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Abstract: Major depressive disorder (MDD) is one of the most prevalent and disabling mental disor-
ders worldwide. Among the symptoms of MDD, sleep disturbance such as insomnia is prominent,
and the first reason patients may seek professional help. However, the underlying pathophysiology
of this comorbidity is still elusive. Recently, genome-wide association studies (GWAS) have begun
to unveil the genetic background of several psychiatric disorders, including MDD and insomnia.
Identifying the shared genomic risk loci between comorbid psychiatric disorders could be a valuable
strategy to understanding their comorbidity. This study seeks to identify the shared genes and
biological pathways between MDD and insomnia based on their shared genetic variants. First,
we performed a meta-analysis based on the GWAS summary statistics of MDD and insomnia ob-
tained from Psychiatric Genomics Consortium and UK Biobank, respectively. Next, we associated
shared genetic variants to genes using two gene mapping strategies: (a) positional mapping based
on genomic proximity and (b) expression quantitative trait loci (eQTL) mapping based on gene
expression linkage across multiple tissues. As a result, a total of 719 shared genes were identified.
Over half (51%) of them are protein-coding genes. Functional enrichment analysis shows that the
most enriched biological pathways are related to epigenetic modification, sensory perception, and
immunologic signatures. We also identified druggable targets using a network approach. Together,
these results may provide insights into understanding the genetic predisposition and underlying
biological pathways of comorbid MDD and insomnia symptoms.
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1. Introduction

Major depressive disorder (MDD) is one of the most prevalent and disabling mental
disorders worldwide, with a lifetime prevalence of 15% [1]. Sleep disturbance is the core
symptom of MDD that occurs in up to 90% of patients and is the first reason patients seek
professional help [2,3]. Additionally, according to the DSM-5, the major depressive episode
includes “insomnia or hypersomnia nearly every day” [4]. Insomnia is a sleep problem that
involves individuals having difficulty sleeping and is often chronic, negatively affecting
their quality of life [5]. On the other hand, studies have shown that people with insomnia
are more likely to develop depression and increase suicidal ideation if diagnosed with
MDD [6,7]. Moreover, drugs and behavioral treatments for comorbid MDD and insomnia
symptoms can improve both outcomes [8,9]. Therefore, the relationship between MDD
and insomnia may be bi-directional [10,11].

Although the underlying mechanism of MDD remains elusive, MDD is recognized
as a complex disorder contributed by both genetic and environmental factors. The her-
itability of MDD is 40% to 50% suggested by twin studies [11]. However, the genetic
component of insomnia is hard to estimate because it can coexist with other medical and
psychiatric conditions. Recent genome-wide association studies (GWAS) have identified
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genetic variants for depression [12–17] and insomnia disorder [18–23], respectively. GWAS
is a powerful approach to test genome-wide genetic variants of population-level to identify
genotype–phenotype associations [24]. Notably, insomnia and MDD are genetically corre-
lated as shown by Lane et al. (rg = 0.34 and 0.24 in two studies) [18,21], Hammerschlag et al.
(rg = 0.41) [19], Stein et al. (rg = 0.44) [20], and Jansen et al. (rg = 0.59) [22,25]. Therefore,
identifying the shared genomic risk loci between MDD and insomnia would be a valuable
strategy to associate the underlying pathophysiology of MDD with insomnia.

In this study, we exploit this strategy to explore the shared candidate genes and
related biological pathways involved in the pathogenesis of MDD and insomnia. First,
we performed a GWAS meta-analysis of MDD and insomnia using the summary statistics
from Wray et al. [16] and Lane et al. [21], respectively, to identify shared genetic links and
new associated variants between the two psychiatric conditions. Next, to characterize
the functional roles of the variants, we conducted positional and expression quantitative
trait loci (eQTL) mapping followed by a series of functional enrichment analyses. Finally,
to provide potential druggable targets of MDD with insomnia, we prioritized the genes
(targets) based on their connectivity degree in the human protein–protein interaction (PPI)
network and searched for potential drugs using the drug–gene interaction databases.

2. Materials and Methods
2.1. GWAS Data and Meta-Analysis

GWAS summary statistics of MDD and insomnia were downloaded from Psychi-
atric Genomics Consortium (PGC) (Psychiatric Genomics Consortium. Available online:
http://www.med.unc.edu/pgc (accessed on 10 December 2020)) and Sleep Disorders
Knowledge Portal (SDKP Datasets. Available online: http://kp4cd.org/datasets/sleep
(accessed on 10 December 2020)), respectively. The original GWAS studies can be referred
to Wray et al. [16] and Lane et al. [21]. Meta-analysis of MDD and insomnia was performed
with a sample size-based analytical strategy model using METAL [26]. Specifically, METAL
combines p-values across studies considering study-specific weights (the sample size) and
direction of effect. SNP ID, weight, alleles, frequency, effect size, standard error, and p-value
were provided from both GWAS summary statistics for METAL to execute.

2.2. Identification of Candidate SNPs, Gene Mapping and Functional Annotation

FUMA [27] (v1.3.6) was used to identify candidate SNPs. Linkage disequilibrium (LD)
blocks from 1000 Genomes Project Phase 3 [28] EUR population were used as a reference
panel to compute r2 and MAF. Candidate SNPs were mapped to genes using positional
and eQTL mapping approaches separately. Gene window for positional mapping was set
at default maximum distance of 10 kb on both sides and was based on ANNOVAR [29]
annotation. Cis-eQTL mapping mapped SNPs to genes up to 1 Mb, and two sets of tissue
types were used: (1) whole body tissues in GTEx v8 [30] (54 tissue types, including brain
regions), and (2) 13 brain-only regions. Only eQTLs with FDR ≤0.05 were considered
statistically significant. Biotypes of mapped genes were annotated by Ensembl BioMart (En-
sembl build v92). Functional enrichment analyses were performed using hypergeometric
tests. Pathway and functional gene set information was obtained from MSigDB v7.0 [31].

2.3. MAGMA Gene-Based Tests

The gene-based analysis was performed using MAGMA [32] v1.08 with SNP-wise
mean model as part of the FUMA pipeline. Gene annotation window of 10 kb upstream
and 10 kb downstream was used. SNPs were mapped to 19,383 genes obtained from
Ensembl build v92 GRCh37. Tissue expression (gene-property) analysis was performed to
test the genetic associations of highly expressed genes in a specific tissue based on GTEx
v8 [30] RNA-Seq data.

http://www.med.unc.edu/pgc
http://www.med.unc.edu/pgc
http://kp4cd.org/datasets/sleep
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2.4. Cell Type Specificity Analysis

MAGMA gene-property analyses were performed to test the relationship between cell
type-specific gene expression profiles and phenotype–gene associations. Mouse cerebellar
single-cell RNA-Seq data were obtained from DropViz [33]. Primary cell types and their
sub-clusters were used for analysis. Human adult brain single-cell data were obtained
from GEO Accession GSE67835 [34].

2.5. Identification of Druggable Targets

We selected 719 union genes from two mapping strategies and obtained their gene
network using the Search Tool for Retrieval of Interacting Genes (STRING v11.5) [35]. Genes
were ranked by connectivity degree using the Cytoscape v3.8.2 [36] plugin cytoHubba [37].
To identify druggable targets from these genes, we characterized the drug–gene interactions
in the Drug—Gene Interaction Database (DGIdb v4.2.0) [38]. Approved drugs were used as
a preset filter. The known targets for MDD and insomnia were acquired using Open Targets
Platform v21.06 [39] and then used as input to find their interacted drugs using DGIdb.

3. Results
3.1. Shared Genetic Variants

We conducted a genome-wide association meta-analysis of MDD and insomnia based
on two previous GWAS studies: (1) Wray et al. [16] identified 44 risk variants in 135,458 ma-
jor depression cases versus 344,901 controls from seven cohorts. (2) Lane et al. [21] identified
57 loci for self-reported insomnia symptoms in 345,022 cases and 108,357 controls from the
UK Biobank. Figure 1a shows the workflow of our analyses. In the meta-analysis, we iden-
tified 62 lead variants (p < 5 × 10−8) at 54 risk loci, among 7062 candidate associated SNPs
(p < 0.05). The signal (measured by the number of SNPs) was stronger in meta-analysis than
in MDD or insomnia study alone (Figure 1b, Supplementary Figure S1, Supplementary Ta-
bles S1 and S2). The most significant associated variant was rs113831554 (p = 1.64 × 10−22),
which lies in the intronic region of MEIS1, a gene associated with restless legs syndrome
(RLS) [40] (Supplementary Figure S2a). This SNP was also reported by Lane et al. [21] with
the strongest signal. Furthermore, four other SNPs (rs10156602, rs10865954, rs4577309,
and rs12405761) identified by Lane et al. were replicated in our meta-analysis. The second
strongest signal we identified was rs12658032 (p = 3.77 × 10−19), located in the intron
of lincRNA RP11-6N13.1 (Supplementary Figure S2b). This locus was not reported by
Wray et al. [16] or Lane et al. [21] but was shown to be associated with MDD and atten-
tion deficit/hyperactivity disorder (ADHD) [41]. The third significant SNP was rs12552
(p = 5.69 × 10−16) in the 3’UTR of OLFM4, which was also reported by Wray et al. [16]
(Supplementary Figure S2c). The fourth significant SNP was rs201018268 (p = 1.2 × 10−15),
detected in the exonic region of HEXIM1 (Supplementary Figure S2d), and the fifth as-
sociated SNP, rs9320016 (p = 1.9 × 10−13), was located in the intronic region of TCF4
(Supplementary Figure S2e). TCF4 was also mentioned by Wray et al. Yet, the variants they
identified in such gene was rs12958048 [16]. Notably, rs201018268, along with other vari-
ants: rs558237097, rs575346808, rs8013655, rs1520946, rs529656112, rs75606464, rs35735593,
rs71573104, rs6765491, rs17043773, rs62519760, rs12125521, rs12537732, rs12607631, and
rs360241, were not previously reported for being associated with any depressive or insom-
nia traits, suggesting that such variants were new variants shared by MDD and insomnia.
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Figure 1. Study flow chart and Manhattan plot for the meta-analysis of MDD and insomnia. (a) Flow chart that depicts the 
workflow of our study. (b) Manhattan plot that shows the associated SNPs. The red dashed line indicates the genome-
wide significance threshold at p = 5 × 10−8. 
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expression of variant-associated genes. We found those genes were majorly expressed in 
the brain but not in the peripheral tissues (Figure 2a). The top enriched brain region was 
the cerebellum, regardless of hemisphere, followed by the cortex, frontal cortex (FC) BA9, 
pituitary, and anterior cingulate cortex (ACC) BA24 (Supplementary Table S3). Our re-
sults coincide with Wray et al. [16] (MDD enrichment in FC BA9, cortex, and ACC BA24) 
and Lane et al. [21] (insomnia enrichment in the cerebellum, FC, ACC, and hypothala-
mus). 

Next, we focused on the cell type specificity in the brain regions, including the cere-
bellum and the frontal cortex (containing Brodmann area BA9 and BA24). It showed that 
MDD- and insomnia-associated gene expression were enriched in neurons but not glial 
cells in the cerebellum and the frontal cortex (Figure 2b–d, Supplementary Tables S4–S6). 
This result was consistent with Wray et al. [16]. Sub-cell type analysis revealed that such 
cerebellar neurons were both glutamatergic (Slc17a7) and GABAergic (Gad1Gad2) (Sup-
plementary Figure S3a). Interestingly, cortical neurons were predominately enriched in 
glutamatergic (Slc17a7) (Supplementary Figure S3b). 

Figure 1. Study flow chart and Manhattan plot for the meta-analysis of MDD and insomnia. (a) Flow chart that depicts the
workflow of our study. (b) Manhattan plot that shows the associated SNPs. The red dashed line indicates the genome-wide
significance threshold at p = 5 × 10−8.

3.2. Tissue Expression and Cell Type Specificity

Tissue enrichment analysis was performed using MAGMA to investigate the tissue
expression of variant-associated genes. We found those genes were majorly expressed in
the brain but not in the peripheral tissues (Figure 2a). The top enriched brain region was
the cerebellum, regardless of hemisphere, followed by the cortex, frontal cortex (FC) BA9,
pituitary, and anterior cingulate cortex (ACC) BA24 (Supplementary Table S3). Our results
coincide with Wray et al. [16] (MDD enrichment in FC BA9, cortex, and ACC BA24) and
Lane et al. [21] (insomnia enrichment in the cerebellum, FC, ACC, and hypothalamus).

Next, we focused on the cell type specificity in the brain regions, including the
cerebellum and the frontal cortex (containing Brodmann area BA9 and BA24). It showed
that MDD- and insomnia-associated gene expression were enriched in neurons but not glial
cells in the cerebellum and the frontal cortex (Figure 2b–d, Supplementary Tables S4–S6).
This result was consistent with Wray et al. [16]. Sub-cell type analysis revealed that
such cerebellar neurons were both glutamatergic (Slc17a7) and GABAergic (Gad1Gad2)
(Supplementary Figure S3a). Interestingly, cortical neurons were predominately enriched
in glutamatergic (Slc17a7) (Supplementary Figure S3b).
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Cell type specificity in (b) cerebellum, (c) frontal cortex BA9, and (d) BA24. Bars in red represent significant enrichment. 
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Figure 2. Tissue expression and cell type specificity enrichment of genes associated with shared genetic variants. (a) Tissue
expression enrichment in GTEx 54 tissue types. The dashed line indicates the significance threshold at p = 0.001. (b–d) Cell
type specificity in (b) cerebellum, (c) frontal cortex BA9, and (d) BA24. Bars in red represent significant enrichment.

3.3. Gene Mapping and Functional Enrichment

To better understand how these shared variants contribute to the underlying patho-
physiology of MDD and insomnia, we have to associate these variants with genes in the
genome. Here we adopted two gene mapping strategies: (a) positional mapping based
on genomic proximity and (b) eQTL mapping based on linked gene expression across
multiple tissues.

In positional mapping, 507 genes were found proximal to MDD-insomnia shared
SNPs (Supplementary Table S7). The largest proportion of the SNPs fell in the intergenic
region, followed by genes in the intronic region and then the intronic region of ncRNA
(Supplementary Figure S4). The top significant enriched reactome gene sets were HDACs
deacetylate histones, HATs acetylate histones, and DNA methylation. The most significant
enriched GO biological pathways were sensory perception of smell and sensory perception
of chemical stimulus (Figure 3a, Supplementary Table S10).
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Figure 3. Functional enrichment of shared genes. Bar-dot plots show (a) top 10 significant enriched reactome gene sets and
top 10 enriched GO biological processes (GOBP) of positional mapping genes; (b) enriched reactome gene sets and top 10
enriched immunologic signatures of eQTL mapping genes (54 tissues); (c) enriched reactome gene sets of eQTL mapping
genes (brain regions). The p-value of (a–c) was FDR-adjusted, and enrichment cutoff was set at adjusted, p < 0.05. Count
denotes number of genes hit in the respective gene set. Ratio represents the proportion of hit genes to the genes in gene set.
(d) A Venn diagram showing the relationships of mapped genes under different mapping strategies.
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The eQTL mapping identifies variants associated with gene expression across multiple
tissues. The following two contexts were considered in the eQTL mapping: (a) eQTLs
found in the whole body tissues (54 tissues in GTEx), and (b) eQTLs found in the brain re-
gions (prefix with Brain in Supplementary Table S3). For (a) whole body tissues, 444 genes
were mapped (Supplementary Table S8). These genes are enriched in Butyrophilin (BTN)
family interactions and several immunologic signatures, including macrophage tran-
scriptional response to Interleukin-6, CD4+ T cell pathway, and HMC-1 cell activation
(Figure 3b, Supplementary Table S11). For (b) brain-only regions, 148 genes were mapped
(Supplementary Table S9). Again, the gene set “Butyrophilin family interactions” was en-
riched (Figure 3c, Supplementary Table S12). Three BTN genes (BTN3A2, BTN2A2, BTN3A3)
show strong associations in both mapping contexts.

Those BTN genes also participated in other functions we identified in the enrich-
ment analysis: biological process (BTN2A2: regulation of hemopoiesis; BTN3A2, BTN2A2,
BTN3A1, BTN3A3, and BTN1A1: T cell receptor signaling pathway), chemical and genetic
perturbation (BTN3A2: BROWN_HCMV_INFECTION_48HR_DN; BTN2A2: ENK_UV_RE-
SPONSE_EPIDERMIS_UP), and immunologic signatures (BTN3A2 and BTN3A1: GSE1740_
UNSTIM_VS_IFNA_STIMULATED_MCSF_DERIVED_MARCOPHAGE_DN; BTN3A3:
GSE22196_HEALTHY_VS_OBESE_MOUSE_SKIN_GAMMADELTA_CELL_UP; BTN3A2,
BTN2A2, BTN3A1, and BTN3A3: GSE42021_TCONV_PLN_VS_CD24HI_TCONC_THYMU-
S_UP; BTN3A3: GSE36826_NORMAL_VS_STAPH_AUREUS_INF_IL1R_KO_SKIN_UP).

Some genes from variants we identified and were not previously reported to be associ-
ated with MDD or insomnia also participate in immune-related, (epi)genetic, or nervous sys-
tem function. For example, HEXIM1 (rs201018268) was involved in GSE41176_UNSTIM_
VS_ANTI_IGM_STIM_TAK1_KO_BCELL_24H_UP. RBFOX1 (rs35735593) was within the
gene set of ACEVEDO_LIVER_CANCER_WITH_H3K27ME3_DN. FOXP2 (rs71573104)
was enriched in nervous system process and DNA binding transcription factor activity.
The gene snoU13 (rs12537732) fell in Reactome gene sets generic transcription pathway and
gene expression transcription.

Overall, a total of 719 shared genes were identified with at least one of the mapping
contexts. Over half (367/719, 51%) of them are protein-coding genes. The remaining half
(352/719, 49%) consists of 144 pseudogenes, 66 antisense, 67 lincRNAs, 21 miRNAs, and
54 other biotypes. Of note, shared genes via positional mapping and eQTL mapping are
highly overlapped (232 genes in common) (p < 5 × 10−16, Fisher’s exact test) (Figure 3d),
suggesting that a large proportion of shared variants have the potential to influence the
expression of proximal genes.

3.4. Druggable Targets Identified by Network Approach

Genes associated with MDD and insomnia may provide a list of candidates for finding
druggable targets. To this end, we prioritized the identified shared genes according to
their protein connectivity in the human protein–protein interaction (PPI) network. A
subnetwork consisting of 358 nodes was created using STRING. We then ranked these
nodes by their connectivity degree in the network. Among them, 272 genes with connection
to others were searched for their potential drugs based on known drug–gene interactions
using DGIdb (Supplementary Table S13). Genes with query scores over 6 and their top
three interacted drugs were highlighted in Figure 4. Notably, PLCD3 was mapped by
one of the novel variants we identified, rs575346808. SUFU was mapped by the lead
associated SNP rs12767131 (Supplementary Table S2). Furthermore, RHOA was in the gene
set of synapse organization in our GO enrichment result. MST1R was related to pathways
involved in H3K4me3 and H3K27me3. STAT1, NT5C2, PML, and EYA2 were enriched in
immune-related pathways (Supplementary Tables S10–S12).
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To compare the drugs we found with known targets and drugs for both MDD and
insomnia, we searched for known targets and drugs for MDD and insomnia in the Open Tar-
get database [39] and DGIdb [38]. Among the 1965 unique drugs for MDD and 1535 drugs
for insomnia, 1475 drugs are in common, suggesting agents relieve shared symptoms in
MDD and insomnia (Supplementary Table S14). Among them, 122 drugs approved for
both MDD and insomnia are also reported in our proposed drug list (Table 1), showing
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the potential of our shared gene strategy and network approach in the application of drug
discovery and repurposing.

Table 1. List of proposed drugs with use approvals for both MDD and insomnia.

Name of Drug

Abiraterone
Acitretin
Alcohol

Alendronic Acid
Alprostadil

Aminohippuric Acid
Amodiaquine
Apomorphine

Atenolol
Baclofen

Bepridil Hydrochloride
Bortezomib
Butabarbital

Butalbital
Butethal

Capecitabine
Carbamazepine

Carbidopa
Carboplatin
Carfilzomib

Cefaclor
Cholecalciferol

Cisplatin
Cyclosporine

Cysteamine Hydrochloride
Cytarabine

Dacarbazine
Dantrolene

Dantrolene Sodium
Daunorubicin

Daunorubicin Hydrochloride
Deferasirox

Dexamethasone
Dexketoprofen

Diacerein
Didanosine

Dihydroergotamine
Dihydroergotamine Mesylate

Diltiazem
Docetaxel

Doxorubicin

Doxorubicin Hydrochloride
Enzalutamide
Epinephrine

Epinephrine Bitartrate
Ethopropazine Hydrochloride

Felodipine
Gabapentin

Gabapentin Enacarbil
Gefitinib

Gemcitabine
Gentian Violet

Granisetron
Hexachlorophene

Hydroxyzine Pamoate
Idarubicin
Imatinib

Inamrinone
Infliximab

Itraconazole
Lansoprazole
Menadione

Mephobarbital
Mercaptopurine

Mesalamine
Mesna

Metformin
Metformin Hydrochloride

Metharbital
Methotrexate

Methylene Blue
Mitoxantrone Hydrochloride

Mycophenolate Mofetil
Mycophenolic Acid

Nelfinavir
Niclosamide
Nifedipine

Nifuroxazide
Nitazoxanide

Norepinephrine
Olanzapine
Omeprazole

Oxitriptan
Oxytetracycline
Oxytetracycline -
Hydrochloride

Palbociclib
Pantoprazole

Phenazopyridine -
Hydrochloride
Phenobarbital

Phenytoin
Pravastatin
Pregabalin
Primidone

Progesterone
Promethazine

Pyrantel Pamoate
Rabeprazole
Raloxifene

Raloxifene -Hydrochloride
Ribavirin

Risperidone
Ritonavir

Safinamide
Saquinavir
Simvastatin

Sodium Oxybate
Sonidegib

Spironolactone
Sulfasalazine
Tacrolimus

Talbutal
Tazarotene

Thioguanine
Thiopental
Topiramate

Trastuzumab
Tretinoin

Triclabendazole
Trimetrexate

Verapamil
Vigabatrin
Warfarin

4. Discussion

In this study, we conducted a meta-analysis from GWAS summary statistics of MDD
and insomnia and identified common variants underlying the pathophysiology of these
two psychiatric conditions. The variants were mapped to genes, and functional enrichment
analysis was performed to suggest their functions. We also provide a list of druggable tar-
gets and potential drugs for future validation, which may benefit future drug development
against the comorbidity of depression and insomnia symptoms.

Our meta-analysis was able to capture the significant signal from both MDD and
insomnia summary statistics. We identified 62 variants linked to shared genetics of MDD
and insomnia symptoms, with signals near MEIS1, RP11-6N13.1, OLFM4, HEXIM1, and
TCF4 being the strongest. Some loci have been reported in previous studies with similar
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findings. First, a study has reported that MEIS1 shows a pleiotropy effect on RLS and
insomnia [19]. A study using bioinformatics and transgenic mice approaches indicated the
regulatory role of MEIS1 in neuropeptide substance p expression in the amygdala, suggest-
ing a mechanism underlying anxiety and depression [42]. Second, the RP11-6N13.1 locus
has been implicated in early sleep timing [43] and how it contributes to insomnia remains
to be determined. In addition to our finding of rs126580832, rs40465 near RP11-6N13.1 has
been reported to be associated with broad depression [15]. Third, evidence has indicated
loci in OLFM4 are related to major depression [13,44] and insomnia [22]. Fourth, we found
a variant rs201018268 located in the exonic region of HEXIM1. HEXIM1 is a transcription
regulator suggested for its role in cancer [45,46] and linked to insomnia [21], but its asso-
ciation with MDD still lacks. It is worth further study to investigate whether variation
in the exonic region of HEXIM1 affects MDD phenotype. Fifth, our gene-based analysis
showed that TCF4 was the only gene that reached genome-wide significance in MDD and
insomnia. GWAS studies have identified SNPs in TCF4 susceptible to schizophrenia [47]
and corneal endothelial dystrophy [48]. Furthermore, a rare mutation in TCF4 leads to
Pitt–Hopkins syndrome, a rare neurodevelopmental disorder [49,50]. A recent study shows
the contribution of TCF4 in mutual influences between MDD and insomnia [51], which
aligns with our result. Although the above loci have been discovered for their associated
trait, our study links these risk loci to both MDD and insomnia, suggesting a possible
pleiotropy effect on their comorbid phenotypes.

Brain regions and neural network alterations in MDD patients have been found with
neuroimaging studies. Specifically, abnormalities in the prefrontal cortex, ACC, amygdala,
hippocampus, thalamus, and basal ganglia have been indicated in MDD [52–56]. Moreover,
alternations in the inferior frontal gyrus/anterior insula, orbitofrontal cortex, and suprachi-
asmatic nuclei were found in patients with MDD and co-occurring insomnia [57–59]. In
line with the evidence above, our results show that genes associated with shared vari-
ants are highly expressed in the cortex, FC, ACC, and, surprisingly, the cerebellum. The
cerebellum has been recognized to be involved in cognitive and affective functions in
addition to functions in motor coordination [60]. Recently, abnormality in cerebellum
structure and functions has been reported in depression [61,62]. Sleep disorders, includ-
ing insomnia, have also been linked to cerebellar malfunction [63,64]. However, none of
the research focuses on cerebellum changes in MDD with insomnia, to our knowledge.
Therefore, it could be a novel direction to investigate cerebellum in coexisting MDD and
insomnia. We also found enriched gene expression of MDD and insomnia in the pituitary,
a neuroendocrine gland in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis
mediates stress response, and its hyperactivity has been implicated in the etiology of
MDD, stress-related disorders, and insomnia [65–67]. In summary, to better understand
the comorbidity of MDD and insomnia, further transcriptomic experiments are needed to
identify differentially expressed genes and region-specific transcripts in the aforementioned
brain regions.

Our results also suggest that glutamatergic and GABAergic neurons in the cerebellum
and glutamatergic neurons in the frontal cortex may play a role in the comorbidity of MDD
and insomnia. Indeed, cortical glutamate and GABA dysregulation were observed in MDD
and primary insomnia [68,69]. Specifically, patients with MDD have decreased glutamater-
gic metabolites in the medial frontal cortex [70], whereas subjects with primary insomnia
or mood disorder had lower GABA levels in the occipital cortex and ACC [71]. GABA
is an inhibitory neurotransmitter, and activation of GABA receptors has been targeted
for sleep-promoting agents [72]. Current treatment for depression also showed effects
on counteracting GABAergic deficit, increasing hippocampal neurogenesis and matura-
tion [73]. One possible explanation of our excitatory glutamate enrichment results in the
frontal cortex could be that the associated gene expression in the glutamatergic neuron
down-regulates the glutamate synthesis or release in the frontal cortex. However, its effect
on the reduction of GABA transmission and their interplay remains to be explored. On
the other hand, although previous studies have suggested a role of glutamate and GABA
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transmission in MDD and insomnia, none of the studies focus on such neurotransmitter
levels in the cerebellum. Our result highlights genetic variation linked to cerebellar excita-
tory and inhibitory neurotransmission in MDD and insomnia, providing brain region and
cell type-specific targets for future research to treat such disorders.

Our functional enrichment analysis reveals that genes linked to MDD and insomnia
are involved in several biological pathways. Reactome enrichment of HDACs deacetylate
histones, HATs acetylate histones, and DNA methylation together suggests epigenetic
effects on these disorders. These results imply that both genetic and epigenetic factors
contribute to complex psychiatric disorders. Stressful life experiences were correlated with
dysregulation of HDAC2 and HDCA5 levels [74,75], and preclinical studies have suggested
HDAC inhibitors as a potential therapeutic agent for MDD [76,77]. Studies also suggested
the roles of HDACs in sleep deprivation and melatonin receptors, which are closely related
to insomnia [78,79]. Our results also show pathway enrichment in sensory perception
of the chemical stimulus, such as smell. This is consistent with evidence showing the
correlation between smell and taste alterations in older MDD patients [80]. However, no
study so far focuses on the roles of smell perception in insomnia.

One enriched gene set “Butyrophilin family interactions” in our analysis was also
significant in a study for major depression using a gene co-expression network-based
approach [44]. Butyrophilins (BTNs) are regulators of the immune response. They have
both stimulatory and inhibitory effects on immune cells. Specifically, BTN1A1 and BTN2A2
inhibited the proliferation of CD4+ and CD8+ T-cells [81]. They also reduce the expression
of various cytokines including IL-2 and IFN-γ [82]. BTN3A1 inhibited T-cell proliferation
and cytokine production, leading to caspase-8 silencing [83]. BTN3A also inhibited apopto-
sis for the increased survival of monocytes and dendritic cells, enhancing the synthesis of
IL-1, IL-8, and IL-12 [84]. Together with our enrichment in several immunologic signatures,
our result indicated that MDD with insomnia is associated with a dysfunctional immune
system. Accumulating evidence has suggested that MDD is linked to elevated proinflam-
matory cytokines such as IL-1, IL-6, tumor necrosis factor (TNF)-α, and chemokines [85–88].
Therefore, we hypothesized that IL-1 could be a link for the mechanism of MDD through
BTN3A. Studies also indicated that the phase shift of IL-6 and TNF secretion is associated
with chronic insomnia [89]. These findings revealed that anti-inflammatory drugs might
become promising medications for treating MDD with insomnia. Our result supports the
previous finding of immune dysregulation in MDD with insomnia and provides a new
direction in studying epigenetic or sensory perception-related pathways in this disorder.

Recent pharmacological treatments for MDD with insomnia include antidepressants
with sleep-promoting properties, such as Mirtazapine [90]. The action of such antidepres-
sants has long been based on the “monoamine hypothesis”, most of which acts on 5-HT
(serotonin), norepinephrine, or histamine receptors [91,92]. However, antidepressant medi-
cations can be non-effective and hardly improve the subjective rating of sleep quality [93].
Although alternative agents can be prescribed for resistant insomnia in depression, for
example, benzodiazepine drugs or melatonin, drug dependence and their modest effects
have been a concern, respectively [94–96]. This study identified potential druggable targets
for MDD with insomnia and their existing drugs for drug repurposing. However, some
limitations existed. MDD and insomnia are polygenic disorders; hence, it is difficult to
quantify the single gene contribution, and drug design for multi-targets has been challeng-
ing. Although we prioritized the targets based on their interaction with other proteins,
it does not equate to a higher contribution to the disorders’ pathophysiology. Further
studies and technologies are demanded to conquer the above problems to improve drug
development for MDD with insomnia.

5. Conclusions

In conclusion, we identified risk loci that link to individuals’ susceptibility to develop-
ing MDD with insomnia. Our analyses further revealed tissue and cell type-specific gene
expression associated with these two disorders. Functional enrichment analysis suggested
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pathways in epigenetic, sensory perception, and immune functions in MDD with insomnia.
Finally, we provided a list of druggable targets and potential drugs for future medication
in treating comorbid MDD and insomnia conditions.
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