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ABSTRACT
Background. Microglia, neuron, and vascular cells constitute a dynamic functional
neurovascular unit, which exerts the crucial role in functional recovery after ischemic
stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been
verified to exhibit neuroprotective roles in cerebralischemic injury. However, the
mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit
after cerebral ischemia are still unclear.
Methods. In this study, adult male rats were treated with Paeoniflorin following
transientmiddle cerebral artery occlusion (tMCAO), and then the functional behavioral
tests (Foot-fault test and modified improved neurological function score, mNSS),
microglial activation, neurogenesis and vasculogenesis were assessed.
Results. The current study showed that Paeoniflorin treatment exhibited a sensorimo-
tor functional recovery as suggested via the Foot-fault test and the enhancement of
spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment
repressed microglial cell proliferation and thus resulted in a significant decrease in
proinflammatory cytokines IL-1β, IL-6 and TNF-α. Compared with control, Paeoni-
florin administration facilitated von Willebrand factor (an endothelia cell marker)
and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin
contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically,
we verified that Paeoniflorin repressed JNK and NF-κB signaling activation.
Conclusions. These results demonstrate that Paeoniflorin represses neuroinflamma-
tion and facilitates neurogenesis in rat stroke model and might be a potential drug for
the therapy of ischemic stroke.
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INTRODUCTION
Ischemic stroke is usually caused by disturbance of the blood supply to the brain, and it posts
a significant threat for patients aged over 60 (Hankey, 2017; Roy-O’Reilly & McCullough,
2018). It is reported as one of the largest causes of disability and death in the world
(Katan & Luft, 2018). Although the incidence, prevalence, and mortality of stroke are
decreasing in the US and remain stable worldwide in the past decade (Guzik & Bushnell,
2017), it is still the primary cause of death and mortality in the past two decades in China,
especially for patients over 60 years old (Feigin et al., 2014; Moraga & Collaborators GCoD,
2017; Wu et al., 2019b; Zhou et al., 2016b). The most common treatments are Intravenous
alteplase (rtPA) and endovascular thrombectomy. Intravenous alteplase (rtPA) is the only
FDA-approved drug for improving the disability of acute ischemic stroke patients. It is
only effective when given within a very tight time window; otherwise, it may increase the
risk of hemorrhagic transformation, and it does not affect mortality (Emberson et al., 2014;
Strbian et al., 2014). Endovascular thrombectomy is only used as an additional method for
rtPA treatment and it is only effective for 10% of ischemic stroke patients (Goyal et al.,
2016). Furthermore, these treatments have a higher requirement for the local emergency
unit on their ability to identify, transfer, and transport them to specialized stroke teams
in a short time (Hankey, 2017). With the growth of the Chinese population and age, the
number of stroke patients will increase significantly and leads to a great financial burden
on both the Chinese public health system and families, and it is crucial to develop a new
affordable and effective drug for ischemic stroke (Wu et al., 2019b).

Traditionally, microglia-mediated neuroinflammation is considered to play a major
role in the pathophysiology of ischemic stroke since it is usually the first immune response
step in the central nervous system (Moskowitz, Lo & Iadecola, 2010). Microglia are soon
polarized into either inflammatory phenotype or anti-inflammatory phenotype in the
peri-infarct region, based on the stimulus, the period, and the environment (Zong et al.,
2019). They can either provoke damage or stimulate neuron repairs according to different
pathophysiological conditions (Gordon & Taylor, 2005). However, it is reported that
microglia activation could cause neurotoxic outcomes by increasing levels of inflammatory
cytokines in the long term (Anttila et al., 2017). Multiple drugs, small molecules, and
microRNA are reported in functional recovery of ischemic stroke by adjusting microglia
polarization (Ma et al., 2017).

Paeoniflorin (PF), a monoterpene glucoside purified from the root of Paeonia lactiflora,
is reported to have great potential to counter ischemic stroke as an anti-inflammatory
and immunosuppressive agent (Xin et al., 2019). According to recent researches,
paeoniflorin demonstrate its anti-inflammatory effects in multiple ways: it could reduce
the inflammatory cytokine IL-17 and increase the anti-inflammatory cytokine IL-10 (Dai
et al., 2015); it also could reduce the response of microglia to injury by suppressing IL-1β
and TNF-α level (Zhou et al., 2016a); paeoniflorin also demonstrate its anti-inflammatory
ability in multiple pathways by regulating different inflammation-related factors, for
example, TNF-α, IL-1β, TGF-β1, Th-1 and etc. (Dai et al., 2015; Jin et al., 2011; Wang et
al., 2012; Xin et al., 2019; Zhai & Guo, 2016). These findings not only illustrate the effects
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of paeoniflorin in multiple inflammatory disorders and neurodegenerative disease but
also show the possibility of paeoniflorin using as an anti-inflammatory agent targeting at
microglia of inflammatory phenotype in ischemic stroke. Some experiments on rats have
exhibit paeoniflorin’s ability to protect the brain from ischemic damage through inhibiting
different inflammatory responses meditated through microglia (Guo et al., 2012; Tang et
al., 2010a; Zhang et al., 2015b). At present, we demonstrated that Paeoniflorin promotes
functional recovery by repressing neuroinflammation and facilitating neurogenesis in rat
stroke model.

MATERIALS AND METHODS
MCAO model and Paeoniflorin delivery
Animal experiments were conduct under the ethic approval obtained from the Committee
for Animal Experiments at Wenzhou Medical University (wydw2019-0903). Forty adult
male Sprague-Dawley (SD) rats (6–8 weeks, 200–250 g, n= 10 of each group) were
obtained from the Laboratory Animal CentreWenzhouMedical University and kept under
the specific-pathogen-free (SPF).

MCAO procedures were performed on all groups (the sham-operated group, vehicle
experimental group, vehicle Paeoniflorin 5 mg/kg group and vehicle Paeoniflorin 10 mg/kg
group) as previously described (Hata et al., 1998; Yu et al., 2018). In short, each rat received
intraperitoneal anesthesia using choral hydrate (350 mg/kg) before exposing the correct
vessels by a midline skin incision. The middle cerebral artery (MCA) was occluded by
inserting a coagulated external carotid artery into the internal carotid artery. The MCA
perfusion was allowed by withdrawing the suture after two hours. Verification of the
occurrence of ischemia was examined by measuring the blood flow of MCA through
a Laser Doppler flowmetry (LDF, Perimed, PeriFlux 5000). The same operations were
performed on the sham-operated group rats exclude the MCA occlusion. All rats were
kept on a heating pad (Malvern, UK) at 37.0 ◦C until the skin incision enclosure. After the
previous procedure, the vehicle group was treated with (phosphate-buffered saline consists
of 150 µl saline and 20% dimethyl sulfoxide [DMSO]) by intraperitoneal injection; while
the paeoniflorin group was injected with Paeoniflorin (5 mg/kg and 10 mg/kg) twice per
day for 14 days.

Animals were housed in a colony room under controlled temperature (22 ◦C), and
a 12:12 h light-dark cycle, with food and water available. All rats were sacrificed by
overetherization and decapitation.

Behavioral tests
Neurological function assessment was performed by the mNSS test in accordance with the
previous method (Chen et al., 2001). This test was carried out at day 0, 1, 3, 7 and 14 after
MCAO. This test, including the measurements for the motor, sensory, beam balance, and
reflexes (Schaar, Brenneman & Savitz, 2010). This test was graded on a scale of 0–18. More
serious injuries usually lead to higher scores.

The sensorimotor function was evaluated via the foot-fault test as the method reported
by Zhang et al. (2015a). The number of foot-fault errors, paw slipping numbers, were
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recorded when the rat is trained to cross an elevated grid at day 0, 1, 3, 7 and 14 after
MCAO.

Cell culture
The murine BV2 microglial cells were procured from the ATCC (Manassas, VA, USA),
and then maintained in DMEM with 10% FBS, 1% penicillin, and streptomycin (Sigma),
and were cultured at 37 ◦C in an incubator with 5% CO2. The oxygen-glucose deprivation
(OGD) was performed by exposing BV2 cells to DMEM without glucose or serum and
incubating in a specific environment (5% CO2 and 95% N2) for 6 h. BV2 microglial cells
were then incubated in Paeoniflorin (10 µM) for 6 h before TNF-α, IL-1β, IL-6 levels were
measured by qPCR analysis.

Quantitative real-time PCR (qPCR)
The total RNA was isolated from BV2 cells or OGD model cells in the absence or presence
of 10 µM Paeoniflorin treatment for 6 h with Trizol kit (Solarbio, Beijing, China)
following the manufacturer’s manual. Reverse transcription (RT) was implemented by
Prime ScriptTM Master Mix (Katara, Japan). qPCR was performed with 2 × SYBR Green
Mix (Solarbio) on an Applied Biosystems 7500 Fast Real-Time PCR Systems (Thermo
Fisher Scientific, MA). β-actin was chosen as an internal reference and the fold changes
were calculated using the 2−11Ct method.

Western blotting
Total protein was purified from the brain tissues of 14 days after MCAO in the absence
or presence of 10 mg/kg Paeoniflorin treatment using lysis buffer and then centrifuged
at 12,000 rpm for about 15 min. The protein concentration was measured with the
BCA kit (Pierce, IL). The western blotting was carried out as the method reported by
Zhu et al. (2019). The cell was cultured with primary antibodies, anti-Iba-1 antibody
(1 µg/ml; ab5076; Abcam, MA), anti-JNK antibody (1:1000; ab179461; Abcam, MA),
anti-phosphorylated-JNK antibody (1:1,000; #9251; Cell Signaling Technology), anti-P65
antibody (0.5 µg/ml; ab16502; Abcam), anti-Histone H3 antibody (1:1,000; ab215728;
Abcam) and anti-actin antibody (1:1000, ab6276, Abcam), at 4 ◦C overnight. After
washing, horseradish peroxidase (HRP)-conjugated secondary antibodies were incubated
with membranes for 1 h.

(Enzyme linked immunosorbent assay) ELISA
The ELISA assay was carried out to detect TNF-α, IL-1β and IL-6 content using ELISA
kits (PT516/PI303/PI328; Beyotime, China) following the manufacture’s manual. In short,
the brain tissues were extracted at 14 days after MCAO in the absence or presence of 10
mg/kg Paeoniflorin treatment, and then the supernatant of the brain tissue homogenate
(1:20 dilution) was added to 96-well plates that are coated with indicated antibodies, in
order to quantify the protein level of TNF-α, IL-1β, IL-6 in the tissue of the brain. After
the reaction was completed, the absorbances of the sample were measured at 450 nm with
a microplate reader. At least three repeated measurements were taken for each sample.
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Immunofluorescence staining
The immunofluorescence staining for brain tissues was carried out as the method reported
by Burton (Burton, Sparkman & Johnson, 2011), and the brain tissues were extracted at
14 days after MCAO in the absence or presence of 10 mg/kg Paeoniflorin treatment.
The cell was cultured with specific primary antibody against Iba-1 (1:1,500; ab178846)
at 4 ◦C overnight, and then incubated with Anti-rat Alexa Fluor 488 (1:1000; CST) as a
secondary antibody. The samples were evaluated with the LEICA TCS SPE microscope
(Leica, Germany).

Statistics
Data from the experiments were presented as mean ± standard deviation (SD).
The difference between two groups was compared using two-tailed student’s t -test, or one-
way analysis of variance (ANOVA) followed by the Scheffé test. Values less than 0.05 was
considered significant differences.

RESULTS
Paeoniflorin improved the functional recovery in rat stroke model
The role of Paeoniflorin in functional recovery following cerebral ischemic injury was first
tested in rat stroke model. The rats were subjected to MCAO and then Paeoniflorin was
intraperitoneally administrated for 14 days at 2 h after MCAO. The Foot-fault test and
mNSS were performed at day 0, 1, 3, 7 and 14 after MCAO. There were no remarkable
differences in neurological functional deficits at day 1 after Paeoniflorin administration,
while Paeoniflorin markedly improved functional recovery at day 3, 7 and 14 following
MCAO, compared with vehicle experimental group (Fig. 1A). Meanwhile, Paeoniflorin
administration significantly reduced the frequency of forelimb and foot faults at day 3, 7
and 14 following MCAO (Fig. 1B). Importantly, better protective effects were obtained
with higher Paeoniflorin concentrations in rat stroke model (Figs. 1A and 1B). The current
data verified that Paeoniflorin enhanced the functional recovery in rat stroke model.

Paeoniflorin repressed microglia activation in rat stroke model
Microglia are the resident innate immune cells in the brain. Microglia in resting state are
responsible for routine immune surveillance (Guruswamy & ElAli, 2017). After cerebral
ischemic injury, microglia are activated in morphological and phenotypical changes
(Jayaraj et al., 2019), and the severity of cerebral ischemic injury is correlated with the
activated state of microglia (Emmrich et al., 2015). To explore whether Paeoniflorin
repressed the activation of microglia in rat stroke model, microglia were analyzed using
immunofluorescence analysis after Paeoniflorin administration. As shown in Fig. 2A,
rats subjected to MCAO showed a significant microglial proliferation in ipsilateral
cortex, whereas additional Paeoniflorin treatment repressed MCAO-induced microglial
proliferation. Moreover, Paeoniflorin inhibited MCAO-induced microglial activation as
measured by the intensive ramified Iba-1-positive staining (Fig. 2A). To further assess
the function of Paeoniflorin on microglial activation, the protein expression of Iba-1 in
ipsilateral cortexwas analyzed. Rats subjected toMCAOshowed a significant increase of Iba-
1 protein level in ipsilateral cortex, whereas Paeoniflorin treatment inhibited this increase
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Figure 1 Paeoniflorin improved the functional recovery in rat stroke model. (A) Theneurological func-
tion of rats was measured by mNSS at day 0, 1, 3, 7 and 14 after MCAO and intraperitoneal injection of
vehicle or Paeoniflorin (5 mg/kg and 10 mg/kg; n = 10 of each group). Data was analyzed by one-way
ANOVA followed by the Scheffé test. n = 10. **P < 0.01 vs. control group. (B) A foot-fault test was per-
formed at day 0, 1, 3, 7 and 14 after MCAO and intraperitoneal injection of vehicle or Paeoniflorin (5
mg/kg and 10 mg/kg). Data was analyzed by one-way ANOVA followed by the Scheffétest. n= 10. **P <
0.01 vs. control group. mNSS, Modified neurological severity scores; MCAO, middle cerebral artery occlu-
sion.

Full-size DOI: 10.7717/peerj.10921/fig-1

compared with the control (Figs. 2B and 2C). Based on this result, the role of Paeoniflorin
in regulating the secretion of pro-inflammatory cytokines was assessed in cerebral tissues.
Figures 3A–3C showed that rats subjected to MCAO showed a significant increase in
the production of IL-1β, TNF-α and IL-6, whereas Paeoniflorin administration repressed
pro-inflammatory cytokines production in cerebral tissues. These results demonstrated that
Paeoniflorin exerts the important role in repressing microglial activation and subsequent
neuroinflammation in rat stroke model.
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Figure 2 Paeoniflorin repressed microglia activation in rat stroke model. (A) The activation of mi-
croglia was analyzed using immunofluorescence analysis in ipsilateral cortex after MCAO and intraperi-
toneal injection of vehicle or Paeoniflorin (10 mg/kg) n = 3. Scale bar, 20 µm (B and C) Western blot
and quantitative analysis of the protein expression level of Iba-1 in ipsilateral cortex after MCAO and in-
traperitoneal injection of vehicle or Paeoniflorin. *P < 0.05, **P < 0.01. n = 3. MCAO, middle cerebral
artery occlusion; Iba-1, Ionized calcium bindingadaptor molecule-1.

Full-size DOI: 10.7717/peerj.10921/fig-2

Paeoniflorin repressed microglial viability and inflammatory cytokines
production in vitro
To test the role of Paeoniflorin inmicroglial activation in vitro, the viability of murine BV-2
microglial cells on oxygen and glucose deprivation (OGD) was assayed in the presence or
absence of Paeoniflorin. Figure 4A showed that the viability of BV-2 cells was reduced after
Paeoniflorin treatment under normoxia or OGD, indicating that Paeoniflorin inhibited
BV-2 cells activity. The effect of Paeoniflorin on pro-inflammatory cytokines production
in vitro was further assessed. Here OGD model was used as an in vitro model of ischemia.
The mRNA expression level of IL-1β, TNF-α and IL-6 was assayed by Real time-PCR
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Figure 3 Paeoniflorin inhibits the secretion of pro-inflammatory cytokines in rat stroke model. (A–C)
The levels of pro-inflammatory cytokines TNF-a (A), IL-1β (B) and IL-6 (C) were determined by ELISA
assay using ELISA kits in brain tissues after MCAO and intraperitoneal injection of vehicle or Paeoniflorin
(10 mg/kg). n = 3. *P < 0.05, **P < 0.01. IL-1β, Interleukin-1 beta; TNF, tumor necrosis factor; IL-6,
Interleukin-6; ELISA, enzyme linked immunosorbent assay; MCAO, middle cerebral artery occlusion.

Full-size DOI: 10.7717/peerj.10921/fig-3

under OGD in the presence or absence of Paeoniflorin, and 18s was used as internal gene
to control the different amount of RNA input due to the different cell viability. Figures
4B–4D showed that IL-1β, TNF-α and IL-6 expression level was upregulated in BV-2 cells
under OGD, but additional treatment of Paeoniflorin repressed OGD-induced increase
in IL-1β, TNF-α and IL-6 expression. These data suggested that Paeoniflorin improved
functional recovery, at least in part, by suppressing microglia-mediated inflammatory
response.

Paeoniflorin facilitated neurogenesis and vasculogenesis in rat stroke
model
The marker of endothelial cells of cerebral blood vessels, vWF, was next assessed after
Paeoniflorin administration. As shown in Figs. 5A and 5B, Paeoniflorin treatment resulted
in a significant upregulation of the vWF expression in peri-infarct zone compared with
control in rat stroke model. The indication of migrating neuroblasts, doublecortin, was also
assessed in peri-infarct zone after Paeoniflorin treatment. Figures 5C and 5D showed that
Paeoniflorin treatment resulted in a significant increase of the doublecortin expression in
peri-infarct zone compared with control. Furthermore, Paeoniflorin reduced the TUNEL-
positive neurons compared with control (Figs. 5E and 5F). These results demonstrated that
Paeoniflorin promoted neurogenesis and vasculogenesis after ischemic stroke.

Paeoniflorin repressed JNK and NK-κB signaling activation
Given the regulatory role of Paeoniflorin in Jun N-terminal kinase (JNK) signaling
in many diseases (Liu et al., 2019; Wu et al., 2019a; Zhang et al., 2017a) and the effect
of JNK on regulating inflammatory response (Chen et al., 2018), we next investigated
whether Paeoniflorin repressed JNK signaling activation in rat stroke model. The results
from western blot analysis showed that the level of p-JNK (phosphorylated JNK) was
markedly upregulated in cerebral tissues at 4 h after MCAO, whereas additional treatment
of Paeoniflorin weakened the p-JNK level in cerebral tissues compared with control,
suggesting that ischemia-induced activation of JNK signaling was repressed by Paeoniflorin
administration (Figs. 6A and 6B).
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Figure 4 Paeoniflorin repressed microglial viability and inflammatory cytokines production in vitro.
(A) BV2 microglia viability was determined by CCK-8 assay using CCK-8 kit in BV2 cells with vehicle or
Paeoniflorin treatment (10 µM) and OGD models (BV2 cells subjected to oxygen and glucose depriva-
tion) treated with vehicle or Paeoniflorin treatment (10 µM) for 24 h. n= 3. *P < 0.05. (B–D) The mRNA
expression levels of IL-1β (B), TNF-α (C), and IL-6 (D) were detected by qPCR analysis in BV2 cells with
vehicle or Paeoniflorin treatment (10 µM) and OGD models treated with vehicle or Paeoniflorin treat-
ment (10 µM) for 24 h. n = 3. **P < 0.01. CCK-8, Cell Counting Kit-8; OGD, oxygen-glucose depriva-
tion; IL-1β, Interleukin-1 beta; TNF, tumor necrosis factor; IL-6, Interleukin-6; qPCR, Quantitative Real-
time PCR.

Full-size DOI: 10.7717/peerj.10921/fig-4

It is well-known that JNK could activate NF-κB signaling to aggravate the progression
of inflammatory response (Pan et al., 2013; Zheng et al., 2020). We thus tested whether
neuroinflammation-relieving role of Paeoniflorin was associated with NF-κB signaling
activation. Figures 6C and 6D showed that the nuclear protein level of p65 was markedly
upregulated in rat stroke model, whereas additional Paeoniflorin treatment weakened the
nuclear p65 level in cerebral tissues compared with control.

Immunofluorescence analysis also showed that Paeoniflorin administration partially
inhibited MCAO-induced nuclear translocation of NF-κB p65 in primary microglia
(Fig. 6E). Taken together, the current results demonstrated that Paeoniflorin improves
functional recovery through repressing neuroinflammation and facilitating neurogenesis
by inhibiting JNK- NF-κB signaling in rat stroke model.

DISCUSSION
In the present study we investigated the potential role of Paeoniflorin in protecting
against cerebral ischemia injury, and identified the effect of Paeoniflorin on regulating
microglia, neuron, and vascular cells in rat stroke model. The present data verified that
(i) Paeoniflorin improved the functional recovery in rat stroke model, (ii) Paeoniflorin
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Figure 5 Paeoniflorin facilitated neurogenesis and vasculogenesis in rat stroke model. (A and B) The
marker of endothelial cells of cerebral blood vessels (vWF) expression was assessed in peri-infarct zone
compared with control of rat stroke model after Paeoniflorin administration by Immunofluorescence.
n = 3. *P < 0.05. (C and D) The indication of migrating neuroblasts (doublecortin) expression was as-
sessed in peri-infarct zone compared with control of rat stroke model after Paeoniflorin administration by
Immunofluorescence. **P < 0.01. (E and F) The effects of paeoniflorin on apoptotic cell was verified by
TUNEL staining in rat stroke model treated with or without Paeoniflorin. Positive expression in TUNEL
staining was exhibited. Rats treated with saline and PF (10 mg/kg) for 14 days after MCAO; n = 5. Scale
bar, 50 µm. **P < 0.01. TUNEL, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end la-
beling.

Full-size DOI: 10.7717/peerj.10921/fig-5

repressed microglia activation in rat stroke model, (iii) Paeoniflorin repressed microglial
viability and inflammatory cytokines production in vitro, (iv) Paeoniflorin facilitated
neurogenesis and vasculogenesis in rat stroke model, (v) Paeoniflorin repressed JNK
and NK-κB signaling activation. These data verify the important role of Paeoniflorin

Tang et al. (2021), PeerJ, DOI 10.7717/peerj.10921 10/18

https://peerj.com
https://doi.org/10.7717/peerj.10921/fig-5
http://dx.doi.org/10.7717/peerj.10921


Figure 6 Paeoniflorin repressed JNK and NK-κB signaling activation. (A and B) Western blot and
quantitative analysis of the protein expression level of JNK and phosphorylated JNK (p-JNK) after MCAO
and intraperitoneal injection of vehicle or Paeoniflorin. n= 3. **P < 0.01, # P < 0.05. (C and D) Western
blot and quantitative analysis of the protein expression level of nuclear p65 and Histone H3 after MCAO
and intraperitoneal injection of vehicle or Paeoniflorin. (E) Nuclear translocation of p65 was indicated us-
ing an immunofluorescence assay after MCAO and intraperitoneal injection of vehicle or Paeoniflorin.
n= 3. *P < 0.05. Scale bar, 20 µm. MCAO, middle cerebral artery occlusion.

Full-size DOI: 10.7717/peerj.10921/fig-6
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in repressing neuroinflammation and facilitating neurogenesis, and may provide a new
opportunity to the therapy of ischemic stroke.

Paeoniflorin is the primary active component extracted from the roots of Paeonia plants.
Over the past decade, the protective role of Paeoniflorin in central nervous system has
been verified (She et al., 2019). Paeoniflorin can rapidly pass through the BBB (blood–
brain barrier) and repress microglia-mediated inflammatory response in the central
nervous system (Liu et al., 2006). Our previous study demonstrated that Paeoniflorin
administration enhances motor function recovery and reduces the histopathological
damage in a rat model of spinal cord injury (Wang et al., 2018). Paeoniflorin increases
neuronal survival and represses neuroinflammation by inhibiting NF-κB signaling (Wang
et al., 2018).

The role of Paeoniflorin in ischemic stroke has also been identified. Gao et al.
demonstrated that Paeoniflorin administration represses MCAO-induced over-activation
ofmicroglia and astrocytes, and thus inhibits the production of pro-inflamamtory cytokines
including IL-1β, TNFα, COX2 and iNOS (Guo et al., 2012). They further verified that
Paeoniflorin exerts a protective role against ischemic injury by inhibiting of JNK, p38
and NF-κB signaling activation (Guo et al., 2012). Ko et al. (2018) demonstrated that
Paeoniflorin decreases neurological deficit score and enhances motor function. Tang et al.
(2010b) suggests that both pre-treatment and post-treatment with PF reduced the ratio
of cerebral infarction area; pre-treatment with Paeoniflorin also reduced the neurological
deficit score. Zhang et al. (2017b) indicates that the protective effect of Paeoniflorin on
cerebral ischemia reperfusion injury is possible through regulating theCa2+/CaMKII/CREB
signaling pathway. These studies clearly showed the potential role of Paeoniflorin in
alleviating ischemic cerebral injury. However, the role and underlying mechanism of
paeoniflorin in the neurogenesis of cerebral ischemia-reperfusion injury are still unclear.
Moreover, the current data demonstrated that Paeoniflorin improves functional recovery
through repressing neuroinflammation and facilitating neurogenesis in rat stroke model.
These data further enhance the persuasiveness of Paeoniflorin in treating ischemic stroke.

Pro-inflammatory cytokines contribute to stroke-related brain injury (Liang et al., 2011).
During ischemia, cytokines, such as IL-1β, IL-6 and TNF-α are produced by a variety of
activated cell types, including microglia and neurons (Huang, Upadhyay & Tamargo,
2006). Our results document that Paeoniflorin treatment contributes to inhibit microglial
cell proliferation and thus results in a significant decrease in proinflammatory cytokines.
However, the inhibitory effect of Paeoniflorin treatment on microglia proliferation is due
to cytotoxicity or regulation of other signaling pathways remains to be fully elucidated.
How does Paeoniflorin regulate the expression of these inflammatory cytokine remains still
unclear. Guo et al. (2012) demonstrates that Paeoniflorin produces a delayed protection in
the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral
inflammatory response. We found that ischemia-induced activation of JNK signaling was
repressed by Paeoniflorin administration. It is well-known that JNK could activate NF-κB
signaling to aggravate the progression of inflammatory response (Pan et al., 2013; Zheng
et al., 2020). These data suggest that Paeoniflorin regulate these inflammatory cytokine by
suppressing JNK- NF-κB signaling pathway in rat stroke model.
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In the current study, Paeoniflorin administration promotes von Willebrand factor (an
endothelia cell marker) and doublecortin (a neuroblasts marker) expression compared
with control, suggesting that Paeoniflorin facilitates neurogenesis and vasculogenesis
in rat stroke model. the underlying mechanism of Paeoniflorin facilitates neurogenesis
still unclear. It has been reported that Microglia and proinflammatory cytokines can
enhance neuroprotection or neurotoxicity during the inflammatory response, so they
are a double-edged sword in neurogenesis (Ekdahl, Kokaia & Lindvall, 2009). Ekdahl,
Kokaia & Lindvall (2009) reported that the number of activated microglia was negatively
correlated with the survival rate of neonatal hippocampal neurons. Cai et al. (2019) Arg-
DG attenuates LPS-impaired neurogenesis and suppresses the production of LPS-induced
pro-inflammatory cytokines in hippocampal DG by blocking microglial activation. Our
data suggests Paeoniflorin treatment contributes to inhibit microglial cell proliferation and
thus results in a significant decrease in proinflammatory cytokines. Based on these data.
we concluded that Paeoniflorin inhibits neuroinflammation and facilitates neurogenesis
by suppressing the production of inflammatory cytokine and activation of microglia.

In conclusion, we showed that Paeoniflorin exhibits a sensorimotor functional recovery.
Paeoniflorin treatment contributes to inhibit microglial cell proliferation and thus results
in a significant decrease in proinflammatory cytokines. Meanwhile, Furthermore, we
demonstrated that Paeoniflorin represses JNK and NF-κB signaling activation. The current
data verify that Paeoniflorin inhibits neuroinflammation and facilitates neurogenesis in rat
stroke model and might be a potential drug for the therapy of ischemic stroke.
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