamydia (213) and
Shigella infection, as well as in response to TNFα and poly(I:C)
(212). Like NOD2, NLRX1 has been implicated in host antiviral
responses following viral RNA detection (135, 212) and has been
shown to directly bind both single and double stranded viral RNA
via its LRRs (210). Moore and colleagues initially characterized
NLRX1 as a negative regulator of MAVS and antiviral signaling
(211). Recently, Lei et al. demonstrated a role for NLRX1 and
the mitochondrial protein TUFM in enhancing autophagy and
reducing type I IFNs following viral infection (214, 215). How-
ever, these findings have been contested and the generation of
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NLRX1-deficient and Nlrx1 knockdown mice by several groups
has produced conflicting results. In some laboratories, the NLRX1
mutant mice did not display any differences in MAVS antiviral
signaling compared to wild-type controls (216–219). In contrast,
another group’s findings supported their original claim of a role
for NLRX1 in inhibiting MAVS signaling pathways (216, 218).
Zhao et al. recently associated a missense mutation in the LRR
of NLRX1 with susceptibility to chronic hepatitis B infection in
human patients. The replacement of the highly conserved Arg707
with a cysteine between a α helix and a β strand was hypothe-
sized to interfere with the electrostatic potential of the region and
consequently modulate the activity of the protein (220). Lastly, a
group characterizing the molecular signature of SIV-induced gas-
trointestinal dysfunction found an increase in NLRX1 expression
in rhesus macaques 90 days following SIV infection (221). These
findings highlight the role of NLRX1 in antiviral defense, but more
research is needed to elucidate the precise mechanism.

NLRC5
One of the newest additions to the NLR family, NLRC5 has been
shown to have a similar structure to other NLRs, although the
CARD domain has been found to be structurally distinct from
CARD domains expressed in other NLRs. The protein is most
similar to CIITA, both in structure and activity. NLRC5 has been
shown to be able to enter the nucleus, and its main function is
believed to be as a MHC Class I transactivator, forming the basis
of an enhanceosome for MHC Class I transcription (222). Accord-
ingly, NLRC5 is expressed constitutively in both humans and mice,
unlike the more restricted expression of CIITA (223, 224) and
knockdown of NLRC5 in cells using siRNA and in knockout mice
resulted in a decrease in MHC Class I expression, without sig-
nificantly affecting expression of MHC Class II (222, 225, 226).
Despite the widespread expression of NLRC5, however, there is
a distinct upregulation of NLRC5 in lymphocytes compared to
other hematopoietic and somatic cells (227, 228). As a key regu-
lator of MHC Class I transcription, NLRC5 expression has been
shown to be induced by a number of signals, including IFNβ,
poly(I:C), VSV, and LPS (222–225, 227, 228). However, the most
efficient activator of NLRC5 known is IFNγ, which several of the
aforementioned signals are known to induce. IFNγ functions via
signal transducer and activator of transcription 1 (STAT1) and
cannot induce NLRC5 expression in the absence of STAT1 (225,
228).

The effect of NLRC5 on human health and disease has yet to
be extensively studied. However, inferences can be made based
on NLRC5’s role in MHC Class I presentation and phenotypes
observed in NLRC5-deficient mice. Yao et al. observed extreme
immunodeficiency in these mice, with the animals unable to
mount an effective CD8+ T-cell response when challenged with
L. monocytogenes. Interestingly, NLRC5 deficiency also seemed to
result in a decrease in NLRP3 inflammasome activation, suggesting
that NLRC5 may play a role in the regulation of this pathway (226).
Murine and cellular models of NLRC5 deficiency have also impli-
cated NLRC5 in the negative regulation of TLR signaling (223, 229,
230), as well as in RIG-I-like receptor signaling(229). However,
other groups have disputed these findings (222, 230), and more
research needs to be done in order to gain a more comprehensive
understanding of the functions of NLRC5.

CLASS II TRANSACTIVATOR (CIITA)
MHC CIITA was discovered in 1993 as the genetic basis of heredi-
tary major histocompatibility complex Class II deficiency, or bare
lymphocyte syndrome (BLS), a disease characterized by severe
immunodeficiency due to a lack of MHC Class II expression (231).
Its detection via complementation cloning marked the discovery
of the first NLR family member, although the classification of
NLRs was only later introduced, following the discovery of NOD1.
Although CIITA retains the tripartite structure consistent across
the NLR family, it contains an additional acidic domain and a pro-
line/serine/threonine (PST)-rich domain at its N-terminus. Unlike
other NLRs, the function of CIITA lies in transcriptional regula-
tion of MHC Class II. The previously mentioned additions to the
structure of CIITA do not allow it to bind DNA, but provide a plat-
form for the recruitment and interaction of proteins required for
the transcription of MHC Class II in leukocytes or other cells fol-
lowing IFNγ stimulation (232–234). Accordingly, CIITA contains
nuclear localization signals and nuclear export signals (235–237).
As its role suggests, CIITA is expressed in cells that express MHC
Class II, mainly lymphocytes, dendritic cells, macrophages, and
other professional antigen presenting cells.

In addition to BLS, CIITA has been linked to a number of other
human diseases. GWAS and patient exome sequencing studies have
linked SNPs in CIITA to celiac disease (238, 239), susceptibility
to myocardial infarction (240), rheumatoid arthritis (240–242),
multiple sclerosis (240, 242), primary adrenal insufficiency (243),
SLE (244), and type 1 diabetes (245, 246), although these results
have not always been replicated in subsequent studies (247–249).
Gyllenberg et al. suggested that age-dependent variation in the
gene encoding CIITA could be responsible for false associations in
GWAS (250). Interestingly, women over 75 years of age express-
ing the rs3087456(G) allele were found to have a higher average
bone mineral density and a decrease in bone fractures compared
to controls, although the association was not observed in women
aged 25 years (251). Ulrich Streidl and colleagues recently used
RNA sequencing to identify a novel and frequently expressed
CIITA-BX648577 gene fusion product in the KM-H2 Hodgkin
lymphoma cell-line which was associated with decreased HLA
Class II expression and increased programed cell death 1 (PDL1)
on the surface of affected cells (252). Genomic CIITA breaks were
found to occur frequently in B-cell lymphoma patients; 38% of
primary mediastinal B-cell lymphoma patients and 15% of clas-
sical Hodgkin’s lymphoma patients displayed them. The group
also observed a decrease in survival in B-cell lymphoma patients
expressing genomic CIITA breaks compared to control. The role of
CIITA gene fusion products in B-cell lymphomas remains a field of
considerable interest. Understanding the effect of these genomic
breaks could lead to novel therapies for a highly treatment-evasive
cancer. At the very least, the discovery of these abnormal gene
products could lead to the discovery of new biomarkers, which
aid clinicians in stratifying patients according to prognosis and
predicted therapeutic response.

CONCLUSION
NOD-like receptors have been described as master regulators
of innate immunity, and research performed on the functions
and signaling pathways of these proteins continues to support
this claim. NLRs are essential in recognition of microbial- and
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pathogen-associated molecular patterns (MAMPs and PAMPs),
and have the ability to initiate and support robust immune
responses through the formation of inflammasomes and the acti-
vation of NF-κB, IRF, and MAPK pathways. Functions such as
the enhancement of MHC transcription and presentation impli-
cate NLRs in adaptive immunity, and their roles in reproduction,
indicate a broader responsibility of this gene family than pre-
viously suspected. The potency of NLRs in inducing immune
defenses is vital for the host, but can also provide serious prob-
lems when dysregulation or malfunction occurs. GWAS have
found many SNPs in NLR genes associated with a plethora of
inflammatory and autoimmune pathologies. Research is vastly

expanding contemporary knowledge on the functions and roles
of NLRs, but several NLRs still remain poorly characterized and
understood. Specifically, it remains unclear how NLRs can inter-
act with various and structurally diverse ligands. It is hypothesized
that upstream receptors or effectors dictate the activation of NLRs.
Alternatively, NLRs might employ co-receptors or dimerize with
additional sensors to achieve their functions. Further description
of the roles of NLRs in initiating and perpetuating human disease,
as well as the role of NLRs at the steady state,will prove vital to gain-
ing a comprehensive understanding of many human pathologies
and will provide novel targets and therapies for patients afflicted
with these diseases.

REFERENCES
1. Janeway CA Jr. Approaching the

asymptote? Evolution and revolu-
tion in immunology. Cold Spring
Harb Symp Quant Biol (1989)
54(Pt 1):1–13. doi:10.1101/SQB.
1989.054.01.003

2. Medzhitov R. Approaching the
asymptote: 20 years later. Immu-
nity (2009) 30:766–75. doi:10.
1016/j.immuni.2009.06.004

3. Rast JP, Smith LC, Loza-Coll M,
Hibino T, Litman GW. Genomic
insights into the immune sys-
tem of the sea urchin. Science
(2006) 314:952–6. doi:10.1126/
science.1134301

4. Sodergren E, Weinstock GM,
Davidson EH, Cameron RA, Gibbs
RA, Angerer RC, et al. The genome
of the sea urchin Strongylocen-
trotus purpuratus. Science (2006)
314:941–52. doi:10.1126/science.
1133609

5. Huang S, Yuan S, Guo L, Yu Y,
Li J, Wu T, et al. Genomic analy-
sis of the immune gene reper-
toire of amphioxus reveals extra-
ordinary innate complexity and
diversity. Genome Res (2008) 18:
1112–26. doi:10.1101/gr.069674.
107

6. Putnam NH, Butts T, Ferrier
DE, Furlong RF, Hellsten U,
Kawashima T, et al. The amphioxus
genome and the evolution of
the chordate karyotype. Nature
(2008) 453:1064–71. doi:10.1038/
nature06967

7. Zhang Q, Zmasek CM, Dishaw
LJ, Mueller MG, Ye Y, Litman
GW, et al. Novel genes dramat-
ically alter regulatory network
topology in amphioxus. Genome
Biol (2008) 9:R123. doi:10.1186/
gb-2008-9-8-r123

8. Lange C, Hemmrich G, Kloster-
meier UC, Lopez-Quintero JA,
Miller DJ, Rahn T, et al. Defin-
ing the origins of the NOD-like
receptor system at the base of
animal evolution. Mol Biol Evol
(2011) 28:1687–702. doi:10.1093/
molbev/msq349

9. Maekawa T, Kracher B, Vernaldi S,
Ver Loren van Themaat E, Schulze-
Lefert P. Conservation of NLR-
triggered immunity across plant
lineages. Proc Natl Acad Sci U S
A (2012) 109:20119–23. doi:10.
1073/pnas.1218059109

10. Tong ZB, Gold L, Pfeifer KE,
Dorward H, Lee E, Bondy CA,
et al. Mater, a maternal effect
gene required for early embry-
onic development in mice. Nat
Genet (2000) 26:267–8. doi:10.
1038/81547

11. Murdoch S, Djuric U, Mazhar B,
Seoud M, Khan R, Kuick R, et
al. Mutations in NALP7 cause
recurrent hydatidiform moles and
reproductive wastage in humans.
Nat Genet (2006) 38:300–2. doi:10.
1038/ng1740

12. Fernandes R, Tsuda C, Perumal-
samy AL, Naranian T, Chong J,
Acton BM, et al. NLRP5 medi-
ates mitochondrial function in
mouse oocytes and embryos. Biol
Reprod (2012) 86(138):131–110.
doi:10.1095/biolreprod.111.
093583

13. Inohara N, Koseki T, Del Peso L,
Hu Y, Yee C, Chen S, et al. Nod1, an
Apaf-1-like activator of caspase-9
and nuclear factor-kappaB. J Biol
Chem (1999) 274:14560–7. doi:10.
1074/jbc.274.21.14560

14. Said-Sadier N, Ojcius
DM. Alarmins, inflamma-
somes and immunity. Bio-
med J (2012) 35:437–49.
doi:10.4103/2319-4170.104408

15. Han D, Williams E, Cadenas E.
Mitochondrial respiratory chain-
dependent generation of super-
oxide anion and its release into
the intermembrane space. Biochem
J (2001) 353:411–6. doi:10.1042/
0264-6021:3530411

16. Willingham SB, Allen IC,
Bergstralh DT, Brickey WJ, Huang
MT, Taxman DJ, et al. NLRP3
(NALP3, cryopyrin) facilitates
in vivo caspase-1 activation,
necrosis, and HMGB1 release
via inflammasome-dependent

and -independent path-
ways. J Immunol (2009) 183:
2008–15. doi:10.4049/jimmunol.
0900138

17. Hoffman HM, Mueller JL, Broide
DH, Wanderer AA, Kolodner RD.
Mutation of a new gene encod-
ing a putative pyrin-like protein
causes familial cold autoinflam-
matory syndrome and Muckle-
Wells syndrome. Nat Genet (2001)
29:301–5. doi:10.1038/ng756

18. Martinon F, Burns K, Tschopp
J. The inflammasome: a mol-
ecular platform triggering acti-
vation of inflammatory caspases
and processing of proIL-beta. Mol
Cell (2002) 10:417–26. doi:10.
1016/S1097-2765(02)00599-3

19. Hoffman HM, Wanderer AA.
Inflammasome and IL-1beta-
mediated disorders. Curr Allergy
Asthma Rep (2010) 10:229–35.
doi:10.1007/s11882-010-0109-z

20. Mariathasan S, Newton K, Monack
DM, Vucic D, French DM, Lee
WP, et al. Differential activa-
tion of the inflammasome by
caspase-1 adaptors ASC and Ipaf.
Nature (2004) 430:213–8. doi:10.
1038/nature02664

21. D’Osualdo A, Weichenberger CX,
Wagner RN, Godzik A, Wooley
J, Reed JC. CARD8 and NLRP1
undergo autoproteolytic process-
ing through a ZU5-like domain.
PLoS One (2011) 6:e27396.
doi:10.1371/journal.pone.
0027396

22. Levinsohn JL, Newman ZL,
Hellmich KA, Fattah R, Getz MA,
Liu S, et al. Anthrax lethal factor
cleavage of Nlrp1 is required for
activation of the inflammasome.
PLoS Pathog (2012) 8:e1002638.
doi:10.1371/journal.ppat.1002638

23. Faustin B, Lartigue L, Bruey
JM, Luciano F, Sergienko E,
Bailly-Maitre B, et al. Recon-
stituted NALP1 inflammasome
reveals two-step mechanism of
caspase-1 activation. Mol Cell
(2007) 25:713–24. doi:10.1016/j.
molcel.2007.01.032

24. Frew BC, Joag VR, Mogridge
J. Proteolytic processing
of Nlrp1b is required for
inflammasome activity. PLoS
Pathog (2012) 8:e1002659.
doi:10.1371/journal.ppat.1002659

25. Hellmich KA, Levinsohn JL, Fattah
R, Newman ZL, Maier N, Sastalla
I, et al. Anthrax lethal factor
cleaves mouse nlrp1b in both
toxin-sensitive and toxin-resistant
macrophages. PLoS One (2012)
7:e49741. doi:10.1371/journal.
pone.0049741

26. Chavarria-Smith J, Vance RE.
Direct proteolytic cleavage of
NLRP1B is necessary and suffi-
cient for inflammasome activa-
tion by anthrax lethal factor. PLoS
Pathog (2013) 9:e1003452. doi:10.
1371/journal.ppat.1003452

27. Liao KC, Mogridge J. Activation
of the Nlrp1b inflammasome by
reduction of cytosolic ATP. Infect
Immun (2013) 81:570–9. doi:10.
1128/IAI.01003-12

28. Jin Y, Mailloux CM, Gowan K, Ric-
cardi SL, Laberge G, Bennett DC,
et al. NALP1 in vitiligo-associated
multiple autoimmune disease. N
Engl J Med (2007) 356:1216–25.
doi:10.1056/NEJMoa061592

29. Alkhateeb A, Qarqaz F. Genetic
association of NALP1 with
generalized vitiligo in Jor-
danian Arabs. Arch Derma-
tol Res (2010) 302:631–4.
doi:10.1007/s00403-010-1064-1

30. Pontillo A, Vendramin A, Catamo
E, Fabris A, Crovella S. The
missense variation Q705K in
CIAS1/NALP3/NLRP3 gene and
an NLRP1 haplotype are associ-
ated with celiac disease. Am J Gas-
troenterol (2011) 106:539–44. doi:
10.1038/ajg.2010.474

31. Magitta NF, Boe Wolff AS, Johans-
son S, Skinningsrud B, Lie BA,
Myhr KM, et al. A coding poly-
morphism in NALP1 confers risk
for autoimmune Addison’s dis-
ease and type 1 diabetes. Genes
Immun (2009) 10:120–4. doi:10.
1038/gene.2008.85

www.frontiersin.org October 2013 | Volume 4 | Article 333 | 11

http://dx.doi.org/10.1101/SQB.1989.054.01.003
http://dx.doi.org/10.1101/SQB.1989.054.01.003
http://dx.doi.org/10.1016/j.immuni.2009.06.004
http://dx.doi.org/10.1016/j.immuni.2009.06.004
http://dx.doi.org/10.1126/science.1134301
http://dx.doi.org/10.1126/science.1134301
http://dx.doi.org/10.1126/science.1133609
http://dx.doi.org/10.1126/science.1133609
http://dx.doi.org/10.1101/gr.069674.107
http://dx.doi.org/10.1101/gr.069674.107
http://dx.doi.org/10.1038/nature06967
http://dx.doi.org/10.1038/nature06967
http://dx.doi.org/10.1186/gb-2008-9-8-r123
http://dx.doi.org/10.1186/gb-2008-9-8-r123
http://dx.doi.org/10.1093/molbev/msq349
http://dx.doi.org/10.1093/molbev/msq349
http://dx.doi.org/10.1073/pnas.1218059109
http://dx.doi.org/10.1073/pnas.1218059109
http://dx.doi.org/10.1038/81547
http://dx.doi.org/10.1038/81547
http://dx.doi.org/10.1038/ng1740
http://dx.doi.org/10.1038/ng1740
http://dx.doi.org/10.1095/biolreprod.111.093583
http://dx.doi.org/10.1095/biolreprod.111.093583
http://dx.doi.org/10.1074/jbc.274.21.14560
http://dx.doi.org/10.1074/jbc.274.21.14560
http://dx.doi.org/10.4103/2319-4170.104408
http://dx.doi.org/10.1042/0264-6021:3530411
http://dx.doi.org/10.1042/0264-6021:3530411
http://dx.doi.org/10.4049/jimmunol.0900138
http://dx.doi.org/10.4049/jimmunol.0900138
http://dx.doi.org/10.1038/ng756
http://dx.doi.org/10.1016/S1097-2765(02)00599-3
http://dx.doi.org/10.1016/S1097-2765(02)00599-3
http://dx.doi.org/10.1007/s11882-010-0109-z
http://dx.doi.org/10.1038/nature02664
http://dx.doi.org/10.1038/nature02664
http://dx.doi.org/10.1371/journal.pone.0027396
http://dx.doi.org/10.1371/journal.pone.0027396
http://dx.doi.org/10.1371/journal.ppat.1002638
http://dx.doi.org/10.1016/j.molcel.2007.01.032
http://dx.doi.org/10.1016/j.molcel.2007.01.032
http://dx.doi.org/10.1371/journal.ppat.1002659
http://dx.doi.org/10.1371/journal.pone.0049741
http://dx.doi.org/10.1371/journal.pone.0049741
http://dx.doi.org/10.1371/journal.ppat.1003452
http://dx.doi.org/10.1371/journal.ppat.1003452
http://dx.doi.org/10.1128/IAI.01003-12
http://dx.doi.org/10.1128/IAI.01003-12
http://dx.doi.org/10.1056/NEJMoa061592
http://dx.doi.org/10.1007/s00403-010-1064-1
http://dx.doi.org/10.1038/ajg.2010.474
http://dx.doi.org/10.1038/gene.2008.85
http://dx.doi.org/10.1038/gene.2008.85
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

32. Zurawek M, Fichna M,
Januszkiewicz-Lewandowska
D, Gryczynska M, Fichna P, Nowak
J. A coding variant in NLRP1
is associated with autoimmune
Addison’s disease. Hum Immunol
(2010) 71:530–4. doi:10.1016/j.
humimm.2010.02.004

33. Alkhateeb A, Jarun Y, Tashtoush
R. Polymorphisms in NLRP1
gene and susceptibility to autoim-
mune thyroid disease. Autoim-
munity (2013) 46:215–21. doi:10.
3109/08916934.2013.768617

34. Pontillo A, Girardelli M, Kamada
AJ, Pancotto JA, Donadi EA, Crov-
ella S, et al. Polimorphisms in
inflammasome genes are involved
in the predisposition to systemic
lupus erythematosus. Autoimmu-
nity (2012) 45:271–8. doi:10.3109/
08916934.2011.637532

35. Dieude P, Guedj M, Wipff J, Ruiz
B, Riemekasten G, Airo P, et al.
NLRP1 influences the systemic
sclerosis phenotype: a new clue for
the contribution of innate immu-
nity in systemic sclerosis-related
fibrosing alveolitis pathogenesis.
Ann Rheum Dis (2011) 70:668–74.
doi:10.1136/ard.2010.131243

36. Serrano A, Carmona FD, Cas-
taneda S, Solans R, Hernandez-
Rodriguez J, Cid MC, et al. Evi-
dence of association of the NLRP1
gene with giant cell arteritis. Ann
Rheum Dis (2013) 72:628–30.
doi:10.1136/annrheumdis-2012-
202609

37. Witola WH, Mui E, Hargrave A,
Liu S, Hypolite M, Montpetit A, et
al. NALP1 influences susceptibil-
ity to human congenital toxoplas-
mosis, proinflammatory cytokine
response, and fate of Toxoplasma
gondii-infected monocytic cells.
Infect Immun (2011) 79:756–66.
doi:10.1128/IAI.00898-10

38. Sui J, Li H, Fang Y, Liu Y, Li M,
Zhong B, et al. NLRP1 gene poly-
morphism influences gene tran-
scription and is a risk factor
for rheumatoid arthritis in Han
Chinese. Arthritis Rheum (2012)
64:647–54. doi:10.1002/art.33370

39. Pontillo A, Catamo E, Aro-
sio B, Mari D, Crovella S.
NALP1/NLRP1 genetic variants
are associated with Alzheimer dis-
ease. Alzheimer Dis Assoc Disord
(2012) 26:277–81. doi:10.1097/
WAD.0b013e318231a8ac

40. Soler VJ, Tran-Viet KN, Galiacy
SD, Limviphuvadh V, Klemm TP,
St Germain E, et al. Whole exome
sequencing identifies a mutation
for a novel form of corneal
intraepithelial dyskeratosis. J Med

Genet (2013) 50:246–54. doi:10.
1136/jmedgenet-2012-101325

41. Levandowski CB, Mailloux CM,
Ferrara TM, Gowan K, Ben S, Jin
Y, et al. NLRP1 haplotypes asso-
ciated with vitiligo and autoim-
munity increase interleukin-1beta
processing via the NLRP1 inflam-
masome. Proc Natl Acad Sci U S
A (2013) 110:2952–6. doi:10.1073/
pnas.1222808110

42. Shaw PJ, McDermott MF, Kan-
neganti TD. Inflammasomes and
autoimmunity. Trends Mol Med
(2011) 17:57–64. doi:10.1016/j.
molmed.2010.11.001

43. Masters SL, Gerlic M, Metcalf D,
Preston S, Pellegrini M, O’Donnell
JA, et al. NLRP1 inflammasome
activation induces pyroptosis
of hematopoietic progenitor
cells. Immunity (2012) 37:
1009–23. doi:10.1016/j.immuni.
2012.08.027

44. Ostendorf B, Iking-Konert C, Kurz
K, Jung G, Sander O, Schneider M.
Preliminary results of safety and
efficacy of the interleukin 1 recep-
tor antagonist anakinra in patients
with severe lupus arthritis. Ann
Rheum Dis (2005) 64:630–3. doi:
10.1136/ard.2004.025858

45. Guarda G, Zenger M, Yazdi AS,
Schroder K, Ferrero I, Menu P, et al.
Differential expression of NLRP3
among hematopoietic cells. J
Immunol (2011) 186:2529–34. doi:
10.4049/jimmunol.1002720

46. Franchi L, Munoz-Planillo R,
Nunez G. Sensing and reacting
to microbes through the inflam-
masomes. Nat Immunol (2012)
13:325–32. doi:10.1038/ni.2231

47. Franchi L, Warner N, Viani K,
Nunez G. Function of Nod-like
receptors in microbial recognition
and host defense. Immunol Rev
(2009) 227:106–28. doi:10.1111/j.
1600-065X.2008.00734.x

48. Davis BK, Wen H, Ting JP. The
inflammasome NLRs in immunity,
inflammation, and associated dis-
eases. Annu Rev Immunol (2011)
29:707–35. doi:10.1146/annurev-
immunol-031210-101405

49. Shenoy AR,Wellington DA, Kumar
P, Kassa H, Booth CJ, Cress-
well P, et al. GBP5 promotes
NLRP3 inflammasome assembly
and immunity in mammals. Sci-
ence (2012) 336:481–5. doi:10.
1126/science.1217141

50. Zhong Z, Zhai Y, Liang S, Mori
Y, Han R, Sutterwala FS, et al.
TRPM2 links oxidative stress to
NLRP3 inflammasome activation.
Nat Commun (2013) 4:1611. doi:
10.1038/ncomms2608

51. Zhou R, Tardivel A, Thorens B,
Choi I, Tschopp J. Thioredoxin-
interacting protein links oxidative
stress to inflammasome activation.
Nat Immunol (2010) 11:136–40.
doi:10.1038/ni.1831

52. Shimada K, Crother TR, Karlin J,
Dagvadorj J, Chiba N, Chen S, et
al. Oxidized mitochondrial DNA
activates the NLRP3 inflamma-
some during apoptosis. Immunity
(2012) 36:401–14. doi:10.1016/j.
immuni.2012.01.009

53. Iyer SS, He Q, Janczy JR, Elliott
EI, Zhong Z, Olivier AK, et
al. Mitochondrial cardiolipin is
required for nlrp3 inflamma-
some activation. Immunity (2013)
39:311–23. doi:10.1016/j.immuni.
2013.08.001

54. Munoz-Planillo R, Kuffa P,
Martinez-Colon G, Smith BL,
Rajendiran TM, Nunez G. K(+)
efflux is the common trigger
of NLRP3 inflammasome acti-
vation by bacterial toxins and
particulate matter. Immunity
(2013) 38:1142–53. doi:10.1016/j.
immuni.2013.05.016

55. Subramanian N, Natarajan K,
Clatworthy MR, Wang Z, Germain
RN. The adaptor MAVS promotes
NLRP3 mitochondrial localization
and inflammasome activation. Cell
(2013) 153:348–61. doi:10.1016/j.
cell.2013.02.054

56. Misawa T, Takahama M, Kozaki
T, Lee H, Zou J, Saitoh T, et
al. Microtubule-driven spatial
arrangement of mitochondria
promotes activation of the
NLRP3 inflammasome. Nat
Immunol (2013) 14:454–60.
doi:10.1038/ni.2550

57. Aksentijevich I, Putnam CD, Rem-
mers EF, Mueller JL, Le J, Kolod-
ner RD, et al. The clinical contin-
uum of cryopyrinopathies: novel
CIAS1 mutations in North Amer-
ican patients and a new cry-
opyrin model. Arthritis Rheum
(2007) 56:1273–85. doi:10.1002/
art.22491

58. Jesus AA, Silva CA, Segundo
GR, Aksentijevich I, Fuji-
hira E, Watanabe M, et al.
Phenotype-genotype analysis of
cryopyrin-associated periodic
syndromes (CAPS): description
of a rare non-exon 3 and a novel
CIAS1 missense mutation. J
Clin Immunol (2008) 28:134–8.
doi:10.1007/s10875-007-9150-7

59. Brydges SD, Mueller JL,
McGeough MD, Pena CA, Misaghi
A, Gandhi C, et al. Inflammasome-
mediated disease animal models
reveal roles for innate but not

adaptive immunity. Immunity
(2009) 30:875–87. doi:10.1016/j.
immuni.2009.05.005

60. Meng G, Zhang F, Fuss I, Kitani
A, Strober W. A mutation in the
Nlrp3 gene causing inflammasome
hyperactivation potentiates Th17
cell-dominant immune responses.
Immunity (2009) 30:860–74.
doi:10.1016/j.immuni.2009.04.
012

61. Lachmann HJ, Lowe P, Felix SD,
Rordorf C, Leslie K, Madhoo S, et
al. In vivo regulation of interleukin
1beta in patients with cryopyrin-
associated periodic syndromes. J
Exp Med (2009) 206:1029–36. doi:
10.1084/jem.20082481

62. Imagawa T, Nishikomori R, Takada
H, Takeshita S, Patel N, Kim
D, et al. Safety and efficacy of
canakinumab in Japanese patients
with phenotypes of cryopyrin-
associated periodic syndrome as
established in the first open-
label, phase-3 pivotal study (24-
week results). Clin Exp Rheumatol
(2013) 31:302–9.

63. Wen H, Ting JP, O’Neill LA. A role
for the NLRP3 inflammasome in
metabolic diseases – did Warburg
miss inflammation? Nat Immunol
(2012) 13:352–7. doi:10.1038/ni.
2228

64. Martinon F, Petrilli V, Mayor
A, Tardivel A, Tschopp J. Gout-
associated uric acid crystals acti-
vate the NALP3 inflammasome.
Nature (2006) 440:237–41. doi:10.
1038/nature04516

65. Rock KL, Latz E, Ontiveros F,
Kono H. The sterile inflam-
matory response. Annu Rev
Immunol (2010) 28:321–42.
doi:10.1146/annurev-immunol-
030409-101311

66. Tschopp J, Schroder K. NLRP3
inflammasome activation: the con-
vergence of multiple signalling
pathways on ROS production? Nat
Rev Immunol (2010) 10:210–5.
doi:10.1038/nri2725

67. Pontillo A, Brandao L, Guimaraes
R, Segat L, Araujo J, Crovella S.
Two SNPs in NLRP3 gene are
involved in the predisposition to
type-1 diabetes and celiac dis-
ease in a pediatric population
from northeast Brazil. Autoimmu-
nity (2010) 43:583–9. doi:10.3109/
08916930903540432

68. Carlstrom M, Ekman AK, Peters-
son S, Soderkvist P, Enerback C.
Genetic support for the role of
the NLRP3 inflammasome in pso-
riasis susceptibility. Exp Dermatol
(2012) 21:932–7. doi:10.1111/exd.
12049

Frontiers in Immunology | Molecular Innate Immunity October 2013 | Volume 4 | Article 333 | 12

http://dx.doi.org/10.1016/j.humimm.2010.02.004
http://dx.doi.org/10.1016/j.humimm.2010.02.004
http://dx.doi.org/10.3109/08916934.2013.768617
http://dx.doi.org/10.3109/08916934.2013.768617
http://dx.doi.org/10.3109/08916934.2011.637532
http://dx.doi.org/10.3109/08916934.2011.637532
http://dx.doi.org/10.1136/ard.2010.131243
http://dx.doi.org/10.1136/annrheumdis-2012-202609
http://dx.doi.org/10.1136/annrheumdis-2012-202609
http://dx.doi.org/10.1128/IAI.00898-10
http://dx.doi.org/10.1002/art.33370
http://dx.doi.org/10.1097/WAD.0b013e318231a8ac
http://dx.doi.org/10.1097/WAD.0b013e318231a8ac
http://dx.doi.org/10.1136/jmedgenet-2012-101325
http://dx.doi.org/10.1136/jmedgenet-2012-101325
http://dx.doi.org/10.1073/pnas.1222808110
http://dx.doi.org/10.1073/pnas.1222808110
http://dx.doi.org/10.1016/j.molmed.2010.11.001
http://dx.doi.org/10.1016/j.molmed.2010.11.001
http://dx.doi.org/10.1016/j.immuni.2012.08.027
http://dx.doi.org/10.1016/j.immuni.2012.08.027
http://dx.doi.org/10.1136/ard.2004.025858
http://dx.doi.org/10.4049/jimmunol.1002720
http://dx.doi.org/10.1038/ni.2231
http://dx.doi.org/10.1111/j.1600-065X.2008.00734.x
http://dx.doi.org/10.1111/j.1600-065X.2008.00734.x
http://dx.doi.org/10.1146/annurev-immunol-031210-101405
http://dx.doi.org/10.1146/annurev-immunol-031210-101405
http://dx.doi.org/10.1126/science.1217141
http://dx.doi.org/10.1126/science.1217141
http://dx.doi.org/10.1038/ncomms2608
http://dx.doi.org/10.1038/ni.1831
http://dx.doi.org/10.1016/j.immuni.2012.01.009
http://dx.doi.org/10.1016/j.immuni.2012.01.009
http://dx.doi.org/10.1016/j.immuni.2013.08.001
http://dx.doi.org/10.1016/j.immuni.2013.08.001
http://dx.doi.org/10.1016/j.immuni.2013.05.016
http://dx.doi.org/10.1016/j.immuni.2013.05.016
http://dx.doi.org/10.1016/j.cell.2013.02.054
http://dx.doi.org/10.1016/j.cell.2013.02.054
http://dx.doi.org/10.1038/ni.2550
http://dx.doi.org/10.1002/art.22491
http://dx.doi.org/10.1002/art.22491
http://dx.doi.org/10.1007/s10875-007-9150-7
http://dx.doi.org/10.1016/j.immuni.2009.05.005
http://dx.doi.org/10.1016/j.immuni.2009.05.005
http://dx.doi.org/10.1016/j.immuni.2009.04.012
http://dx.doi.org/10.1016/j.immuni.2009.04.012
http://dx.doi.org/10.1084/jem.20082481
http://dx.doi.org/10.1038/ni.2228
http://dx.doi.org/10.1038/ni.2228
http://dx.doi.org/10.1038/nature04516
http://dx.doi.org/10.1038/nature04516
http://dx.doi.org/10.1146/annurev-immunol-030409-101311
http://dx.doi.org/10.1146/annurev-immunol-030409-101311
http://dx.doi.org/10.1038/nri2725
http://dx.doi.org/10.3109/08916930903540432
http://dx.doi.org/10.3109/08916930903540432
http://dx.doi.org/10.1111/exd.12049
http://dx.doi.org/10.1111/exd.12049
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

69. Pontillo A,Brandao LA,Guimaraes
RL, Segat L, Athanasakis E, Crov-
ella S. A 3’UTR SNP in NLRP3
gene is associated with sus-
ceptibility to HIV-1 infection.
J Acquir Immune Defic Syndr
(2010) 54:236–40. doi:10.1097/
QAI.0b013e3181dd17d4

70. Villani AC, Lemire M, Fortin
G, Louis E, Silverberg MS, Col-
lette C, et al. Common variants
in the NLRP3 region contribute
to Crohn’s disease susceptibility.
Nat Genet (2009) 41:71–6. doi:10.
1038/ng.285

71. Lewis GJ, Massey DC, Zhang H,
Bredin F, Tremelling M, Lee JC,
et al. Genetic association between
NLRP3 variants and Crohn’s dis-
ease does not replicate in a large
UK panel. Inflamm Bowel Dis
(2011) 17:1387–91. doi:10.1002/
ibd.21499

72. Jostins L, Ripke S, Weersma RK,
Duerr RH, McGovern DP, Hui KY,
et al. Host-microbe interactions
have shaped the genetic architec-
ture of inflammatory bowel dis-
ease. Nature (2012) 491:119–24.
doi:10.1038/nature11582

73. Allen IC, Tekippe EM, Woodford
RM, Uronis JM, Holl EK, Rogers
AB, et al. The NLRP3 inflam-
masome functions as a negative
regulator of tumorigenesis during
colitis-associated cancer. J Exp Med
(2010) 207:1045–56. doi:10.1084/
jem.20100050

74. Dupaul-Chicoine J, Yeretssian G,
Doiron K, Bergstrom KS, McIntire
CR, Leblanc PM, et al. Control
of intestinal homeostasis, colitis,
and colitis-associated colorectal
cancer by the inflammatory
caspases. Immunity (2010) 32:
367–78. doi:10.1016/j.immuni.
2010.02.012

75. Zaki MH, Boyd KL, Vogel P, Kas-
tan MB, Lamkanfi M, Kanneganti
TD. The NLRP3 inflammasome
protects against loss of epithe-
lial integrity and mortality dur-
ing experimental colitis. Immunity
(2010) 32:379–91. doi:10.1016/j.
immuni.2010.03.003

76. Hirota SA, Ng J, Lueng A, Kha-
jah M, Parhar K, Li Y, et al.
NLRP3 inflammasome plays a key
role in the regulation of intestinal
homeostasis. Inflamm Bowel Dis
(2011) 17:1359–72. doi:10.1002/
ibd.21478

77. Stienstra R, Joosten LA, Koenen
T, van Tits B, van Diepen JA,
van den Berg SA, et al. The
inflammasome-mediated caspase-
1 activation controls adipocyte dif-
ferentiation and insulin sensitivity.

Cell Metab (2010) 12:593–605. doi:
10.1016/j.cmet.2010.11.011

78. Vandanmagsar B, Youm YH,
Ravussin A, Galgani JE, Stadler
K, Mynatt RL, et al. The NLRP3
inflammasome instigates obesity-
induced inflammation and insulin
resistance. Nat Med (2011)
17:179–88. doi:10.1038/nm.2279

79. Masters SL, Dunne A, Subraman-
ian SL, Hull RL, Tannahill GM,
Sharp FA, et al. Activation of
the NLRP3 inflammasome by islet
amyloid polypeptide provides a
mechanism for enhanced IL-1beta
in type 2 diabetes. Nat Immunol
(2010) 11:897–904. doi:10.1038/
ni.1935

80. Mandrup-Poulsen T, Pick-
ersgill L, Donath MY. Block-
ade of interleukin 1 in type
1 diabetes mellitus. Nat Rev
Endocrinol (2010) 6:158–66.
doi:10.1038/nrendo.2009.271

81. Duewell P, Kono H, Rayner
KJ, Sirois CM, Vladimer G,
Bauernfeind FG, et al. NLRP3
inflammasomes are required
for atherogenesis and acti-
vated by cholesterol crystals.
Nature (2010) 464:1357–61.
doi:10.1038/nature08938

82. Menu P, Pellegrin M, Aubert JF,
Bouzourene K, Tardivel A, Mazzo-
lai L, et al. Atherosclerosis in ApoE-
deficient mice progresses inde-
pendently of the NLRP3 inflam-
masome. Cell Death Dis (2011)
2:e137. doi:10.1038/cddis.2011.18

83. Halle A, Hornung V, Petzold GC,
Stewart CR, Monks BG, Reinheckel
T, et al. The NALP3 inflamma-
some is involved in the innate
immune response to amyloid-beta.
Nat Immunol (2008) 9:857–65.
doi:10.1038/ni.1636

84. Heneka MT, Kummer MP, Stutz
A, Delekate A, Schwartz S, Vieira-
Saecker A, et al. NLRP3 is activated
in Alzheimer’s disease and con-
tributes to pathology in APP/PS1
mice. Nature (2013) 493:674–8.
doi:10.1038/nature11729

85. Grenier JM, Wang L, Manji GA,
Huang WJ, Al-Garawi A, Kelly R,
et al. Functional screening of five
PYPAF family members identifies
PYPAF5 as a novel regulator of
NF-kappaB and caspase-1. FEBS
Lett (2002) 530:73–8. doi:10.1016/
S0014-5793(02)03416-6

86. Wang L, Manji GA, Grenier
JM, Al-Garawi A, Merriam S,
Lora JM, et al. PYPAF7, a
novel PYRIN-containing Apaf1-
like protein that regulates activa-
tion of NF-kappa B and caspase-
1-dependent cytokine processing.

J Biol Chem (2002) 277:29874–80.
doi:10.1074/jbc.M203915200

87. Herrera VL, Bagamasbad P,
Didishvili T, Decano JL, Ruiz-
Opazo N. Overlapping genes in
Nalp6/PYPAF5 locus encode two
V2-type vasopressin isoreceptors:
angiotensin-vasopressin receptor
(AVR) and non-AVR. Physiol
Genomics (2008) 34:65–77. doi:10.
1152/physiolgenomics.00199.2007

88. Normand S, Delanoye-Crespin A,
Bressenot A, Huot L, Grand-
jean T, Peyrin-Biroulet L, et al.
Nod-like receptor pyrin domain-
containing protein 6 (NLRP6)
controls epithelial self-renewal and
colorectal carcinogenesis upon
injury. Proc Natl Acad Sci U S
A (2011) 108:9601–6. doi:10.1073/
pnas.1100981108

89. Andersen CL, Christensen
LL, Thorsen K, Schepeler T,
Sorensen FB, Verspaget HW, et
al. Dysregulation of the tran-
scription factors SOX4, CBFB
and SMARCC1 correlates with
outcome of colorectal cancer.
Br J Cancer (2009) 100:511–23.
doi:10.1038/sj.bjc.6604884

90. Kim SY, Dunn IF, Firestein R,
Gupta P, Wardwell L, Repich
K, et al. CK1epsilon is required
for breast cancers dependent
on beta-catenin activity. PLoS
One (2010) 5:e8979. doi:10.1371/
journal.pone.0008979

91. Chen GY, Liu M, Wang F, Bertin
J, Nunez G. A functional role
for Nlrp6 in intestinal inflamma-
tion and tumorigenesis. J Immunol
(2011) 186:7187–94. doi:10.4049/
jimmunol.1100412

92. Elinav E, Strowig T, Kau AL,
Henao-Mejia J, Thaiss CA, Booth
CJ, et al. NLRP6 inflammasome
regulates colonic microbial ecol-
ogy and risk for colitis. Cell
(2011) 145:745–57. doi:10.1016/j.
cell.2011.04.022

93. Henao-Mejia J, Elinav E, Jin
C, Hao L, Mehal WZ, Strowig
T, et al. Inflammasome-mediated
dysbiosis regulates progression
of NAFLD and obesity. Nature
(2012) 482:179–85. doi:10.1038/
nature10809

94. Anand PK, Malireddi RK, Lukens
JR, Vogel P, Bertin J, Lamkanfi M,
et al. NLRP6 negatively regulates
innate immunity and host defence
against bacterial pathogens.
Nature (2012) 488:389–93.
doi:10.1038/nature11250

95. Kou YC, Shao L, Peng HH,
Rosetta R, Del Gaudio D, Wagner
AF, et al. A recurrent intragenic
genomic duplication, other novel

mutations in NLRP7 and imprint-
ing defects in recurrent biparental
hydatidiform moles. Mol Hum
Reprod (2008) 14:33–40. doi:10.
1093/molehr/gam079

96. Deveault C, Qian JH, Chebaro
W, Ao A, Gilbert L, Mehio A, et
al. NLRP7 mutations in women
with diploid androgenetic and
triploid moles: a proposed mech-
anism for mole formation. Hum
Mol Genet (2009) 18:888–97. doi:
10.1093/hmg/ddn418

97. Hayward BE, De Vos M, Talati N,
Abdollahi MR, Taylor GR, Meyer E,
et al. Genetic and epigenetic analy-
sis of recurrent hydatidiform mole.
Hum Mutat (2009) 30:E629–39.
doi:10.1002/humu.20993

98. Okada K, Hirota E, Mizutani Y,
Fujioka T, Shuin T, Miki T, et
al. Oncogenic role of NALP7 in
testicular seminomas. Cancer Sci
(2004) 95:949–54. doi:10.1111/j.
1349-7006.2004.tb03182.x

99. Ohno S, Kinoshita T, Ohno Y,
Minamoto T,Suzuki N, Inoue M,et
al. Expression of NLRP7 (PYPAF3,
NALP7) protein in endometrial
cancer tissues. Anticancer Res
(2008) 28:2493–7.

100. Messaed C, Akoury E, Djuric
U, Zeng J, Saleh M, Gilbert
L, et al. NLRP7, a nucleotide
oligomerization domain-like
receptor protein, is required for
normal cytokine secretion and
co-localizes with Golgi and the
microtubule-organizing center. J
Biol Chem (2011) 286:43313–23.
doi:10.1074/jbc.M111.306191

101. Kinoshita T, Wang Y, Hasegawa
M, Imamura R, Suda T. PYPAF3,
a PYRIN-containing APAF-1-like
protein, is a feedback regulator of
caspase-1-dependent interleukin-
1beta secretion. J Biol Chem
(2005) 280:21720–5. doi:10.1074/
jbc.M410057200

102. Khare S, Dorfleutner A, Bryan NB,
Yun C, Radian AD, de Almeida
L, et al. An NLRP7-containing
inflammasome mediates recogni-
tion of microbial lipopeptides in
human macrophages. Immunity
(2012) 36:464–76. doi:10.1016/j.
immuni.2012.02.001

103. Vladimer GI, Weng D, Paquette
SW,Vanaja SK, Rathinam VA,Aune
MH, et al. The NLRP12 inflam-
masome recognizes Yersinia pestis.
Immunity (2012) 37:96–107. doi:
10.1016/j.immuni.2012.07.006

104. Allen IC, McElvania-Tekippe E,
Wilson JE, Lich JD, Arthur JC,
Sullivan JT, et al. Characteri-
zation of NLRP12 during the
in vivo host immune response

www.frontiersin.org October 2013 | Volume 4 | Article 333 | 13

http://dx.doi.org/10.1097/QAI.0b013e3181dd17d4
http://dx.doi.org/10.1097/QAI.0b013e3181dd17d4
http://dx.doi.org/10.1038/ng.285
http://dx.doi.org/10.1038/ng.285
http://dx.doi.org/10.1002/ibd.21499
http://dx.doi.org/10.1002/ibd.21499
http://dx.doi.org/10.1038/nature11582
http://dx.doi.org/10.1084/jem.20100050
http://dx.doi.org/10.1084/jem.20100050
http://dx.doi.org/10.1016/j.immuni.2010.02.012
http://dx.doi.org/10.1016/j.immuni.2010.02.012
http://dx.doi.org/10.1016/j.immuni.2010.03.003
http://dx.doi.org/10.1016/j.immuni.2010.03.003
http://dx.doi.org/10.1002/ibd.21478
http://dx.doi.org/10.1002/ibd.21478
http://dx.doi.org/10.1016/j.cmet.2010.11.011
http://dx.doi.org/10.1038/nm.2279
http://dx.doi.org/10.1038/ni.1935
http://dx.doi.org/10.1038/ni.1935
http://dx.doi.org/10.1038/nrendo.2009.271
http://dx.doi.org/10.1038/nature08938
http://dx.doi.org/10.1038/cddis.2011.18
http://dx.doi.org/10.1038/ni.1636
http://dx.doi.org/10.1038/nature11729
http://dx.doi.org/10.1016/S0014-5793(02)03416-6
http://dx.doi.org/10.1016/S0014-5793(02)03416-6
http://dx.doi.org/10.1074/jbc.M203915200
http://dx.doi.org/10.1152/physiolgenomics.00199.2007
http://dx.doi.org/10.1152/physiolgenomics.00199.2007
http://dx.doi.org/10.1073/pnas.1100981108
http://dx.doi.org/10.1073/pnas.1100981108
http://dx.doi.org/10.1038/sj.bjc.6604884
http://dx.doi.org/10.1371/journal.pone.0008979
http://dx.doi.org/10.1371/journal.pone.0008979
http://dx.doi.org/10.4049/jimmunol.1100412
http://dx.doi.org/10.4049/jimmunol.1100412
http://dx.doi.org/10.1016/j.cell.2011.04.022
http://dx.doi.org/10.1016/j.cell.2011.04.022
http://dx.doi.org/10.1038/nature10809
http://dx.doi.org/10.1038/nature10809
http://dx.doi.org/10.1038/nature11250
http://dx.doi.org/10.1093/molehr/gam079
http://dx.doi.org/10.1093/molehr/gam079
http://dx.doi.org/10.1093/hmg/ddn418
http://dx.doi.org/10.1002/humu.20993
http://dx.doi.org/10.1111/j.1349-7006.2004.tb03182.x
http://dx.doi.org/10.1111/j.1349-7006.2004.tb03182.x
http://dx.doi.org/10.1074/jbc.M111.306191
http://dx.doi.org/10.1074/jbc.M410057200
http://dx.doi.org/10.1074/jbc.M410057200
http://dx.doi.org/10.1016/j.immuni.2012.02.001
http://dx.doi.org/10.1016/j.immuni.2012.02.001
http://dx.doi.org/10.1016/j.immuni.2012.07.006
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

to Klebsiella pneumoniae and
Mycobacterium tuberculosis. PLoS
One (2013) 8:e60842. doi:10.1371/
journal.pone.0060842

105. Macaluso F, Nothnagel M, Par-
wez Q, Petrasch-Parwez E, Bechara
FG, Epplen JT, et al. Polymor-
phisms in NACHT-LRR (NLR)
genes in atopic dermatitis. Exp
Dermatol (2007) 16:692–8. doi:10.
1111/j.1600-0625.2007.00589.x

106. Jeru I, Duquesnoy P, Fernandes-
Alnemri T, Cochet E, Yu JW,
Lackmy-Port-Lis M, et al. Muta-
tions in NALP12 cause hered-
itary periodic fever syndromes.
Proc Natl Acad Sci U S A
(2008) 105:1614–9. doi:10.1073/
pnas.0708616105

107. Jeru I, Hentgen V, Normand S,
Duquesnoy P, Cochet E, Delwail
A, et al. Role of interleukin-1beta
in NLRP12-associated autoinflam-
matory disorders and resistance to
anti-interleukin-1 therapy. Arthri-
tis Rheum (2011) 63:2142–8. doi:
10.1002/art.30378

108. Lich JD, Ting JP. Monarch-
1/PYPAF7 and other CATER-
PILLER (CLR, NOD, NLR)
proteins with negative reg-
ulatory functions. Microbes
Infect (2007) 9:672–6.
doi:10.1016/j.micinf.2007.01.018

109. Allen IC, Wilson JE, Schnei-
der M, Lich JD, Roberts RA,
Arthur JC, et al. NLRP12 sup-
presses colon inflammation and
tumorigenesis through the neg-
ative regulation of noncanonical
NF-kappaB signaling. Immunity
(2012) 36:742–54. doi:10.1016/j.
immuni.2012.03.012

110. Ye Z, Lich JD, Moore CB, Dun-
can JA, Williams KL, Ting JP. ATP
binding by monarch-1/NLRP12 is
critical for its inhibitory function.
Mol Cell Biol (2008) 28:1841–50.
doi:10.1128/MCB.01468-07

111. Arthur JC, Lich JD, Ye Z, Allen
IC, Gris D, Wilson JE, et al. Cut-
ting edge: NLRP12 controls den-
dritic and myeloid cell migration
to affect contact hypersensitivity. J
Immunol (2010) 185:4515–9. doi:
10.4049/jimmunol.1002227

112. Jeru I, Le Borgne G, Cochet
E, Hayrapetyan H, Duquesnoy
P, Grateau G, et al. Identi-
fication and functional conse-
quences of a recurrent NLRP12
missense mutation in periodic
fever syndromes. Arthritis Rheum
(2011) 63:1459–64. doi:10.1002/
art.30241

113. Miao EA, Alpuche-Aranda CM,
Dors M, Clark AE, Bader MW,
Miller SI, et al. Cytoplasmic

flagellin activates caspase-1 and
secretion of interleukin 1beta
via Ipaf. Nat Immunol (2006)
7:569–75. doi:10.1038/ni1344

114. Broz P, Newton K, Lamkanfi
M, Mariathasan S, Dixit VM,
Monack DM. Redundant roles for
inflammasome receptors NLRP3
and NLRC4 in host defense
against Salmonella. J Exp Med
(2010) 207:1745–55. doi:10.1084/
jem.20100257

115. Qu Y, Misaghi S, Izrael-Tomasevic
A, Newton K, Gilmour LL,
Lamkanfi M, et al. Phospho-
rylation of NLRC4 is critical
for inflammasome activation.
Nature (2012) 490:539–42.
doi:10.1038/nature11429

116. Franchi L, Amer A, Body-Malapel
M, Kanneganti TD, Ozoren N,
Jagirdar R, et al. Cytosolic fla-
gellin requires Ipaf for activation of
caspase-1 and interleukin 1beta in
Salmonella-infected macrophages.
Nat Immunol (2006) 7:576–82.
doi:10.1038/ni1346

117. Miao EA, Mao DP, Yudkovsky N,
Bonneau R, Lorang CG, Warren
SE, et al. Innate immune detection
of the type III secretion appara-
tus through the NLRC4 inflamma-
some. Proc Natl Acad Sci U S A
(2010) 107:3076–80. doi:10.1073/
pnas.0913087107

118. Kofoed EM, Vance RE. Innate
immune recognition of bacter-
ial ligands by NAIPs determines
inflammasome specificity. Nature
(2011) 477:592–5. doi:10.1038/
nature10394

119. Zhao Y, Yang J, Shi J, Gong YN, Lu
Q, Xu H, et al. The NLRC4 inflam-
masome receptors for bacterial fla-
gellin and type III secretion appa-
ratus. Nature (2011) 477:596–600.
doi:10.1038/nature10510

120. Pereira MS, Morgantetti GF,
Massis LM, Horta CV, Hori
JI, Zamboni DS. Activation of
NLRC4 by flagellated bacteria
triggers caspase-1-dependent and
-independent responses to restrict
Legionella pneumophila replica-
tion in macrophages and in vivo.
J Immunol (2011) 187:6447–55.
doi:10.4049/jimmunol.1003784

121. Jamilloux Y, Pierini R, Querenet M,
Juruj C, Fauchais AL, Jauberteau
MO, et al. Inflammasome acti-
vation restricts Legionella pneu-
mophila replication in primary
microglial cells through flagellin
detection. Glia (2013) 61:539–49.
doi:10.1002/glia.22454

122. Tomalka J, Ganesan S, Azodi
E, Patel K, Majmudar P, Hall
BA, et al. A novel role for

the NLRC4 inflammasome in
mucosal defenses against the fun-
gal pathogen Candida albicans.
PLoS Pathog (2011) 7:e1002379.
doi:10.1371/journal.ppat.1002379

123. Ceballos-Olvera I, Sahoo M,
Miller MA, Del Barrio L, Re
F. Inflammasome-dependent
pyroptosis and IL-18 protect
against Burkholderia pseudo-
mallei lung infection while
IL-1beta is deleterious. PLoS
Pathog (2011) 7:e1002452.
doi:10.1371/journal.ppat.1002452

124. Cai S, Batra S, Wakamatsu N,
Pacher P, Jeyaseelan S. NLRC4
inflammasome-mediated pro-
duction of IL-1beta mod-
ulates mucosal immunity
in the lung against gram-
negative bacterial infection. J
Immunol (2012) 188:5623–35.
doi:10.4049/jimmunol.1200195

125. Franchi L, Kamada N, Nakamura
Y, Burberry A, Kuffa P, Suzuki S,
et al. NLRC4-driven production
of IL-1beta discriminates between
pathogenic and commensal bac-
teria and promotes host intesti-
nal defense. Nat Immunol (2012)
13:449–56. doi:10.1038/ni.2263

126. Carvalho FA, Nalbantoglu I,Aitken
JD, Uchiyama R, Su Y, Doho
GH, et al. Cytosolic flagellin
receptor NLRC4 protects mice
against mucosal and systemic chal-
lenges. Mucosal Immunol (2012)
5:288–98. doi:10.1038/mi.2012.8

127. Miao EA,Andersen-Nissen E,War-
ren SE, Aderem A. TLR5 and Ipaf:
dual sensors of bacterial flagellin
in the innate immune system.
Semin Immunopathol (2007) 29:
275–88. doi:10.1007/s00281-007-
0078-z

128. Inohara N, Ogura Y, Chen FF,
Muto A, Nunez G. Human Nod1
confers responsiveness to bacterial
lipopolysaccharides. J Biol Chem
(2001) 276:2551–4. doi:10.1074/
jbc.M009728200

129. Chamaillard M, Hashimoto M,
Horie Y, Masumoto J, Qiu S,
Saab L, et al. An essential role
for NOD1 in host recognition
of bacterial peptidoglycan con-
taining diaminopimelic acid. Nat
Immunol (2003) 4:702–7. doi:10.
1038/ni945

130. Girardin SE, Boneca IG, Carneiro
LA, Antignac A, Jehanno M, Viala
J, et al. Nod1 detects a unique
muropeptide from gram-negative
bacterial peptidoglycan. Science
(2003) 300:1584–7. doi:10.1126/
science.1084677

131. Girardin SE, Boneca IG, Viala
J, Chamaillard M, Labigne A,

Thomas G, et al. Nod2 is a
general sensor of peptidogly-
can through muramyl dipeptide
(MDP) detection. J Biol Chem
(2003) 278:8869–72. doi:10.1074/
jbc.C200651200

132. Girardin SE, Travassos LH, Herve
M, Blanot D, Boneca IG, Philpott
DJ, et al. Peptidoglycan molecu-
lar requirements allowing detec-
tion by Nod1 and Nod2. J Biol
Chem (2003) 278:41702–8. doi:10.
1074/jbc.M307198200

133. Grimes CL, Ariyananda Lde Z,
Melnyk JE, O’Shea EK. The innate
immune protein Nod2 binds
directly to MDP, a bacterial cell
wall fragment. J Am Chem Soc
(2012) 134:13535–7. doi:10.1021/
ja303883c

134. Coulombe F, Divangahi M,
Veyrier F, de Leseleuc L, Glea-
son JL, Yang Y, et al. Increased
NOD2-mediated recognition of
N-glycolyl muramyl dipeptide.
J Exp Med (2009) 206:1709–16.
doi:10.1084/jem.20081779

135. Sabbah A, Chang TH, Harnack R,
Frohlich V, Tominaga K, Dube PH,
et al. Activation of innate immune
antiviral responses by Nod2. Nat
Immunol (2009) 10:1073–80. doi:
10.1038/ni.1782

136. Ogura Y, Inohara N, Benito A,
Chen FF, Yamaoka S, Nunez G.
Nod2, a Nod1/Apaf-1 family mem-
ber that is restricted to monocytes
and activates NF-kappaB. J Biol
Chem (2001) 276:4812–8. doi:10.
1074/jbc.M008072200

137. Marriott I, Rati DM, McCall
SH, Tranguch SL. Induction of
Nod1 and Nod2 intracellular
pattern recognition receptors in
murine osteoblasts following bac-
terial challenge. Infect Immun
(2005) 73:2967–73. doi:10.1128/
IAI.73.5.2967-2973.2005

138. Tada H, Aiba S, Shibata K,
Ohteki T, Takada H. Synergistic
effect of Nod1 and Nod2 ago-
nists with toll-like receptor ago-
nists on human dendritic cells
to generate interleukin-12 and T
helper type 1 cells. Infect Immun
(2005) 73:7967–76. doi:10.1128/
IAI.73.12.7967-7976.2005

139. Voss E, Wehkamp J, Wehkamp K,
Stange EF, Schroder JM, Harder J.
NOD2/CARD15 mediates induc-
tion of the antimicrobial pep-
tide human beta-defensin-2. J Biol
Chem (2006) 281:2005–11. doi:10.
1074/jbc.M511044200

140. Ogura Y, Lala S, Xin W, Smith
E, Dowds TA, Chen FF, et al.
Expression of NOD2 in Paneth
cells: a possible link to Crohn’s

Frontiers in Immunology | Molecular Innate Immunity October 2013 | Volume 4 | Article 333 | 14

http://dx.doi.org/10.1371/journal.pone.0060842
http://dx.doi.org/10.1371/journal.pone.0060842
http://dx.doi.org/10.1111/j.1600-0625.2007.00589.x
http://dx.doi.org/10.1111/j.1600-0625.2007.00589.x
http://dx.doi.org/10.1073/pnas.0708616105
http://dx.doi.org/10.1073/pnas.0708616105
http://dx.doi.org/10.1002/art.30378
http://dx.doi.org/10.1016/j.micinf.2007.01.018
http://dx.doi.org/10.1016/j.immuni.2012.03.012
http://dx.doi.org/10.1016/j.immuni.2012.03.012
http://dx.doi.org/10.1128/MCB.01468-07
http://dx.doi.org/10.4049/jimmunol.1002227
http://dx.doi.org/10.1002/art.30241
http://dx.doi.org/10.1002/art.30241
http://dx.doi.org/10.1038/ni1344
http://dx.doi.org/10.1084/jem.20100257
http://dx.doi.org/10.1084/jem.20100257
http://dx.doi.org/10.1038/nature11429
http://dx.doi.org/10.1038/ni1346
http://dx.doi.org/10.1073/pnas.0913087107
http://dx.doi.org/10.1073/pnas.0913087107
http://dx.doi.org/10.1038/nature10394
http://dx.doi.org/10.1038/nature10394
http://dx.doi.org/10.1038/nature10510
http://dx.doi.org/10.4049/jimmunol.1003784
http://dx.doi.org/10.1002/glia.22454
http://dx.doi.org/10.1371/journal.ppat.1002379
http://dx.doi.org/10.1371/journal.ppat.1002452
http://dx.doi.org/10.4049/jimmunol.1200195
http://dx.doi.org/10.1038/ni.2263
http://dx.doi.org/10.1038/mi.2012.8
http://dx.doi.org/10.1007/s00281-007-0078-z
http://dx.doi.org/10.1007/s00281-007-0078-z
http://dx.doi.org/10.1074/jbc.M009728200
http://dx.doi.org/10.1074/jbc.M009728200
http://dx.doi.org/10.1038/ni945
http://dx.doi.org/10.1038/ni945
http://dx.doi.org/10.1126/science.1084677
http://dx.doi.org/10.1126/science.1084677
http://dx.doi.org/10.1074/jbc.C200651200
http://dx.doi.org/10.1074/jbc.C200651200
http://dx.doi.org/10.1074/jbc.M307198200
http://dx.doi.org/10.1074/jbc.M307198200
http://dx.doi.org/10.1021/ja303883c
http://dx.doi.org/10.1021/ja303883c
http://dx.doi.org/10.1084/jem.20081779
http://dx.doi.org/10.1038/ni.1782
http://dx.doi.org/10.1074/jbc.M008072200
http://dx.doi.org/10.1074/jbc.M008072200
http://dx.doi.org/10.1128/IAI.73.5.2967-2973.2005
http://dx.doi.org/10.1128/IAI.73.5.2967-2973.2005
http://dx.doi.org/10.1128/IAI.73.12.7967-7976.2005
http://dx.doi.org/10.1128/IAI.73.12.7967-7976.2005
http://dx.doi.org/10.1074/jbc.M511044200
http://dx.doi.org/10.1074/jbc.M511044200
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

ileitis. Gut (2003) 52:1591–7. doi:
10.1136/gut.52.11.1591

141. Uehara A, Fujimoto Y, Fukase
K, Takada H. Various human
epithelial cells express functional
toll-like receptors, NOD1 and
NOD2 to produce anti-microbial
peptides, but not proinflamma-
tory cytokines. Mol Immunol
(2007) 44:3100–11. doi:10.1016/j.
molimm.2007.02.007

142. Uehara A, Imamura T, Potempa
J, Travis J, Takada H. Gingipains
from Porphyromonas gingivalis
synergistically induce the pro-
duction of proinflammatory
cytokines through protease-
activated receptors with toll-like
receptor and NOD1/2 ligands
in human monocytic cells. Cell
Microbiol (2008) 10:1181–9.
doi:10.1111/j.1462-5822.2008.
01119.x

143. Tattoli I, Travassos LH, Carneiro
LA, Magalhaes JG, Girardin
SE. The nodosome: Nod1
and Nod2 control bacterial
infections and inflammation.
Semin Immunopathol (2007) 29:
289–301. doi:10.1007/s00281-
007-0083-2

144. Lipinski S, Grabe N, Jacobs G,
Billmann-Born S, Till A, Hasler
R, et al. RNAi screening identi-
fies mediators of NOD2 signal-
ing: implications for spatial speci-
ficity of MDP recognition. Proc
Natl Acad Sci U S A (2012)
109:21426–31. doi:10.1073/pnas.
1209673109

145. Kobayashi K, Inohara N,
Hernandez LD, Galan JE,
Nunez G, Janeway CA, et al.
RICK/Rip2/CARDIAK mediates
signalling for receptors of the
innate and adaptive immune
systems. Nature (2002) 416:194–9.
doi:10.1038/416194a

146. Lecine P, Esmiol S, Metais JY, Nico-
letti C, Nourry C, McDonald C, et
al. The NOD2-RICK complex sig-
nals from the plasma membrane. J
Biol Chem (2007) 282:15197–207.
doi:10.1074/jbc.M606242200

147. Park JH, Kim YG, Shaw M, Kan-
neganti TD, Fujimoto Y, Fukase
K, et al. Nod1/RICK and TLR
signaling regulate chemokine
and antimicrobial innate
immune responses in mesothelial
cells. J Immunol (2007) 179:
514–21.

148. Nembrini C, Kisielow J, Shamshiev
AT, Tortola L, Coyle AJ, Kopf
M, et al. The kinase activity of
Rip2 determines its stability and
consequently Nod1- and Nod2-
mediated immune responses. J Biol

Chem (2009) 284:19183–8. doi:10.
1074/jbc.M109.006353

149. Hasegawa M, Fujimoto Y, Lucas
PC, Nakano H, Fukase K,
Nunez G, et al. A critical role of
RICK/RIP2 polyubiquitination
in Nod-induced NF-kappaB
activation. EMBO J (2008) 27:
373–83. doi:10.1038/sj.emboj.
7601962

150. Bertrand MJ, Doiron K, Labbe K,
Korneluk RG, Barker PA, Saleh
M. Cellular inhibitors of apopto-
sis cIAP1 and cIAP2 are required
for innate immunity signaling by
the pattern recognition receptors
NOD1 and NOD2. Immunity
(2009) 30:789–801. doi:10.1016/j.
immuni.2009.04.011

151. Krieg A, Correa RG, Garrison JB,
Le Negrate G, Welsh K, Huang Z,
et al. XIAP mediates NOD sig-
naling via interaction with RIP2.
Proc Natl Acad Sci U S A
(2009) 106:14524–9. doi:10.1073/
pnas.0907131106

152. Damgaard RB, Nachbur U, Yabal
M, Wong WW, Fiil BK, Kastirr
M, et al. The ubiquitin lig-
ase XIAP recruits LUBAC for
NOD2 signaling in inflammation
and innate immunity. Mol Cell
(2012) 46:746–58. doi:10.1016/j.
molcel.2012.04.014

153. Tao M, Scacheri PC, Marinis JM,
Harhaj EW, Matesic LE, Abbott
DW. ITCH K63-ubiquitinates
the NOD2 binding protein,
RIP2, to influence inflam-
matory signaling pathways.
Curr Biol (2009) 19:1255–63.
doi:10.1016/j.cub.2009.06.038

154. Ikeda F, Deribe YL, Skanland
SS, Stieglitz B, Grabbe C, Franz-
Wachtel M, et al. SHARPIN
forms a linear ubiquitin ligase
complex regulating NF-kappaB
activity and apoptosis. Nature
(2011) 471:637–41. doi:10.1038/
nature09814

155. Hasegawa M, Yang K, Hashimoto
M, Park JH, Kim YG, Fujimoto
Y, et al. Differential release
and distribution of Nod1 and
Nod2 immunostimulatory
molecules among bacterial
species and environments. J Biol
Chem (2006) 281:29054–63.
doi:10.1074/jbc.M602638200

156. Pauleau AL, Murray PJ. Role
of nod2 in the response of
macrophages to toll-like recep-
tor agonists. Mol Cell Biol (2003)
23:7531–9. doi:10.1128/MCB.23.
21.7531-7539.2003

157. Kobayashi KS, Chamaillard M,
Ogura Y, Henegariu O, Inohara N,
Nunez G, et al. Nod2-dependent

regulation of innate and adaptive
immunity in the intestinal tract.
Science (2005) 307:731–4. doi:10.
1126/science.1104911

158. Hsu LC, Ali SR, McGillivray
S, Tseng PH, Mariathasan S,
Humke EW, et al. A NOD2-
NALP1 complex mediates caspase-
1-dependent IL-1beta secretion
in response to Bacillus anthracis
infection and muramyl dipep-
tide. Proc Natl Acad Sci U S A
(2008) 105:7803–8. doi:10.1073/
pnas.0802726105

159. Wagner RN, Proell M, Kufer TA,
Schwarzenbacher R. Evaluation of
Nod-like receptor (NLR) effec-
tor domain interactions. PLoS
One (2009) 4:e4931. doi:10.1371/
journal.pone.0004931

160. Hugot JP, Chamaillard M, Zouali
H, Lesage S, Cezard JP, Belaiche J, et
al. Association of NOD2 leucine-
rich repeat variants with suscep-
tibility to Crohn’s disease. Nature
(2001) 411:599–603. doi:10.1038/
35079107

161. Ogura Y, Bonen DK, Inohara N,
Nicolae DL, Chen FF, Ramos R, et
al. A frameshift mutation in NOD2
associated with susceptibility to
Crohn’s disease. Nature (2001)
411:603–6. doi:10.1038/35079114

162. Miceli-Richard C, Lesage S, Rybo-
jad M, Prieur AM, Manouvrier-
Hanu S, Hafner R, et al. CARD15
mutations in Blau syndrome. Nat
Genet (2001) 29:19–20. doi:10.
1038/ng720

163. Hysi P, Kabesch M, Moffatt MF,
Schedel M, Carr D, Zhang Y, et
al. NOD1 variation, immunoglob-
ulin E and asthma. Hum Mol
Genet (2005) 14:935–41. doi:10.
1093/hmg/ddi087

164. Duan Y, Learoyd J, Meliton AY,
Clay BS, Leff AR, Zhu X. Inhibi-
tion of Pyk2 blocks airway inflam-
mation and hyperresponsiveness
in a mouse model of asthma.
Am J Respir Cell Mol Biol (2010)
42:491–7. doi:10.1165/rcmb.2008-
0469OC

165. Weidinger S, Klopp N, Rumm-
ler L, Wagenpfeil S, Novak N,
Baurecht HJ, et al. Association
of NOD1 polymorphisms with
atopic eczema and related phe-
notypes. J Allergy Clin Immunol
(2005) 116:177–84. doi:10.1016/j.
jaci.2005.02.034

166. Joosten LA, Helsen MM, van
de Loo FA, van den Berg WB.
Anticytokine treatment of estab-
lished type II collagen-induced
arthritis in DBA/1 mice: a
comparative study using anti-
TNFalpha, anti-IL-1alpha/beta

and IL-1Ra. Arthritis
Rheum (2008) 58:S110–22.
doi:10.1002/art.23363

167. Vieira SM, Cunha TM, Franca RF,
Pinto LG, Talbot J, Turato WM,
et al. Joint NOD2/RIPK2 signal-
ing regulates IL-17 axis and con-
tributes to the development of
experimental arthritis. J Immunol
(2012) 188:5116–22. doi:10.4049/
jimmunol.1004190

168. Kanazawa N, Okafuji I, Kambe
N,Nishikomori R,Nakata-Hizume
M, Nagai S, et al. Early-onset
sarcoidosis and CARD15 muta-
tions with constitutive nuclear
factor-kappaB activation: com-
mon genetic etiology with Blau
syndrome. Blood (2005) 105:
1195–7. doi:10.1182/blood-2004-
07-2972

169. Maeda S, Hsu LC, Liu H, Bankston
LA, Iimura M, Kagnoff MF, et al.
Nod2 mutation in Crohn’s dis-
ease potentiates NF-kappaB activ-
ity and IL-1beta processing. Sci-
ence (2005) 307:734–8. doi:10.
1126/science.1103685

170. Kim YG, Park JH, Shaw MH,
Franchi L, Inohara N, Nunez
G. The cytosolic sensors Nod1
and Nod2 are critical for bacte-
rial recognition and host defense
after exposure to toll-like recep-
tor ligands. Immunity (2008)
28:246–57. doi:10.1016/j.immuni.
2007.12.012

171. Viala J, Chaput C, Boneca IG, Car-
dona A, Girardin SE, Moran AP,
et al. Nod1 responds to peptido-
glycan delivered by the Helicobac-
ter pylori cag pathogenicity island.
Nat Immunol (2004) 5:1166–74.
doi:10.1038/ni1131

172. Boughan PK, Argent RH, Body-
Malapel M, Park JH, Ewings KE,
Bowie AG, et al. Nucleotide-
binding oligomerization domain-
1 and epidermal growth fac-
tor receptor: critical regulators
of beta-defensins during Heli-
cobacter pylori infection. J Biol
Chem (2006) 281:11637–48. doi:
10.1074/jbc.M510275200

173. Rosenstiel P, Hellmig S, Hampe
J, Ott S, Till A, Fischbach W,
et al. Influence of polymor-
phisms in the NOD1/CARD4 and
NOD2/CARD15 genes on the
clinical outcome of Helicobacter
pylori infection. Cell Microbiol
(2006) 8:1188–98. doi:10.1111/j.
1462-5822.2006.00701.x

174. Shimada K, Chen S, Dempsey PW,
Sorrentino R,Alsabeh R, Slepenkin
AV, et al. The NOD/RIP2 pathway
is essential for host defenses against
Chlamydophila pneumoniae lung

www.frontiersin.org October 2013 | Volume 4 | Article 333 | 15

http://dx.doi.org/10.1136/gut.52.11.1591
http://dx.doi.org/10.1016/j.molimm.2007.02.007
http://dx.doi.org/10.1016/j.molimm.2007.02.007
http://dx.doi.org/10.1111/j.1462-5822.2008.01119.x
http://dx.doi.org/10.1111/j.1462-5822.2008.01119.x
http://dx.doi.org/10.1007/s00281-007-0083-2
http://dx.doi.org/10.1007/s00281-007-0083-2
http://dx.doi.org/10.1073/pnas.1209673109
http://dx.doi.org/10.1073/pnas.1209673109
http://dx.doi.org/10.1038/416194a
http://dx.doi.org/10.1074/jbc.M606242200
http://dx.doi.org/10.1074/jbc.M109.006353
http://dx.doi.org/10.1074/jbc.M109.006353
http://dx.doi.org/10.1038/sj.emboj.7601962
http://dx.doi.org/10.1038/sj.emboj.7601962
http://dx.doi.org/10.1016/j.immuni.2009.04.011
http://dx.doi.org/10.1016/j.immuni.2009.04.011
http://dx.doi.org/10.1073/pnas.0907131106
http://dx.doi.org/10.1073/pnas.0907131106
http://dx.doi.org/10.1016/j.molcel.2012.04.014
http://dx.doi.org/10.1016/j.molcel.2012.04.014
http://dx.doi.org/10.1016/j.cub.2009.06.038
http://dx.doi.org/10.1038/nature09814
http://dx.doi.org/10.1038/nature09814
http://dx.doi.org/10.1074/jbc.M602638200
http://dx.doi.org/10.1128/MCB.23.21.7531-7539.2003
http://dx.doi.org/10.1128/MCB.23.21.7531-7539.2003
http://dx.doi.org/10.1126/science.1104911
http://dx.doi.org/10.1126/science.1104911
http://dx.doi.org/10.1073/pnas.0802726105
http://dx.doi.org/10.1073/pnas.0802726105
http://dx.doi.org/10.1371/journal.pone.0004931
http://dx.doi.org/10.1371/journal.pone.0004931
http://dx.doi.org/10.1038/35079107
http://dx.doi.org/10.1038/35079107
http://dx.doi.org/10.1038/35079114
http://dx.doi.org/10.1038/ng720
http://dx.doi.org/10.1038/ng720
http://dx.doi.org/10.1093/hmg/ddi087
http://dx.doi.org/10.1093/hmg/ddi087
http://dx.doi.org/10.1165/rcmb.2008-0469OC
http://dx.doi.org/10.1165/rcmb.2008-0469OC
http://dx.doi.org/10.1016/j.jaci.2005.02.034
http://dx.doi.org/10.1016/j.jaci.2005.02.034
http://dx.doi.org/10.1002/art.23363
http://dx.doi.org/10.4049/jimmunol.1004190
http://dx.doi.org/10.4049/jimmunol.1004190
http://dx.doi.org/10.1182/blood-2004-07-2972
http://dx.doi.org/10.1182/blood-2004-07-2972
http://dx.doi.org/10.1126/science.1103685
http://dx.doi.org/10.1126/science.1103685
http://dx.doi.org/10.1016/j.immuni.2007.12.012
http://dx.doi.org/10.1016/j.immuni.2007.12.012
http://dx.doi.org/10.1038/ni1131
http://dx.doi.org/10.1074/jbc.M510275200
http://dx.doi.org/10.1111/j.1462-5822.2006.00701.x
http://dx.doi.org/10.1111/j.1462-5822.2006.00701.x
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

infection. PLoS Pathog (2009)
5:e1000379. doi:10.1371/journal.
ppat.1000379

175. Berrington WR, Iyer R, Wells
RD, Smith KD, Skerrett SJ, Hawn
TR. NOD1 and NOD2 regulation
of pulmonary innate immunity
to Legionella pneumophila. Eur J
Immunol (2010) 40:3519–27. doi:
10.1002/eji.201040518

176. Frutuoso MS, Hori JI, Pereira MS,
Junior DS, Sonego F, Kobayashi
KS, et al. The pattern recognition
receptors Nod1 and Nod2 account
for neutrophil recruitment to
the lungs of mice infected with
Legionella pneumophila. Microbes
Infect (2010) 12:819–27. doi:10.
1016/j.micinf.2010.05.006

177. Loving CL, Osorio M, Kim YG,
Nunez G, Hughes MA, Merkel TJ.
Nod1/Nod2-mediated recognition
plays a critical role in induction of
adaptive immunity to anthrax after
aerosol exposure. Infect Immun
(2009) 77:4529–37. doi:10.1128/
IAI.00563-09

178. Bonen DK, Ogura Y, Nicolae DL,
Inohara N, Saab L, Tanabe T, et al.
Crohn’s disease-associated NOD2
variants share a signaling defect
in response to lipopolysaccha-
ride and peptidoglycan. Gastroen-
terology (2003) 124:140–6. doi:10.
1053/gast.2003.50019

179. Netea MG, Kullberg BJ, de Jong
DJ, Franke B, Sprong T, Naber
TH, et al. NOD2 mediates anti-
inflammatory signals induced by
TLR2 ligands: implications for
Crohn’s disease. Eur J Immunol
(2004) 34:2052–9. doi:10.1002/eji.
200425229

180. van Heel DA, Ghosh S, Butler M,
Hunt KA, Lundberg AM,Ahmad T,
et al. Muramyl dipeptide and toll-
like receptor sensitivity in NOD2-
associated Crohn’s disease. Lancet
(2005) 365:1794–6. doi:10.1016/
S0140-6736(05)66582-8

181. Economou M, Trikalinos TA,
Loizou KT, Tsianos EV, Ioan-
nidis JP. Differential effects of
NOD2 variants on Crohn’s dis-
ease risk and phenotype in
diverse populations: a metaanaly-
sis. Am J Gastroenterol (2004)
99:2393–404. doi:10.1111/j.1572-
0241.2004.40304.x

182. Rogler G, Brand K, Vogl D,
Page S, Hofmeister R, Andus
T, et al. Nuclear factor kappaB
is activated in macrophages
and epithelial cells of inflamed
intestinal mucosa. Gastroen-
terology (1998) 115:357–69.
doi:10.1016/S0016-5085(98)
70202-1

183. Schreiber S, Nikolaus S, Hampe J.
Activation of nuclear factor kappa
B inflammatory bowel disease.
Gut (1998) 42:477–84. doi:10.
1136/gut.42.4.477

184. Lu JV, Walsh CM. Programmed
necrosis and autophagy in
immune function. Immunol Rev
(2012) 249:205–17. doi:10.1111/j.
1600-065X.2012.01147.x

185. Hampe J, Franke A, Rosenstiel P,
Till A, Teuber M, Huse K, et al.
A genome-wide association scan
of nonsynonymous SNPs iden-
tifies a susceptibility variant for
Crohn disease in ATG16L1. Nat
Genet (2007) 39:207–11. doi:10.
1038/ng1954

186. Rioux JD, Xavier RJ, Taylor KD, Sil-
verberg MS, Goyette P, Huett A, et
al. Genome-wide association study
identifies new susceptibility loci
for Crohn disease and implicates
autophagy in disease pathogene-
sis. Nat Genet (2007) 39:596–604.
doi:10.1038/ng2032

187. Travassos LH, Carneiro LA, Ram-
jeet M, Hussey S, Kim YG, Mag-
alhaes JG, et al. Nod1 and Nod2
direct autophagy by recruiting
ATG16L1 to the plasma membrane
at the site of bacterial entry. Nat
Immunol (2010) 11:55–62. doi:10.
1038/ni.1823

188. Cadwell K, Liu JY, Brown SL,
Miyoshi H, Loh J, Lennerz JK, et al.
A key role for autophagy and the
autophagy gene Atg16l1 in mouse
and human intestinal Paneth cells.
Nature (2008) 456:259–63. doi:10.
1038/nature07416

189. Cooney R, Baker J, Brain O, Danis
B, Pichulik T, Allan P, et al. NOD2
stimulation induces autophagy in
dendritic cells influencing bacter-
ial handling and antigen presen-
tation. Nat Med (2010) 16:90–7.
doi:10.1038/nm.2069

190. Lupfer C, Thomas PG, Anand PK,
Vogel P, Milasta S, Martinez J,
et al. Receptor interacting pro-
tein kinase 2-mediated mitophagy
regulates inflammasome activa-
tion during virus infection. Nat
Immunol (2013) 14:480–8. doi:10.
1038/ni.2563

191. Kang MJ, Heo SK, Song EJ, Kim
DJ, Han SY, Han JH, et al.
Activation of Nod1 and Nod2
induces innate immune responses
of prostate epithelial cells. Prostate
(2012) 72:1351–8. doi:10.1002/
pros.22483

192. Ashton KA, Proietto A, Otton G,
Symonds I, McEvoy M, Attia J,
et al. Polymorphisms in genes of
the steroid hormone biosynthe-
sis and metabolism pathways and

endometrial cancer risk. Cancer
Epidemiol (2010) 34:328–37. doi:
10.1016/j.canep.2010.03.005

193. Zhang FR, Huang W, Chen
SM, Sun LD, Liu H, Li Y,
et al. Genomewide association
study of leprosy. N Engl J Med
(2009) 361:2609–18. doi:10.1056/
NEJMoa0903753

194. Berrington WR, Macdonald M,
Khadge S, Sapkota BR, Janer M,
Hagge DA, et al. Common poly-
morphisms in the NOD2 gene
region are associated with leprosy
and its reactive states. J Infect Dis
(2010) 201:1422–35. doi:10.1086/
651559

195. Austin CM, Ma X, Graviss EA.
Common nonsynonymous poly-
morphisms in the NOD2 gene are
associated with resistance or sus-
ceptibility to tuberculosis disease
in African Americans. J Infect Dis
(2008) 197:1713–6. doi:10.1086/
588384

196. Azad AK, Sadee W, Schlesinger
LS. Innate immune gene poly-
morphisms in tuberculosis. Infect
Immun (2012) 80:3343–59. doi:10.
1128/IAI.00443-12

197. Fortin A, Abel L, Casanova JL, Gros
P. Host genetics of mycobacterial
diseases in mice and men: forward
genetic studies of BCG-osis and
tuberculosis. Annu Rev Genomics
Hum Genet (2007) 8:163–92.
doi:10.1146/annurev.genom.8.
080706.092315

198. Pandey AK, Yang Y, Jiang Z, For-
tune SM, Coulombe F, Behr MA,
et al. NOD2, RIP2 and IRF5
play a critical role in the type I
interferon response to Mycobac-
terium tuberculosis. PLoS Pathog
(2009) 5:e1000500. doi:10.1371/
journal.ppat.1000500

199. Watanabe T, Asano N, Murray
PJ, Ozato K, Tailor P, Fuss IJ, et
al. Muramyl dipeptide activation
of nucleotide-binding oligomer-
ization domain 2 protects mice
from experimental colitis. J Clin
Invest (2008) 118:545–59. doi:10.
1172/JCI33145

200. Schurr E, Gros P. A common
genetic fingerprint in leprosy and
Crohn’s disease? N Engl J Med
(2009) 361:2666–8. doi:10.1056/
NEJMe0910690

201. Lalande JD, Behr MA. Mycobac-
teria in Crohn’s disease: how
innate immune deficiency may
result in chronic inflamma-
tion. Expert Rev Clin Immunol
(2010) 6:633–41. doi:10.1586/eci.
10.29

202. Wang Y, Hasegawa M, Imamura R,
Kinoshita T, Kondo C, Konaka K,

et al. PYNOD, a novel Apaf-
1/CED4-like protein is an inhibitor
of ASC and caspase-1. Int Immunol
(2004) 16:777–86. doi:10.1093/
intimm/dxh081

203. Imamura R, Wang Y, Kinoshita
T, Suzuki M, Noda T, Sagara J,
et al. Anti-inflammatory activity
of PYNOD and its mechanism
in humans and mice. J Immunol
(2010) 184:5874–84. doi:10.4049/
jimmunol.0900779

204. Lech M, Avila-Ferrufino A, Skug-
inna V, Susanti HE, Anders HJ.
Quantitative expression of RIG-
like helicase, NOD-like recep-
tor and inflammasome-related
mRNAs in humans and mice. Int
Immunol (2010) 22:717–28. doi:
10.1093/intimm/dxq058

205. Lautz K, Damm A, Menning M,
Wenger J, Adam AC, Zigrino P,
et al. NLRP10 enhances Shigella-
induced pro-inflammatory
responses. Cell Microbiol (2012)
14:1568–83. doi:10.1111/j.1462-
5822.2012.01822.x

206. Joly S, Eisenbarth SC, Olivier
AK, Williams A, Kaplan DH,
Cassel SL, et al. Cutting edge:
Nlrp10 is essential for protec-
tive antifungal adaptive immu-
nity against Candida albicans. J
Immunol (2012) 189:4713–7. doi:
10.4049/jimmunol.1201715

207. Eisenbarth SC,Williams A, Colegio
OR, Meng H, Strowig T, Rongvaux
A, et al. NLRP10 is a NOD-like
receptor essential to initiate adap-
tive immunity by dendritic cells.
Nature (2012) 484:510–3. doi:10.
1038/nature11012

208. Hirota T, Takahashi A, Kubo M,
Tsunoda T, Tomita K, Sakashita
M, et al. Genome-wide association
study identifies eight new suscep-
tibility loci for atopic dermatitis in
the Japanese population. Nat Genet
(2012) 44:1222–6. doi:10.1038/ng.
2438

209. Arnoult D, Soares F, Tattoli I, Cas-
tanier C, Philpott DJ, Girardin
SE. An N-terminal addressing
sequence targets NLRX1 to the
mitochondrial matrix. J Cell Sci
(2009) 122:3161–8. doi:10.1242/
jcs.051193

210. Hong M, Yoon SI, Wilson IA.
Structure and functional char-
acterization of the RNA-binding
element of the NLRX1 innate
immune modulator. Immunity
(2012) 36:337–47. doi:10.1016/j.
immuni.2011.12.018

211. Moore CB, Bergstralh DT,
Duncan JA, Lei Y, Morri-
son TE, Zimmermann AG, et
al. NLRX1 is a regulator of

Frontiers in Immunology | Molecular Innate Immunity October 2013 | Volume 4 | Article 333 | 16

http://dx.doi.org/10.1371/journal.ppat.1000379
http://dx.doi.org/10.1371/journal.ppat.1000379
http://dx.doi.org/10.1002/eji.201040518
http://dx.doi.org/10.1016/j.micinf.2010.05.006
http://dx.doi.org/10.1016/j.micinf.2010.05.006
http://dx.doi.org/10.1128/IAI.00563-09
http://dx.doi.org/10.1128/IAI.00563-09
http://dx.doi.org/10.1053/gast.2003.50019
http://dx.doi.org/10.1053/gast.2003.50019
http://dx.doi.org/10.1002/eji.200425229
http://dx.doi.org/10.1002/eji.200425229
http://dx.doi.org/10.1016/S0140-6736(05)66582-8
http://dx.doi.org/10.1016/S0140-6736(05)66582-8
http://dx.doi.org/10.1111/j.1572-0241.2004.40304.x
http://dx.doi.org/10.1111/j.1572-0241.2004.40304.x
http://dx.doi.org/10.1016/S0016-5085(98)70202-1
http://dx.doi.org/10.1016/S0016-5085(98)70202-1
http://dx.doi.org/10.1136/gut.42.4.477
http://dx.doi.org/10.1136/gut.42.4.477
http://dx.doi.org/10.1111/j.1600-065X.2012.01147.x
http://dx.doi.org/10.1111/j.1600-065X.2012.01147.x
http://dx.doi.org/10.1038/ng1954
http://dx.doi.org/10.1038/ng1954
http://dx.doi.org/10.1038/ng2032
http://dx.doi.org/10.1038/ni.1823
http://dx.doi.org/10.1038/ni.1823
http://dx.doi.org/10.1038/nature07416
http://dx.doi.org/10.1038/nature07416
http://dx.doi.org/10.1038/nm.2069
http://dx.doi.org/10.1038/ni.2563
http://dx.doi.org/10.1038/ni.2563
http://dx.doi.org/10.1002/pros.22483
http://dx.doi.org/10.1002/pros.22483
http://dx.doi.org/10.1016/j.canep.2010.03.005
http://dx.doi.org/10.1056/NEJMoa0903753
http://dx.doi.org/10.1056/NEJMoa0903753
http://dx.doi.org/10.1086/651559
http://dx.doi.org/10.1086/651559
http://dx.doi.org/10.1086/588384
http://dx.doi.org/10.1086/588384
http://dx.doi.org/10.1128/IAI.00443-12
http://dx.doi.org/10.1128/IAI.00443-12
http://dx.doi.org/10.1146/annurev.genom.8.080706.092315
http://dx.doi.org/10.1146/annurev.genom.8.080706.092315
http://dx.doi.org/10.1371/journal.ppat.1000500
http://dx.doi.org/10.1371/journal.ppat.1000500
http://dx.doi.org/10.1172/JCI33145
http://dx.doi.org/10.1172/JCI33145
http://dx.doi.org/10.1056/NEJMe0910690
http://dx.doi.org/10.1056/NEJMe0910690
http://dx.doi.org/10.1586/eci.10.29
http://dx.doi.org/10.1586/eci.10.29
http://dx.doi.org/10.1093/intimm/dxh081
http://dx.doi.org/10.1093/intimm/dxh081
http://dx.doi.org/10.4049/jimmunol.0900779
http://dx.doi.org/10.4049/jimmunol.0900779
http://dx.doi.org/10.1093/intimm/dxq058
http://dx.doi.org/10.1111/j.1462-5822.2012.01822.x
http://dx.doi.org/10.1111/j.1462-5822.2012.01822.x
http://dx.doi.org/10.4049/jimmunol.1201715
http://dx.doi.org/10.1038/nature11012
http://dx.doi.org/10.1038/nature11012
http://dx.doi.org/10.1038/ng.2438
http://dx.doi.org/10.1038/ng.2438
http://dx.doi.org/10.1242/jcs.051193
http://dx.doi.org/10.1242/jcs.051193
http://dx.doi.org/10.1016/j.immuni.2011.12.018
http://dx.doi.org/10.1016/j.immuni.2011.12.018
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

mitochondrial antiviral immu-
nity. Nature (2008) 451:573–7.
doi:10.1038/nature06501

212. Tattoli I, Carneiro LA, Jehanno M,
Magalhaes JG, Shu Y, Philpott DJ,
et al. NLRX1 is a mitochondrial
NOD-like receptor that amplifies
NF-kappaB and JNK pathways by
inducing reactive oxygen species
production. EMBO Rep (2008) 9:
293–300. doi:10.1038/sj.embor.
7401161

213. Abdul-Sater AA, Said-Sadier N,
Lam VM, Singh B, Pettengill
MA, Soares F, et al. Enhance-
ment of reactive oxygen species
production and chlamydial
infection by the mitochondr-
ial Nod-like family member
NLRX1. J Biol Chem (2010) 285:
41637–45. doi:10.1074/jbc.M110.
137885

214. Lei Y, Wen H, Yu Y, Taxman
DJ, Zhang L, Widman DG, et
al. The mitochondrial proteins
NLRX1 and TUFM form a com-
plex that regulates type I interferon
and autophagy. Immunity (2012)
36:933–46. doi:10.1016/j.immuni.
2012.03.025

215. Lei Y, Wen H, Ting JP. The NLR
protein, NLRX1, and its part-
ner, TUFM, reduce type I inter-
feron, and enhance autophagy.
Autophagy (2013) 9:432–3. doi:10.
4161/auto.23026

216. Allen IC, Moore CB, Schneider M,
Lei Y, Davis BK, Scull MA, et al.
NLRX1 protein attenuates inflam-
matory responses to infection by
interfering with the RIG-I-MAVS
and TRAF6-NF-kappaB signal-
ing pathways. Immunity (2011)
34:854–65. doi:10.1016/j.immuni.
2011.03.026

217. Rebsamen M, Vazquez J, Tardivel
A, Guarda G, Curran J, Tschopp
J. NLRX1/NOD5 deficiency does
not affect MAVS signalling. Cell
Death Differ (2011) 18:1387. doi:
10.1038/cdd.2011.64

218. Xia X, Cui J, Wang HY, Zhu L, Mat-
sueda S, Wang Q, et al. NLRX1
negatively regulates TLR-induced
NF-kappaB signaling by targeting
TRAF6 and IKK. Immunity (2011)
34:843–53. doi:10.1016/j.immuni.
2011.02.022

219. Soares F, Tattoli I, Wortzman
ME, Arnoult D, Philpott DJ,
Girardin SE. NLRX1 does
not inhibit MAVS-dependent
antiviral signalling. Innate
Immun (2012) 19(4):438–48.
doi:10.1177/1753425912467383

220. Zhao Q, Peng L, Huang W, Li Q,
Pei Y, Yuan P, et al. Rare inborn
errors associated with chronic

hepatitis B virus infection. Hepa-
tology (2012) 56:1661–70. doi:10.
1002/hep.25850

221. Mohan M, Kaushal D, Aye PP,
Alvarez X, Veazey RS, Lackner
AA. Focused examination of the
intestinal lamina propria yields
greater molecular insight into
mechanisms underlying SIV
induced immune dysfunction.
PLoS One (2012) 7:e34561. doi:10.
1371/journal.pone.0034561

222. Meissner TB, Li A, Biswas A, Lee
KH, Liu YJ, Bayir E, et al. NLR
family member NLRC5 is a tran-
scriptional regulator of MHC class
I genes. Proc Natl Acad Sci U S A
(2010) 107:13794–9. doi:10.1073/
pnas.1008684107

223. Benko S, Magalhaes JG, Philpott
DJ, Girardin SE. NLRC5 lim-
its the activation of inflam-
matory pathways. J Immunol
(2010) 185:1681–91. doi:10.4049/
jimmunol.0903900

224. Kuenzel S, Till A, Winkler M,
Hasler R, Lipinski S, Jung S,
et al. The nucleotide-binding
oligomerization domain-like
receptor NLRC5 is involved
in IFN-dependent antivi-
ral immune responses. J
Immunol (2010) 184:1990–2000.
doi:10.4049/jimmunol.0900557

225. Tong Y, Cui J, Li Q, Zou J,Wang HY,
Wang RF. Enhanced TLR-induced
NF-kappaB signaling and type I
interferon responses in NLRC5
deficient mice. Cell Res (2012)
22:822–35. doi:10.1038/cr.2012.53

226. Yao Y, Wang Y, Chen F, Huang Y,
Zhu S, Leng Q, et al. NLRC5 reg-
ulates MHC class I antigen pre-
sentation in host defense against
intracellular pathogens. Cell Res
(2012) 22:836–47. doi:10.1038/cr.
2012.56

227. Neerincx A, Lautz K, Menning
M, Kremmer E, Zigrino P, Hosel
M, et al. A role for the human
nucleotide-binding domain,
leucine-rich repeat-containing
family member NLRC5 in antiviral
responses. J Biol Chem (2010) 285:
26223–32. doi:10.1074/jbc.M110.
109736

228. Staehli F, Ludigs K, Heinz LX,
Seguin-Estevez Q, Ferrero I, Braun
M, et al. NLRC5 deficiency selec-
tively impairs MHC class I-
dependent lymphocyte killing by
cytotoxic T cells. J Immunol
(2012) 188:3820–8. doi:10.4049/
jimmunol.1102671

229. Cui J, Zhu L, Xia X, Wang HY,
Legras X, Hong J, et al. NLRC5 neg-
atively regulates the NF-kappaB
and type I interferon signaling

pathways. Cell (2010) 141:483–96.
doi:10.1016/j.cell.2010.03.040

230. Kumar H, Pandey S, Zou J, Kuma-
gai Y, Takahashi K, Akira S, et
al. NLRC5 deficiency does not
influence cytokine induction by
virus and bacteria infections. J
Immunol (2011) 186:994–1000.
doi:10.4049/jimmunol.1002094

231. Steimle V, Otten LA, Zufferey
M, Mach B. Complementation
cloning of an MHC class II
transactivator mutated in hered-
itary MHC class II deficiency
(or bare lymphocyte syndrome).
Cell (1993) 75:135–46. doi:10.
1016/0092-8674(93)90685-J

232. van den Elsen PJ, Peijnenburg
A, van Eggermond MC, Gobin
SJ. Shared regulatory elements
in the promoters of MHC class
I and class II genes. Immunol
Today (1998) 19:308–12. doi:10.
1016/S0167-5699(98)01287-0

233. Masternak K, Muhlethaler-Mottet
A, Villard J, Zufferey M, Steimle
V, Reith W. CIITA is a transcrip-
tional coactivator that is recruited
to MHC class II promoters by mul-
tiple synergistic interactions with
an enhanceosome complex. Genes
Dev (2000) 14:1156–66. doi:10.
1101/gad.14.9.1156

234. Beresford GW, Boss JM. CIITA
coordinates multiple histone
acetylation modifications at
the HLA-DRA promoter. Nat
Immunol (2001) 2:652–7.
doi:10.1038/35088514

235. Spilianakis C, Papamatheakis J,
Kretsovali A. Acetylation by PCAF
enhances CIITA nuclear accumu-
lation and transactivation of major
histocompatibility complex class
II genes. Mol Cell Biol (2000)
20:8489–98. doi:10.1128/MCB.20.
22.8489-8498.2000

236. Cressman DE, O’Connor WJ,
Greer SF, Zhu XS, Ting JP. Mech-
anisms of nuclear import and
export that control the sub-
cellular localization of class II
transactivator. J Immunol (2001)
167:3626–34.

237. Raval A, Weissman JD, Howcroft
TK, Singer DS. The GTP-binding
domain of class II transactiva-
tor regulates its nuclear export. J
Immunol (2003) 170:922–30.

238. Dubois PC, Trynka G, Franke L,
Hunt KA, Romanos J, Curtotti
A, et al. Multiple common vari-
ants for celiac disease influenc-
ing immune gene expression. Nat
Genet (2010) 42:295–302. doi:10.
1038/ng.543

239. Szperl AM, Ricano-Ponce I, Li JK,
Deelen P, Kanterakis A, Plagnol V,

et al. Exome sequencing in a family
segregating for celiac disease. Clin
Genet (2011) 80:138–47. doi:10.
1111/j.1399-0004.2011.01714.x

240. Swanberg M, Lidman O, Padyukov
L, Eriksson P, Akesson E, Jagodic
M, et al. MHC2TA is associ-
ated with differential MHC mol-
ecule expression and susceptibil-
ity to rheumatoid arthritis, multi-
ple sclerosis and myocardial infarc-
tion. Nat Genet (2005) 37:486–94.
doi:10.1038/ng1544

241. Iikuni N, Ikari K, Momohara S,
Tomatsu T, Hara M, Yamanaka
H, et al. MHC2TA is associ-
ated with rheumatoid arthritis in
Japanese patients. Ann Rheum Dis
(2007) 66:274–5. doi:10.1136/ard.
2006.063347

242. Martinez A, Sanchez-Lopez M,
Varade J, Mas A, Martin MC, de Las
Heras V, et al. Role of the MHC2TA
gene in autoimmune diseases. Ann
Rheum Dis (2007) 66:325–9. doi:
10.1136/ard.2006.059428

243. Skinningsrud B, Husebye ES,
Pearce SH, McDonald DO, Bran-
dal K, Wolff AB, et al. Poly-
morphisms in CLEC16A and
CIITA at 16p13 are associated
with primary adrenal insuffi-
ciency. J Clin Endocrinol Metab
(2008) 93:3310–7. doi:10.1210/jc.
2008-0821

244. Bronson PG, Goldstein BA, Ram-
say PP, Beckman KB, Noble JA,
Lane JA, et al. The rs4774 CIITA
missense variant is associated with
risk of systemic lupus erythe-
matosus. Genes Immun (2011)
12:667–71. doi:10.1038/gene.2011.
36

245. Wellcome Trust Case Control
Consortium. Genome-wide asso-
ciation study of 14,000 cases
of seven common diseases and
3,000 shared controls. Nature
(2007) 447(7145):661–78. doi:10.
1038/nature05911

246. Gyllenberg A, Asad S, Piehl F,
Swanberg M, Padyukov L, Van
Yserloo B, et al. Age-dependent
variation of genotypes in MHC
II transactivator gene (CIITA)
in controls and association to
type 1 diabetes. Genes Immun
(2012) 13:632–40. doi:10.1038/
gene.2012.44

247. Eyre S, Bowes J, Spreckley K, Pot-
ter C, Ring S, Strachan D, et
al. Investigation of the MHC2TA
gene, associated with rheuma-
toid arthritis in a Swedish pop-
ulation, in a UK rheumatoid
arthritis cohort. Arthritis Rheum
(2006) 54:3417–22. doi:10.1002/
art.22166

www.frontiersin.org October 2013 | Volume 4 | Article 333 | 17

http://dx.doi.org/10.1038/nature06501
http://dx.doi.org/10.1038/sj.embor.7401161
http://dx.doi.org/10.1038/sj.embor.7401161
http://dx.doi.org/10.1074/jbc.M110.137885
http://dx.doi.org/10.1074/jbc.M110.137885
http://dx.doi.org/10.1016/j.immuni.2012.03.025
http://dx.doi.org/10.1016/j.immuni.2012.03.025
http://dx.doi.org/10.4161/auto.23026
http://dx.doi.org/10.4161/auto.23026
http://dx.doi.org/10.1016/j.immuni.2011.03.026
http://dx.doi.org/10.1016/j.immuni.2011.03.026
http://dx.doi.org/10.1038/cdd.2011.64
http://dx.doi.org/10.1016/j.immuni.2011.02.022
http://dx.doi.org/10.1016/j.immuni.2011.02.022
http://dx.doi.org/10.1177/1753425912467383
http://dx.doi.org/10.1002/hep.25850
http://dx.doi.org/10.1002/hep.25850
http://dx.doi.org/10.1371/journal.pone.0034561
http://dx.doi.org/10.1371/journal.pone.0034561
http://dx.doi.org/10.1073/pnas.1008684107
http://dx.doi.org/10.1073/pnas.1008684107
http://dx.doi.org/10.4049/jimmunol.0903900
http://dx.doi.org/10.4049/jimmunol.0903900
http://dx.doi.org/10.4049/jimmunol.0900557
http://dx.doi.org/10.1038/cr.2012.53
http://dx.doi.org/10.1038/cr.2012.56
http://dx.doi.org/10.1038/cr.2012.56
http://dx.doi.org/10.1074/jbc.M110.109736
http://dx.doi.org/10.1074/jbc.M110.109736
http://dx.doi.org/10.4049/jimmunol.1102671
http://dx.doi.org/10.4049/jimmunol.1102671
http://dx.doi.org/10.1016/j.cell.2010.03.040
http://dx.doi.org/10.4049/jimmunol.1002094
http://dx.doi.org/10.1016/0092-8674(93)90685-J
http://dx.doi.org/10.1016/0092-8674(93)90685-J
http://dx.doi.org/10.1016/S0167-5699(98)01287-0
http://dx.doi.org/10.1016/S0167-5699(98)01287-0
http://dx.doi.org/10.1101/gad.14.9.1156
http://dx.doi.org/10.1101/gad.14.9.1156
http://dx.doi.org/10.1038/35088514
http://dx.doi.org/10.1128/MCB.20.22.8489-8498.2000
http://dx.doi.org/10.1128/MCB.20.22.8489-8498.2000
http://dx.doi.org/10.1038/ng.543
http://dx.doi.org/10.1038/ng.543
http://dx.doi.org/10.1111/j.1399-0004.2011.01714.x
http://dx.doi.org/10.1111/j.1399-0004.2011.01714.x
http://dx.doi.org/10.1038/ng1544
http://dx.doi.org/10.1136/ard.2006.063347
http://dx.doi.org/10.1136/ard.2006.063347
http://dx.doi.org/10.1136/ard.2006.059428
http://dx.doi.org/10.1210/jc.2008-0821
http://dx.doi.org/10.1210/jc.2008-0821
http://dx.doi.org/10.1038/gene.2011.36
http://dx.doi.org/10.1038/gene.2011.36
http://dx.doi.org/10.1038/nature05911
http://dx.doi.org/10.1038/nature05911
http://dx.doi.org/10.1038/gene.2012.44
http://dx.doi.org/10.1038/gene.2012.44
http://dx.doi.org/10.1002/art.22166
http://dx.doi.org/10.1002/art.22166
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhong et al. NLRs and disease

248. Harrison P, Pointon JJ, Farrar
C, Harin A, Wordsworth BP.
MHC2TA promoter polymor-
phism (-168*G/A, rs3087456)
is not associated with suscepti-
bility to rheumatoid arthritis in
British Caucasian rheumatoid
arthritis patients. Rheuma-
tology (Oxford) (2007) 46:
409–11. doi:10.1093/
rheumatology/kel300

249. Bronson PG, Ramsay PP, Seldin
MF, Gregersen PK, Criswell LA,
Barcellos LF. CIITA is not asso-
ciated with risk of develop-
ing rheumatoid arthritis. Genes
Immun (2011) 12:235–8. doi:10.
1038/gene.2010.67

250. Asad S, Nikamo P, Gyllenberg A,
Bennet H, Hansson O, Wierup
N, et al. HTR1A a novel type
1 diabetes susceptibility gene
on chromosome 5p13-q13. PLoS
One (2012) 7:e35439. doi:10.1371/
journal.pone.0035439

251. Swanberg M, McGuigan FE, Ivaska
KK, Gerdhem P, Akesson K. Poly-
morphisms in the inflammatory
genes CIITA, CLEC16A and IFNG
influence BMD, bone loss and
fracture in elderly women. PLoS
One (2012) 7:e47964. doi:10.1371/
journal.pone.0047964

252. Steidl C, Shah SP, Woolcock BW,
Rui L, Kawahara M, Farinha P, et al.
MHC class II transactivator CIITA

is a recurrent gene fusion part-
ner in lymphoid cancers. Nature
(2011) 471:377–81. doi:10.1038/
nature09754

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 05 September 2013; paper
pending published: 26 September 2013;
accepted: 02 October 2013; published
online: 16 October 2013.
Citation: Zhong Y, Kinio A and Saleh M
(2013) Functions of NOD-like receptors

in human diseases. Front. Immunol.
4:333. doi: 10.3389/fimmu.2013.00333
This article was submitted to Molecular
Innate Immunity, a section of the journal
Frontiers in Immunology.
Copyright © 2013 Zhong , Kinio and
Saleh. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

Frontiers in Immunology | Molecular Innate Immunity October 2013 | Volume 4 | Article 333 | 18

http://dx.doi.org/10.1093/rheumatology/kel300
http://dx.doi.org/10.1093/rheumatology/kel300
http://dx.doi.org/10.1038/gene.2010.67
http://dx.doi.org/10.1038/gene.2010.67
http://dx.doi.org/10.1371/journal.pone.0035439
http://dx.doi.org/10.1371/journal.pone.0035439
http://dx.doi.org/10.1371/journal.pone.0047964
http://dx.doi.org/10.1371/journal.pone.0047964
http://dx.doi.org/10.1038/nature09754
http://dx.doi.org/10.1038/nature09754
http://dx.doi.org/10.3389/fimmu.2013.00333
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive

	Functions of NOD-like receptors in human diseases
	Introduction
	Inflammasome-forming NLRs
	NLRP1
	NLRP3
	NLRP6
	NLRP7
	NLRP12
	NLRC4 and NAIPs

	Non-Inflammasome-forming NLRs
	NOD1/2
	NLRP10
	NLRX1
	NLRC5
	Class II transactivator (CIITA)

	Conclusion
	References


