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Deep learning to diagnose Hashimoto’s thyroiditis
from sonographic images
Qiang Zhang1,25, Sheng Zhang2,25, Yi Pan3, Lin Sun3, Jianxin Li4, Yu Qiao5, Jing Zhao2, Xiaoqing Wang2,

Yixing Feng2, Yanhui Zhao6, Zhiming Zheng7, Xiangming Yang8, Lixia Liu9, Chunxin Qin10, Ke Zhao11,

Xiaonan Liu12, Caixia Li12, Liuyang Zhang13, Chunrui Yang14, Na Zhuo15, Hong Zhang16, Jie Liu17, Jinglei Gao18,

Xiaoling Di18, Fanbo Meng19, Linlei Zhang20, Yuxuan Wang1, Yuansheng Duan1, Hongru Shen21, Yang Li 21,

Meng Yang21, Yichen Yang21, Xiaojie Xin2, Xi Wei2, Xuan Zhou1, Rui Jin1, Lun Zhang1, Xudong Wang1,

Fengju Song22, Xiangqian Zheng23, Ming Gao23,24, Kexin Chen 22,26✉ & Xiangchun Li 21,26✉

Hashimoto’s thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep

learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound

images from 17,934 patients and test its performance on 5051 patients from 2 datasets of

static images and 1 dataset of video data. HTNet achieves an area under the receiver

operating curve (AUC) of 0.905 (95% CI: 0.894 to 0.915), 0.888 (0.836–0.939) and 0.895

(0.862–0.927). HTNet exceeds radiologists’ performance on accuracy (83.2% versus 79.8%;

binomial test, p < 0.001) and sensitivity (82.6% versus 68.1%; p < 0.001). By integrating

serologic markers with imaging data, the performance of HTNet was significantly and mar-

ginally improved on the video (AUC, 0.949 versus 0.888; DeLong’s test, p= 0.004) and

static-image (AUC, 0.914 versus 0.901; p= 0.08) testing sets, respectively. HTNet may be

helpful as a tool for the management of HT.
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Hashimoto’s thyroiditis (HT) is a chronic autoimmune
thyroid disease and the main cause of hypothyroidism
and goiter1,2. It is prevalent in 20–30% of patients and

8–9 times more frequent in female versus male2,3. HT is most
frequent in women aged between 30 and 50 but can occur in all
ages2. HT accounts for 79.1% of total thyroiditis4. The patho-
genesis of HT can be attributed to the interaction between genetic
and environmental factors. Genetic susceptibility associated with
HT includes genetic polymorphisms in major histocompatibility,
immunoregulatory, thyroid-specific, and thyroid peroxidase
antibody synthesis genes, whereas environmental factors include
iodine intake, selenium, vitamin D, smoking, alcohol consump-
tion, viral infection, and gut microbiota1,2,5. Patients with HT are
typically presented with hypothyroidism, goiter, and increased
thyroid peroxidase antibody level5. The key pathogenic features of
HT are lymphocytic infiltration and fibrotic transformation of the
thyroid gland5. The ultrasonographic manifestations of HT
include hypoechogenicity, pseudonodule, and inhomogeneous
parenchyma6. The former is attributed to the infiltration of
inflammatory cell into the thyroid gland, whereas the latter two
are due to fibroplastic proliferation6. The association between HT
and thyroid nodule malignancy remains controversial. For
example, there are studies that reported an increased risk asso-
ciation between HT and incidence of thyroid lymphoma and
papillary thyroid cancer7,8, especially thyroid microcarcinoma9.
Paparodis et al. reported that the increased risk of HT with dif-
ferentiated thyroid cancer was only observed in euthyroid indi-
viduals and those with partially functional thyroid gland but not
in fully hypothyroid subjects10. Grani et al. reported that the
prevalence of thyroid nodule malignancy in patients with HT is
not different from patients without HT11. Castagna et al. found
that the association of HT with increased thyroid cancer is only
observed in surgical series but not in cytological series12.

The symptoms of HT may not be overt as it progresses very
slowly over years13. The clinical symptoms for patients with HT
are chronic fatigue, nervousness, irritability, depression, and
reduced exercise endurance3,13. The diagnosis of HT takes into
account symptoms of hypothyroidism, presence of goiter,
laboratory testing of thyroid-stimulating hormone (TSH), thyroid
hormone (T4) level, antibody of thyroid peroxidase (anti-TPO),
and thyroglobulin (anti-Tg)2,13. High serologic concentrations of
anti-TPO and anti-Tg were reported to present in 90% and
20–30% of patients with HT14.

Artificial intelligence has attracted attention in the optical
diagnosis of thyroid diseases. In a previous study, we developed a
deep-learning model for optical diagnosis of thyroid cancer, in
which the developed deep-learning model achieved comparable
sensitivity and improved specificity in the diagnosis of thyroid
cancer as compared with skilled radiologists15. Kim et al. eval-
uated the diagnostic performance of histogram analysis in the
diagnosis of HT16. They used the grayscale features of thyroid
images from histogram analysis and consensus interpretation of
radiologists to develop a diagnostic model for HT. The developed
models achieved an area under the curve ranging from 0.555 to
0.65416. Acharya et al. achieved an accuracy of 80% in the
diagnosis of HT with 100 normal and 100 HT-affected ultrasound
thyroid images via analyzing grayscale features such as texture,
Gabor wavelet, entropy, etc.17. In a later study, Acharya et al.
tested an ensembled model with four classifiers developed with
grayscale features extracted from 526 ultrasound images in the
diagnosis of HT, achieving an accuracy of 84.6%18. However, all
these studies are limited by sample size and lack of external
verification.

The purpose of this study is to develop a deep-learning model
HTNet as a triage tool for automatic diagnosis of HT. We used
pathological examination as the gold-standard diagnosis of HT in

the development of HTNet. All subjects in the training and
testing sets have pathological examination reports. HTNet was
developed with by far the largest number of samples and com-
prehensively evaluated on internal- and external-testing sets.

Results
Data characteristics. Between January 1, 2012, and December 15,
2017, 106,513 images from 17,934 individuals obtained from
Tianjin Cancer Hospital were used as a training set after
excluding 13,304 images that were not captured on the thyroid
gland. The training set consisted of 6143 individuals (37,424
images) affected by HT and 11,791 controls (69,089 images). The
first internal-testing set consisted of 48,803 images from 4303
individuals obtained from Tianjin Cancer Hospital between
January 1, 2018, and March 28, 2019, after excluding 7655 images
not captured on the thyroid gland. The second internal-testing set
consisted of 185 videos from 185 individuals obtained from
Tianjin Cancer Hospital collected between April 1, 2021, and May
10, 2021. The external-testing set consisted of 5304 images from
563 individuals obtained from Weihai Municipal Hospital. The
baseline characteristics of the training set and three testing sets
are shown in Table 1. In the training set, 34.3% (6143/17,934) of
individuals were affected by HT. HT is 10 times more prevalent in
female versus male. Among six serologic markers examined, Tg is
lower in patients with HT than those without HT, whereas anti-
Tg and anti-TPO were higher in patients with HT versus those
without HT. A baseline characteristics table summarizing the
clinical features of training and testing sets is provided in Table 1.
A flowchart depicting the procedures to develop HTNet is pro-
vided in Fig. 1.

High performance of HTNet with imaging data. HTNet
achieved high classification performance across these three testing
sets, with AUC values of 0.905 (95% CI, 0.894–0.915) for the first
internal-testing set, 0.888 (0.836–0.939) for the second internal-
testing set and 0.895 (0.862–0.927) for external-testing set. The
ROC curves of HTNet across testing sets are shown in Fig. 2.
Across these three testing sets, the accuracy ranged from 0.823 to
0.832, sensitivity from 0.826 to 0.846, and specificity from 0.813
to 0.835. The detailed classification metrics for each testing set are
provided in Table 2. On the first internal-testing set, the radi-
ologists achieved an accuracy of 79.8% (3440/4312), sensitivity of
68.1% (809/1188), and specificity of 84.2% (2631/3124). The
diagnostic performance of HTNet is not affected by the presence
or absence of thyroid nodules (Supplementary Fig. 1) or by the-
different types of equipment used (Supplementary Fig. 2). At the
radiologists’ sensitivity, HTNet achieved a specificity of 93.8%,
whereas, at the radiologists’ specificity, HTNet achieved a sensi-
tivity of 81.1%. On the second testing set, radiologists achieved an
accuracy of 75.9% (151/199), sensitivity of 81.0% (51/63), and
specificity of 73.5% (100/136). At the radiologists’ sensitivity,
HTNet achieved a specificity of 82.7%; whereas at the radiologists’
specificity, HTNet achieved a sensitivity of 84.6%. The perfor-
mance of radiologists as measured by sensitivity and specificity
locates below the ROC curve (Fig. 2, left and middle panels). In
addition, we used the Grad-CAM algorithm19 to identify image
areas that most influence the decision made by HTNet. Repre-
sentative thyroid ultrasound images from patients with HT
together with the saliency map are shown in Supplementary
Fig. 3. For the false negatives that were interpreted by radiologists
derived from radiologic reports, we randomly selected 36 patients
and asked three radiologists to their images. These three radi-
ologists consensually reported that the ultrasound images from
these 36 patients lack the signs manifested by HT.
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Performance of HTNet by integrating serologic markers with
imaging data. In routine clinical practice, the diagnosis of HT was
made by taking into account ultrasonographic features and
laboratory testing of serologic markers such as TSH, anti-TPO, Tg,
anti-Tg, T3, and T4. The performance of HTNet was improved by
integrating serologic markers with thyroid imaging data (Fig. 3). For
the element-wise summation scheme, in a subset of patients (30.0%,
945/4303) from the first internal-testing set with serologic markers,
we observed that the AUC was improved from 0.901(0.880–0.923)
to 0.914 (0.894–0.935), accuracy from 0.861 (0.838–0.883) to 0.877
(0.855–0.897) and sensitivity from 0.765 (0.709–0.815) to 0.830
(0.779–0.873); whereas specificities were comparable (0.896 versus
0.899). In the second internal-testing set, AUC was improved from
0.888 (0.836–0.939) to 0.949 (0.918–0.980), accuracy from 0.832
(0.771–0.883) to 0.892 (0.838–0.933), sensitivity from 0.846
(0.719–0.931) to 0.923 (0.815–0.979) and specificity from 0.827
(0.752–0.887) to 0.880 (0.812–0.930). The classification metrics
achieved by HTNet with multimodal inputs via element-wise
summation are shown in Table 3. Meanwhile, we found that vector
concatenation scheme achieved comparable classification perfor-
mance as element-wise summation on static-image set [AUC, 0.916
(0.896–0.936) versus 0.914 (0.894–0.835), p= 0.585] and video
stream set [AUC, 0.948 (0.917–0.979) versus 0.949 (0.918–0.980),
p= 0.766] (Supplementary Fig. 4). In addition, we observed that
HTNet achieved better classification performance as compared with
the random forest classifier developed with serologic markers. The
ROC curve and classification metrics of the random forest classifier
were provided in (Supplementary Fig. 5 and Supplementary
Table 1).

Discussions
In this study, we showed that HTNet developed with thyroid
ultrasound images could achieve high performance in the diag-
nosis of HT on three independent testing sets from real-world
settings encompassing static images and video streams. Its per-
formance was further improved by integrating ultrasound video
stream with serologic markers. HTNet was developed by far with
the largest number of patients that were examined by several
different types of ultrasound equipment and all patients have
pathological examination as gold standard for the diagnosis of
HT. The result showed that HTNet could achieve better perfor-
mance as compared with ultrasound radiologists (Fig. 2, left and
middle panels). HTNet may be helpful as a triage tool for the
identification of HT at no extra cost. However, there is implicit
cost related to the application of HTNet in clinical settings. For
instance, extra time for software engineering and additional long-
term maintenance are required once it was implemented clini-
cally. This expertise is often not available in rural hospitals with
scarce resources.

An accurate diagnosis of HT would be helpful for monitoring
the progression of the disease and tailoring treatment regimen.
Thyroid ultrasound provides a convenient and affordable way to
manage thyroiditis. However, the sonographic features of HT are
extremely variable and indistinguishable from the other thyroid
diseases20. Meanwhile, interpretation of ultrasound images is
often subjective, irreproducible, and operator-dependent. To
address this concern, three previous studies16–18 proposed a
computer-aided diagnostic technique that uses quantitative
sonographic features and machine learning algorithm to help the
diagnosis of HT, in the hope of providing objective and repro-
ducible interpretation results. Kim et al. observed that the inter-
observer agreement rate was varying substantially16. Although
they demonstrated the advantages of computer-aided diagnosis of
HT, these studies were limited by small number of samples and
lacked external verification16–18. Recently, Zhao et al. reportedT

ab
le

1
B
as
el
in
e
ch
ar
ac
te
ri
st
ic
s.

C
lin

ic
al

fe
at
ur
e

T
ra
in
in
g
se
t
(n

=
17
,9
34

)
In
te
rn
al
-t
es
ti
ng

se
t
1
(n

=
4
30

3)
In
te
rn
al
-t
es
ti
ng

se
t
2
(n

=
18
5
)

Ex
te
rn
al
-t
es
ti
ng

se
t
(n

=
5
6
3)

D
is
ea
se

Pa
tie

nt
s
w
ith

H
T

Pa
tie

nt
s
w
ith

ou
t

H
T

Pa
tie

nt
s
w
ith

H
T

Pa
tie

nt
s
w
ith

ou
t

H
T

Pa
tie

nt
s
w
ith

H
T

Pa
tie

nt
s

w
ith

ou
t
H
T

Pa
tie

nt
s

w
ith

H
T

Pa
tie

nt
s

w
ith

ou
t
H
T

Pa
tie

nt
nu

m
be

r
(n
,
%
)

6
14
3
(3
4
.3
)

11
79

1
(6
5.
7)

11
8
8
(2
7.
6
)

31
15

(7
2.
4
)

52
(2
8
.1
)

13
3
(7
1.
9
)

14
6
(2
5.
9
)

4
17

(7
4
.1
)

A
ge

(m
ed

ia
n,

IQ
R
)

4
6
(1
8
)

4
5
(1
6
)

4
4
(1
7)

4
5
(1
7)

4
0
(2
4
)

4
1
(1
4
)

50
(1
8
)

51
(1
6
)

Se
x
(n
,
%
)

M
al
e

55
6
(9
.1
)

32
4
3
(2
7.
5)

14
0
(1
1.
8
)

8
9
8
(2
8
.8
)

4
(7
.7
)

4
8
(3
6
.1
)

10
(6
.8
)

10
1
(2
4
.2
)

Fe
m
al
e

55
8
7
(9
0
.9
)

8
54

8
(7
2.
5)

10
4
8
(8
8
.2
)

22
17

(7
1.
2)

4
8
(9
2.
3)

8
5
(6
3.
9
)

13
6
(9
3.
2)

31
6
(7
5.
8
)

Se
ro
lo
gi
c
m
ar
ke
r
(m

ed
ia
n,

9
5%

C
I)

T
g
(u
g
/L
)

2.
8
1
(0

.1
0
–6

2.
77

)
12
.0

(0
.5
7–
18
4
.8
9
)

3.
6
8

(0
.1
5–
10
0
.4
2)

10
.4
9

(0
.5
3–
9
9
.1
7)

3.
26

(0
.0
4
–8

1.
23

0
16
.8
5

(1
.7
7–
13
5.
20

)
N
A

A
nt
i-
T
g
(I
U
/

m
L)

7.
6
0

(0
.9
2–
13
6
5.
77

)
0
.9
2
(0

.9
2–
4
8
.6
)

15
.7
4

(1
.1
0
–7
9
9
.0
)

7.
26

(0
.9
7–
9
0
3.
78

)
23

4
.0

(1
4
.5
9
–3
52

1.
6
3)

11
.0

(1
0
.0
–2
6
5.
5)

N
A

A
nt
i-
T
PO

(I
U
/m

L)
22

.3
4

(0
.3
18
–9

9
4
.0
)

0
.7
9

(0
.2
5–
19
1.
6
7)

15
.9
2

(0
.3
0
–7
6
5.
33

)
0
.9
1

(0
.2
6
–1
26

.4
8
)

6
5.
5
(9
.0
–4

9
2.
2)

9
.0

(9
.0
–1
21
.5
0
)

N
A

T
3
(n
m
ol
/L
)

1.
4
1
(0

.9
7–
1.
9
5)

1.
4
2
(1
.0
–1
.9
9
)

1.
4
5
(0

.9
4
–2
.0
7)

1.
4
9
(1
.0
4
–2
.0
)

1.
55

(1
.1
9
–2
.3
2)

1.
6
5

(1
.2
5–
–2
.2
2)

N
A

T
4
(n
m
ol
/L
)

9
9
.8
1

(7
3.
32

–1
4
1.
39

)
10
1.
0

(7
2.
26

–1
37

.9
8
)

9
5.
8
9

(6
2.
9
9
–1
39

.3
5)

9
7.
55

(6
4
.5
1–
13
4
.8
2)

8
9
.8

(6
6
.4
0
–1
4
5.
9
5)

9
1.
2

(6
4
.7
–1
29

.0
N
A

T
SH

(m
IU
/L
)

2.
29

(0
.1
1–
8
.6
1)

1.
9
8
(0

.3
6
–6

.0
)

2.
33

(0
.1
2–
10
.8
0
)

2.
0
9
(0

.3
8
–6

.5
6
)

2.
29

(0
.2
4
–1
0
.5
4
)

1.
9
1
(0

.5
9
–4

.2
1)

N
A

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31449-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3759 | https://doi.org/10.1038/s41467-022-31449-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Thyroid sonographic imaging data of Hashimito thyroiditis (HT) collected
from Tianjin Cancer Hospital between Jan 2012 and Dec 2017

17,934 patients, 106,513 images 

Patients without HT
11,791 individuals

69,089 images
1048 with serologic markers

Patients with HT
6143 individuals
37,424 images

785 with serologic markers
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HTNet

HTNet classification
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IterationTr
ai

ni
ng

 s
et

 a
nd

 m
od

el
 d

ev
el

op
m

en
t

Te
st

in
g 

se
ts

Aim: Diagnosis of HT
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3115 Non-HT
48,803 images

5051 patients were analyzed for AUC, accuracy, sensitivity
and specificity.

The second internal-
testing set

52 HT,
133 Non-HT,

185 videos

External-testing set
146 HT,

417 Non-HT,
5304 images

a

b

Fig. 1 A flowchart depicting the development of HTNet. a Data curation and development of HTNet. b Evaluation of HTNet on testing sets. HT Hashimoto
thyroiditis. All individuals in the training and testing sets have pathological reports for the determination of the ground truth of HT.
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Fig. 2 The ROC curves of HTNet on three testing sets. a The first internal-testing set of static images, (b) the second internal-testing set of video stream,
(c) external-testing set of static images. Blue star indicates the sensitivity and specificity achieved by radiologists. The orange star indicates the specificity
achieved by HTNet at the radiologists’ sensitivity. The dark red star indicates the sensitivity achieved by HTNet at the radiologists’ specificity. Area under
the operating curve and associated 95% confidence intervals are included.
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robust performance of an ensembled CAD-HT model via
ensembling convolutional neural network models in the diagnosis
of HT21. They found that their best model outperformed radi-
ologists, which is consistent with our findings. Although ser-
ological markers were considered by Zhao et al., the serological
markers were used to stratify individuals into different subgroups
but not combined with the imaging data. Compared with these
previous studies, we included by far the largest number of sam-
ples in the training set (17,934 patients) and testing sets (5051
patients). Given that hypothyroidism is mainly caused by HT,
deep-learning models applied to sonographic images could pro-
vide a convenient and noninvasive method for frequently mon-
itoring the cause of this disease. This strategy could be helpful for
tailoring treatment options and delaying thyroid failure. Besides
sonographic images, there are serological markers that are rou-
tinely tested in clinical settings. A deep-learning model that can
take different data modalities as input is helpful for data inte-
gration and has the potential to improve diagnostic performance.
The performance of HTNet was evaluated on multiple different
data modalities such as static images, video stream, and combi-
nation of serological markers and imaging data. In contrast to the
use of texture features manually selected by experts16–18, both
HTNet and CAD-HT could provide an end-to-end diagnostic
classification of HT directly from the raw input pixels of ultra-
sound images. In addition, HTNet can further take into account
serological markers. However, real-time integration of sono-
graphic images and serologic markers requires the availability of
the latter. In clinical settings, there are often delays in obtaining
serologic markers, thus preventing simultaneous integration of
video stream and serologic markers. However, for individuals that
did serologic testing ahead of sonographic examination, it is
possible to integrate serologic markers during sonographic
examination to obtain better diagnostic result.

Apart from the sonographic features, the levels of serologic
markers such as TSH, anti-TPO, Tg, anti-Tg, T3, and T4 are

helpful and routinely used in clinical practice for the diagnosis of
HT and the other thyroiditis4. In this study, we devised a two-
branched deep-learning architecture that is able to process
ultrasound images and serologic markers simultaneously. Our
results demonstrated that the performance of HTNet was
improved considerably by integrating ultrasound images with
serologic markers in the diagnosis of HT on the video testing set,
whereas the improvement on the static-image testing set is
marginal. The design of this two-branched deep-learning archi-
tecture is flexible in that it can be easily expanded to integrate the
other types of heterogeneous data, thus making the integration of
multimodal data types efficient. In the training set, the serological
markers are not available for all individuals; therefore, the feature
of serological markers is underrepresented and the performance
of HTNet is speculatively under-estimated.

Our study has several limitations. Firstly, it is a retrospective
study by nature, and the diagnostic performance of this AI system
needs further investigation in prospective clinical trials. Secondly,
the grade of HT was not available from the pathological exam-
ination report, therefore, we were not able to perform HT grad-
ing. Thirdly, the pathological examination reports did not have
the diagnostic results for the other thyroiditis except HT, thus we
were not able to perform diagnosis for the other thyroiditis
such as Graves’ disease, subacute, postpartum, sporadic, and
suppurative thyroiditis.

HT is the most prevalent thyroiditis and can lead to thyroid
failure, reducing the quality of life. The very slow progress of HT
enables a long period of time for the management of HT. There
are no unique symptoms associated with HT and people with HT
may not have any symptoms at the early onset, which makes early
diagnosis of HT difficult. Deep-learning models applied to
sonographic images could provide a convenient and noninvasive
method for frequently monitoring the cause of HT. This strategy
could be helpful for tailoring treatment options and delaying
thyroid failure. Although the serologic markers such as anti-TPO

Table 2 Classification metrics of HTNet with ultrasound images as input.

Classification metrics Internal-testing set 1 (n= 4303) Internal-testing set 2 (n= 185) External-testing set (n= 563)

Accuracy (95% CI) 0.832 (0.821–0.843) 0.832 (0.771–0.883) 0.821 (0.786–0.851)
Sensitivity (95% CI) 0.826 (0.803–0.847) 0.846 (0.719–0.931) 0.842 (0.773–0.897)
Specificity (95% CI) 0.835 (0.821–0.848) 0.827 (0.752–0.887) 0.813 (0.772–0.849)
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Fig. 3 The ROC curves of HTNet with and without integration of serologic markers on static-image and video stream testing sets. a The first internal-
testing set of static images, (b) the second internal-testing set of video stream. Red and blue ROC curves indicate HTNet with and without integration of
serologic markers, respectively. Two-sided Delong’s test is used to test the difference between two ROC curves. Area under the operating curve and
associated 95% confidence intervals are included.
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and anti-Tg are frequently used in the diagnosis of autoimmune
thyroid disease, their fluctuations are indeed associated with HT
but are not a very sensitive predictor of HT4. The insensitivity of
serologic markers in the diagnosis of HT was also demonstrated
in our study (Supplementary Fig. 5). The deep-learning model
developed in our study could provide a triage tool for automatic
diagnosis of HT, especially in community hospitals or rural areas
of China where medical resources are scarce. In addition, HTNet
can also provide a second opinion that would be helpful in
decision making in routine clinical practice.

The results of our study could provide improved efficiency and
accuracy in a convenient way without extra cost for diagnosis of HT,
especially in community hospitals where there is insufficient radi-
ological imaging interpretation expertise. In summary, we presented
a deep-learning model that could perform an automatic diagnosis of
HT. Its diagnostic performance was tested on three independent
testing sets. The high performance of this deep-learning model
warrants further investigation in prospective clinical trials.

Methods
Study design and participants. We developed HTNet to diagnose HT from
thyroid ultrasound images. We trained and tested this deep-learning model using
thyroid ultrasound images retrospectively collected from Tianjin Cancer Hospital
and Weihai Municipal Hospital. The static images extracted from the imaging
database at Tianjin Cancer Hospital between January 1, 2012, and December 15,
2017, were used as a training set, static images between January 1, 2018, and March
28, 2019, as the first internal-testing set, and video data between April 1, 2021, and
May 10, 2021, as the second internal-testing set. The static images from Weihai
Municipal Hospital between January 1, 2017, and March 25, 2018, were used as an
external-testing set. All patients in the training set and testing sets underwent
pathological examination. Pathological examination reports were provided by the
pathology department at Tianjin Cancer Hospital. Radiologists’ diagnosis of HT
was determined from the radiologic text report. The ground truth for HT diagnosis
was determined from the pathological examination report. This study was
approved by the institutional review board (IRB) of Tianjin Cancer Hospital.
Informed consent was exempted by the IRB because of the retrospective nature of
this study. We confirmed that our research complies with the original consent of
the IRB given in the treatment of these data.

Image acquisition and preprocessing. The static images retrieved from thyroid
imaging databases were in JPEG format and videos in AVI format. For a given
individual, images from the entire lobe, transverse, and longitudinal view were
selected by ultrasound radiologists. The ultrasound equipment from manufacturers
such as Philips, Toshiba, Canon, and GE Health were used in these two hospitals to
generate ultrasound images and videos. The procedures in the construction of our
dataset are straightforward. We retrieved all thyroid ultrasound images from the
imaging database. We linked the ultrasound image data with pathological data via
the examination identity of the individual. We did not label the images and videos
by annotation tool as our study is to perform diagnosis rather than lesion detection.
This large dataset was made possible by a number of 16 radiologists over a long
period of 10 years. In routine clinical practice, thyroid ultrasound examination was
performed by one senior radiologist (≥10 years of clinical experience) and one
junior radiologist (<10 years) for each individual. We excluded images that were
not obtained for the thyroid gland.

Development of the deep-learning classification model. We used the residual
network22 for image classification. The prominent feature of residual connection is
its shortcut connection that feeds the representation from preceding layers to the
next layers via element-wise summation. The identity mapping via shortcut con-
nection makes possible training very deep network without increasing training
error. We trained classification network to predict HT by finetuning the classifi-
cation model that we developed in our previous study15. The ground truth labels of
HT used to train model were determined from pathological reports. We trained

this model for 90 epochs by stochastic gradient descent optimizer and an initial
learning rate of 0.001, momentum of 0.9, weight decay of 1.0e–4, and a minibatch
of 32. The learning rate was decayed by 0.1 at the 30th and 60th epoch, respectively.
We applied on-the-fly data augmentations such as random resize and crop, ran-
dom horizontal flipping, random color jittering, and random erasing during
training. Single-crop was used during evaluation. The classification model was
developed with PyTorch (version 1.7.1) and torchvision (version 0.8.2).

Integration of images with serologic markers in deep-learning classification
model. In addition, we devised a deep-learning model that can make predictions by
taking sonographic images and serologic markers obtained from laboratory testing
as input. The serologic markers include TSH, anti-TPO, Tg, anti-Tg, T3, and T4.
This multimodality deep-learning model consists of two parallel branches: a resi-
dual network aforementioned without the last fully connected layer and a feed-
forward neural network. The residual network branch takes image as input and
output a vector F= {f1, f2, …, f2048} as the representation of the input image. The
feed-forward neural network branch takes the abundance of serologic markers as
input and output a vector G= {g1, g2, …, g2048} as the learned feature of the input
serologic markers. The element-wise summation of F and G was taken as the
integrated multimodal feature H= F+G. Vector concatenation is an alternative
method for integrating F and G, namely H= [F, G]. In this study, we investigated
the performance of both element-wise summation and vector concatenation. A
fully connected layer takes H as input and was used as the final classifier for
prediction. We initialized the residual branch with the deep-learning model trained
on the images aforementioned and froze their parameters. This multimodality
model was trained with stochastic gradient descent for 30 epochs with a learning
rate of 0.0001, momentum of 0.9 and weight decay of 1.0e–4, and a minibatch of
32. Data augmentation for images was applied exactly the same as aforementioned.
We applied dropout as data augmentation for serologic markers.

Development of traditional machine learning classification model. We
employed the random forest algorithm23 implemented in R package randomForest24

to build a classifier to identify HT with the levels of six serologic markers such as
TSH, anti-TPO, Tg, anti-Tg, T3, and T4. This random forest classifier was trained
with 1712 samples and tested on 1130 samples. The 1712 samples were overlapped
with people in the training set of ultrasound images and the later 1130 samples were
overlapped with the internal-testing sets of the ultrasound images.

Calculation of metastatic risk score. For each individual in testing set, we
combined the predicted probabilities of each image or each frame of the video for
that individual to calculate a score to measure the risk of HT. Specifically, for a
given individual, we denoted n as the total number of images available from that
individual, p ¼ ½p1; p2; ¼ ; pn� as the probabilities of these n images being pre-
dicted HT. The risk score of HT θ was calculated as the average of p. θ was used to
evaluate the performance of HTNet by comparing it with the true labels obtained
from pathological examination reports.

Comparison with radiologists. We extracted the diagnosis of HT from radiologic
text reports.

Visual explanation. We used Grad-CAM algorithm19 to highlight the image area
that most influences the decision made by HTNet.

Statistical analysis. We used ROC curve, accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) to measure the per-
formance of HTNet and random forest classifier. The ROC curve was created by
plotting sensitivity against specificity. The 95% confidence intervals for accuracy,
sensitivity, specificity, PPV, and NPV were calculated by Clopper–Pearson
method25. We plotted the ROC curve and calculated AUC with R package pROC
(version 1.10.0). Statistical analysis was conducted with R software (version 4.0.3)
and caret package (version 6.0-78). Random forest classifier23 was built with
randomForest package24 (version 4.6-14).

Table 3 Classification metrics of HTNet with ultrasound images and serologic markers as input.

Classification metrics Internal-testing set 1
(static-image, n= 945)

Internal-testing set 1
(static-image plus serologic
markers, n= 945)

Internal-testing set 1
(video, n= 185)

Internal-testing set 1
(video plus serologic
markers, n= 185)

Accuracy (95% CI) 0.861 (0.838–0.883) 0.877 (0.855–0.897) 0.832 (0.771–0.883) 0.892 (0.838–0.933)
Sensitivity (95% CI) 0.765 (0.709–0.815) 0.830 (0.779–0.873) 0.846 (0.719–0.931) 0.923 (0.815–0.979)
Specificity (95% CI) 0.899 (0.874–0.920) 0.896 (0.870–0.918) 0.827 (0.752–0.887) 0.880 (0.812–0.930)
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Restrictions are applied to the whole imaging and serologic data of the training and
testing sets, which are used with institutional permission via IRB approval for the current
study, and thus are not publicly available due to patient privacy obligations. All data
supporting the findings of this study are available on requests for non-commercial and
academic purposes from the corresponding author X.L. (lixiangchun@tmu.edu.cn)
within 10 working days.

Code availability
The code used to train and evaluate the model is available on GitHub (https://github.
com/lixiangchun/AIplus/tree/master/HTNet).
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