
Received:
25 June 2018

Revised:
7 January 2019

Accepted:
8 January 2019

Cite as: Asep K. Supriatna, 
Ema Carnia, Meksianis 
Z. Ndii. Fibonacci numbers: 
A population dynamics 
perspective.

Heliyon 5 (2019) e01130.

doi: 10 .1016 /j .heliyon .2019 .
e01130

https://doi.org/10.1016/j.heliyon.2019

2405-8440/© 2019 Published by Else
Fibonacci numbers: 

A population dynamics 

perspective
Asep K. Supriatna a,∗, Ema Carnia a, Meksianis Z. Ndii b

a Department of Mathematics, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21,

Jatinangor, 45363, Sumedang, Indonesia
b Department of Mathematics, University of Nusa Cendana, Jl. Adisucipto Penfui-Kupang,

Kota Kupang 85001, NTT, Indonesia

* Corresponding author.

E-mail address: a.k.supriatna@unpad.ac.id (A.K. Supriatna).

Abstract

Fibonacci numbers or Fibonacci sequence is among the most popular numbers or 

sequence in Mathematics. In this paper, we discuss the sequence in a population 

dynamics perspective. We discuss the early development of the sequence and 

interpret the sequence as a number of a hypothetical population. The governing 

equation that produces the Fibonacci sequence is written in a matrix form having 

a square matrix 𝐴. We show the relation of the eigenvalues, eigenvectors, and 

eigenspaces to the matrix with the dynamics of the sequence. We also generalize 

the matrix equation so that it governs a more realistic model of the hypothetical 

population. Some results regarding the modified golden ratio are presented.

Keywords: Mathematics

1. Introduction

Fibonacci numbers or Fibonacci sequence is among the most popular numbers or 

sequence in mathematics. The sequence is in the form of 0, 1, 1, 2, 3, 5, 8, 13, 

21, 34, 55, 89, .... which first appeared in Liber Abaci book of Leonardo Pisano 

in 1202 (Sigler, 2002). It is often known as the Lame sequence (Roberts, 1992)

or Viranka number (Goonatilake, 1998) as many other ancient mathematicians 
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have used this sequence in their document. The first mathematician who called it 

Fibonacci sequence is Edouard Lucas in 19-th century (Gardner, 1996). Lucas also 

showed that the Fibonacci sequence appears in the shallow diagonal of the Pascal 

triangle and he also defines a sequence based on the Fibonacci numbers, which is 

currently known as Lucas number. The complete information of the sequence can be 

found in the On-Line Encyclopedia of Integer Sequence (OEIS, 2017).

One of the important features arising from the Fibonacci sequence is the Golden 

Ratio. It is the ratio of the consecutive numbers in the Fibonacci sequence which 

converges to 1.61803398875 (Livio, 2002). The ratio has been found in many areas 

of applications such as in analyzing the proportions of natural objects and man-made 

systems. The ratio can also be found in modern applications such as financial analysis 

and plastic surgery (Letzter, 2016). Given that it has many applications, many 

studies have been conducted to extend the sequence. The extension of the Fibonacci 

sequence is also widespread and penetrated many branches of mathematics including 

dynamical system. For example, the Fibonacci sequence has been extended to 

tribonacci, tetranacci, and other higher order n-nacci sequences (Wolfram, 1998).

The n-nacci sequence has found application in coin tossing problem (Weisstein, a, b; 

Griffiths, 2011). On the other hand, the Fibonacci sequence also has been extended 

by generalizing the integer to real and complex numbers (Harman, 1981; Asci and 

Gurel, 2013), quarternion (Halici, 2012), generalized quarternion (Akyigit et al., 

2014; Tan et al., 2016).

The other extension of Fibonacci sequence has been done by Bruin (2007) and Bruin 

and Volkova (2005) who developed a Fibonacci-like map or a kneading map. They 

show an important dynamical structure in the model that is the properties of the 

absolute continuous invariant measure. However, Li and Wang (2014) developed a 

new class of generalized Fibonacci sequence by considering a unimodal maps and 

show that, in some circumstances, the map has no absolutely continuous invariant 

probability measure. The result is different from the one found by Bruin and reveals 

the richness of dynamical properties of mathematical structures developed from 

Fibonacci sequence – or alike. The brief review above shows that the extension of 

Fibonacci sequence is directed to a more abstract manner. Historically the Fibonacci 

sequence appeared in a population problem as the following statement given by 

Leonardo Pisano (Sigler, 2002) who wrote “A certain man put a pair of rabbits in a 

place surrounded on all sides by a wall. How many pairs of rabbits can be produced 

from that pair in a year if it is supposed that every month each pair begets a new pair 

which from the second month on becomes productive?”. In this paper we review the 

Fibonacci sequence from population dynamic perspective. We also generalize the 

sequence in this perspective and give some population interpretation to the model. 

Some mathematical results are obtained. We begin with a brief explanation on the 

Fibonacci sequence in a matrix equation in the following section.
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2. Theory

Let 𝑋(𝑛) and 𝑌 (𝑛) be the numbers of adults and juveniles of a hypothetical 

population, respectively, with the dynamics is given by the recursive equations

𝑋(𝑛 + 1) = 𝑋(𝑛) + 𝑌 (𝑛),
𝑌 (𝑛 + 1) = 𝑋(𝑛)

(1)

with 𝑋(0) = 1 and 𝑌 (0) = 0. The system of equations above can be written in the 

form

𝑋(𝑛 + 1) = 𝑋(𝑛) + 𝑋(𝑛 − 1) (2)

which is clearly is Fibonacci recursive equation for the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .... (3)

The system has an explicit solution in the form Binet Formula (Weisstein, a, b), but 

some authors claimed this formula is found by de Moivre in 18 century (Knuth, 

1997),

𝑋(𝑛) = 1√
5

((
1 +

√
5

2

)𝑛

−

(
1 −

√
5

2

)𝑛)
. (4)

Note that the system of equations (1) can be written in the form[
𝑋(𝑛 + 1)
𝑌 (𝑛 + 1)

]
=

[
1 1
1 0

][
𝑋(𝑛)
𝑌 (𝑛)

]
. (5)

This equation generates the Fibonacci sequence regardless the initial values of the 

vector [𝑋(0), 𝑌 (0)]𝑡 where the notation 𝑡 denotes the transpose of the associated 

vector. As the examples are the following. Suppose that we have different initial 

values, 𝑋(0) = 1 and 𝑌 (0) = 0, then by considering equation (5) we have the 

following sequence:[
1
0

]
==>

[
1 1
1 0

][
1
0

]
=

[
1
1

]
==>

[
1 1
1 0

][
1
1

]
=

[
2
1

]
==>[

1 1
1 0

][
2
1

]
=

[
3
2

]
==>

[
1 1
1 0

][
3
2

]
=

[
5
3

]
==>

[
1 1
1 0

][
5
3

]
=

[
8
5

]
.

Next suppose that 𝑋(0) = 0 and 𝑌 (0) = 1, then by considering equation (5) we have 

the following sequence:[
0
1

]
==>

[
1 1
1 0

][
0
1

]
=

[
1
0

]
==>

[
1 1
1 0

][
1
0

]
=

[
1
1

]
==>[

1 1
1 0

][
1
1

]
=

[
2
1

]
==>

[
1 1
1 0

][
2
1

]
=

[
3
2

]
==>
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[
1 1
1 0

][
3
2

]
=

[
5
3

]
==>

[
1 1
1 0

][
5
3

]
=

[
8
5

]
.

In the next section we show that any initial value is indeed attracted to the eigenspace 

of the Fibonacci matrix

𝐴 =

[
1 1
1 0

]
. (6)

3. Results & discussion

In this section we present some results regarding the solution of equation (5), its 

properties and the relation to the matrix A in (6). A generalization of equation (5)

is also considered. To begin with, note that the characteristic equation of matrix 𝐴

is 𝜆2 − 𝜆 − 1 = 0, hence it has two eigenvalues 𝜆1 = 1
2 + 1

2

√
5 and 𝜆1 = 1

2 −
1
2

√
5 with the corresponding eigenvectors [𝑋, 𝑌 ]𝑡 =

[
1
2 +

1
2

√
5, 1

]𝑡

𝛼 and [𝑋, 𝑌 ]𝑡 =[
1
2 −

1
2

√
5, 1

]𝑡

𝛼, respectively, with 𝛼 ∈ ℜ and 𝛼 ≠ 0. There are two eigenspaces, 

corresponding to 𝜆1 and 𝜆2. The eigenspace corresponding to the largest eigenvalue 

𝜆1 is 
{[

1
2 +

1
2

√
5, 1

]𝑡
}

which consists of all linear combinations of the vector [
1
2 +

1
2

√
5, 1

]𝑡

plus the zero vector. While the eigenspace corresponding to the other 

eigenvalue 𝜆2 is 
{[

1
2 −

1
2

√
5, 1

]𝑡
}

which consists of all linear combinations of the 

vector 
[
1
2 −

1
2

√
5, 1

]𝑡

plus the zero vector.

Let us concentrate in the eigenspace associated with the largest eigenvalue 𝜆1. 

Figures 1 and 2 show the eigenspace as the line in the 𝑋𝑌 plane. Since the line 

connects the origin (0, 0) with the point of ((1 +
√
5)∕2, 1), then the line is given by

𝑦 = 2(
1 +

√
5
)𝑥

𝑑𝑒𝑓
= 𝐸𝜆1

(𝐴). (7)

Let us consider the vector [𝑥, 𝑦]𝑡 as a point (𝑥, 𝑦) in 𝑋𝑌 plane. Figure 1 shows the 

iteration of Equation (5) for several initial values, such as (0,1), (1,1), (2,1), and 

(0,2) (upper figure). Some of the initial values are from the Fibonacci sequence, 

such as (1,1) and (2,1). Others are arbitrary, such as (0,2). However, all initial values 

are eventually brought to the eigenspace of the largest eigenvalue by the recurrence 

equation (5). Even Figure 2 shows that it remains true for the relatively large arbitrary 

couples of (𝑋(0), 𝑌 (0)). This observation leads to the following theorems.

Theorem 1. Let (𝑋0, 𝑌0) be any point with 𝑋0 and 𝑌0 are neighboring Fibonacci 
numbers. Then for any initial value (𝑋0, 𝑌0) the iteration of equation (5) converges 
to the eigenspace 𝐸𝜆 (𝐴).
1
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Figure 1. Iterations of equation (5) with small Fibonacci and non Fibonacci numbers as initial values.

Figure 2. Iterations of equation (5) with relatively large integer as initial values.

Proof. We will show that the distance between the line of eigenspace of the 

largest eigenvalue and the n-th iteration of the initial value point (𝑎, 𝑏) by the 

recursive Equation (2) is eventually close to zero. To prove this let us start with 

an initial value (𝑋0, 𝑌0) with 𝑋0 and 𝑌0 are a neighboring Fibonacci number so 

that its n-th iteration is (𝑎, 𝑏). Hence we have (𝑎, 𝑏) = (𝑥𝑛, 𝑥(𝑛−1)) where 𝑥𝑛 =
1√
5

((
1+

√
5

2

)𝑛

−
(

1−
√
5

2

)𝑛)
. It is known that the distance of (𝑎, 𝑏) to any line 
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𝑝𝑥 + 𝑞𝑦 + 𝑟 = 0 is given by 𝑑 = |𝑝𝑎+𝑞𝑏+𝑟|√
𝑝2+𝑞2

. We construct the eigenspace linear 

equation as follows. The line connects the point (0, 0) to the eigenspace base point (
1+

√
5

2 , 1
)

, resulting in the equation is 𝑦 = 2
1+

√
5
𝑥 which equivalent to 𝑦 = 2

1+
√
5
𝑥 −

𝑦 = 0. Since 𝑝 = 2
1+

√
5
𝑥, 𝑞 = −1, and 𝑟 = 0 then we have

𝑑 =

|||||
(

2
1+

√
5

)
𝑎 − 𝑏

|||||√(
2

1+
√
5

)2
+ 1

,

with (𝑎, 𝑏) = (𝑥𝑛, 𝑥(𝑛−1)) and 𝑥𝑛 = 1√
5

((
1+

√
5

2

)𝑛

−
(

1−
√
5

2

)𝑛)
, and hence 𝑑 is 

given by(
2

1+
√
5

)
1√
5

((
1+

√
5

2

)𝑛

−
(

1−
√
5

2

)𝑛
)
− 1√

5

((
1+

√
5

2

)𝑛−1
−
(

1−
√
5

2

)𝑛−1)
√(

2
1+

√
5

)2
+ 1

𝑑𝑒𝑓
= 𝐹 (𝑛)

It can be shown that lim𝑛→∞ 𝐹 (𝑛) = 0 which proves that eventually the sequence is 

trapped by the eigenspace 𝐸𝜆(𝐴). □

Remark. As pointed out by one of the reviewers, from the dynamical system theory 

point of view, the dynamic of equation (5) is characterized by the dynamic matrix 𝐴

that has two eigenvalues. The smaller one is less than unity while then second 

one is larger. Consequently, “starting from a generic initial point (𝑋0, 𝑌0), the 

state component which is aligned with the eigenvector of the smaller (convergent) 

eigenvalue will vanish with 𝑛, while the one aligned with the eigenvector of the larger 

(divergent) eigenvalue will grow indefinitely”.

Theorem 2. Let (𝑋0, 𝑌0) be any positive integer in the 𝑋𝑌 plane. Then, starting 

from (𝑋0, 𝑌0) as the initial value, the n-th iteration of Equation (5) converges to the 

eigenspace 𝐸𝜆1
(𝐴).

Proof. Consider the matrix 𝐴 and let us define 𝑃 and 𝐷 as follows:

𝑃 =

[
1+

√
5

2
1−

√
5

2
1 1

]
and 𝐷 =

⎡⎢⎢⎣
1+

√
5

2 0

0 1−
√
5

2

⎤⎥⎥⎦
The columns of 𝑃 are the eigenvectors of 𝐴 and the diagonal of 𝐷 is the eigenvalues 

of 𝐴, and hence we have 𝐴 = 𝑃𝐷𝑃−1. Furthermore we have 𝐴𝑛 = 𝑃𝐷𝑃−1𝑃𝐷𝑃−1

…𝑃𝐷𝑃−1 = 𝑃𝐷𝑛𝑃−1 that leads to

𝐴𝑛 =
⎡⎢⎢⎢⎣

√
5
5

(
1+

√
5

2

)𝑛+1
−

√
5
5

(
1−

√
5

2

)𝑛+1 (
5−

√
5

10

)(
1+

√
5

2

)𝑛+1
+
(

5+
√
5

10

)(
1−

√
5

2

)𝑛+1

√
5
5

(
1+

√
5

2

)𝑛

−
√
5
5

(
1−

√
5

2

)𝑛 (
5−

√
5

10

)(
1+

√
5

2

)𝑛

+
(

5+
√
5

10

)(
1−

√
5

2

)𝑛

⎤⎥⎥⎥⎦
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Let us see for the case 𝑛 → ∞. In this case lim𝑛→∞

(
1−

√
5

2

)𝑛

= 0 and hence for 

large n we have

𝐴𝑛 ≈

⎡⎢⎢⎢⎢⎣
√
5
5

(
1+

√
5

2

)𝑛+1 (
5−

√
5

10

)(
1+

√
5

2

)𝑛+1

√
5
5

(
1+

√
5

2

)𝑛 (
5−

√
5

10

)(
1+

√
5

2

)𝑛

⎤⎥⎥⎥⎥⎦
Further for any initial value 

[
𝑋0
𝑌0

]
we have

[
𝑋𝑛

𝑌𝑛

]
=

⎡⎢⎢⎢⎢⎣
√
5
5

(
1+

√
5

2

)𝑛+1 (
5−

√
5

10

)(
1+

√
5

2

)𝑛+1

√
5
5

(
1+

√
5

2

)𝑛 (
5−

√
5

10

)(
1+

√
5

2

)𝑛

⎤⎥⎥⎥⎥⎦
[

𝑋0
𝑌0

]

which equivalent to:

𝑋𝑛 =
√
5
5

(
1 +

√
5

2

)𝑛+1

𝑋0 +

(
5 −

√
5

10

)(
1 +

√
5

2

)𝑛+1

𝑌0

𝑌𝑛 =
√
5
5

(
1 +

√
5

2

)𝑛

𝑋0 +

(
5 −

√
5

10

)(
1 +

√
5

2

)𝑛

𝑌0.

It is obvious that

𝑌𝑛 =

(
2

1 +
√
5

)
𝑋𝑛

which is definitely is the equation of the eigenspace in (7). This shows that for any 

integer initial values [𝑋0, 𝑌0]𝑡 the iteration of equation (5) is eventually trapped by 

the eigenspace 𝐸𝜆1
(𝐴). □

Remark. Theorem 2 actually holds for any real numbers. See Figure 3 that illustrate 

that the trapping properties of the eigenspace of the largest eigenvalue remains true 

for arbitrary real initial values.

3.1. Generalization of the Fibonacci matrix

The Fibonacci matrix 𝐴 = 𝐴2 =

[
1 1
1 0

]
can be generalized into several directions. 

For examples it can be generalized into the matrices 𝐴3 or 𝐴4 below:

𝐴3 =
⎡⎢⎢⎢⎣
1 1 1
0 0 1
1 0 0

⎤⎥⎥⎥⎦ or 𝐴4 =

⎡⎢⎢⎢⎢⎣
1 1 1 1
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎥⎥⎦
,
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Figure 3. Iterations of equation (5) with arbitrary real numbers as initial values.

or even into matrices in higher dimensions. However, from population perspective 

these generalizations are not realistic. Let us consider the matrix 𝐴3. It can be 

considered as the growth matrix of a population having three age classes. It assumes 

that there is no mortality in the populations. However if there is a mortality or 

survival rates in the population, then the matrix should accommodate these factors. 

For example, let us consider the easiest one, the population having only two age 

classes, adults and juveniles. Then one of the model that accommodate mortality 

could be given by the matrix 𝐴𝑚 =

[
𝛼 𝛽

𝛾 0

]
. The matrix gives the following 

recursive equations:

𝑋(𝑛 + 1) = 𝛼𝑋(𝑛) + 𝛽𝑌 (𝑛)
𝑌 (𝑛 + 1) = 𝛾𝑋(𝑛)

(8)

with 𝑋(0) = 𝑋0 and 𝑌 (0) = 𝑌0. At the first glance, this equation is closely related 

to the one in Balestrino et al. (2009). Their equation of the generalized Fibonacci 

sequence forms a dynamical system which motivated by a problem in digital filters 

and manufacturing of tissue with fractal property. A closer inspection to the equation 

shows that their equation, motivation, and interpretation are different to ours, in 

which here we look at a population dynamics perspective. The parameters can be 

interpreted as follows: 𝛼 is the survival rate of adults that still alive, 𝛽 is the survival 

rate of juveniles that reach adult class, and 𝛾 is the birth rate of adults that produce 

the new juveniles. Here we present some results of the model analysis. The first result 

is presented in the following theorem.
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Theorem 3. The closed form solution of Equation (8) is given by 𝑋𝑛 = 1√
𝛼2+4𝛽𝛾

(
𝛼

2 +
1
2

√
𝛼2 + 4𝛽𝛾

)𝑛

− 1√
𝛼2+4𝛽𝛾

(
𝛼

2 − 1
2

√
𝛼2 + 4𝛽𝛾

)𝑛

and the associated golden ratio is 

given by 𝜑 = 𝛼

2 + 1
2

√
𝛼2 + 4𝛽𝛾 .

Proof. Let us consider Equation (8) in the form of

𝑋(𝑛 + 1) = 𝛼𝑋(𝑛) + 𝛽𝛾𝑋(𝑛 − 1). (9)

The characteristic equation for the above recurrence equation is

𝑥2 − 𝛼𝑥 − 𝛽𝛾 = 0 (10)

with the solution

𝜑 = 𝛼

2
+ 1

2
√

𝛼2 + 4𝛽𝛾 and 𝜓 = 𝛼

2
− 1

2
√

𝛼2 + 4𝛽𝛾. (11)

Hence, the closed form solution of the generalized Fibonacci Equation (9) is in the 

form of

𝑋𝑛 = 𝑠𝜑𝑛 + 𝑡𝜓𝑛 (12)

with 𝑠 and 𝑡 are some real numbers. Suppose that the initial conditions are given by 

𝑋0 and 𝑋1 then we have

𝑋0 = 𝑠 + 𝑡 and𝑋1 = 𝑠𝜑 + 𝑡𝜓. (13)

Without loss of generality we assume 𝑋0 = 0 and 𝑋1 = 1, hence solving the last 

equations gives

𝑠 = 1√
𝛼2 + 4𝛽𝛾

and 𝑡 = − 1√
𝛼2 + 4𝛽𝛾

. (14)

Therefore the closed form solution is given by

𝑋𝑛 = 1√
𝛼2 + 4𝛽𝛾

(
𝛼

2
+ 1

2
√

𝛼2 + 4𝛽𝛾

)𝑛

−

1√
𝛼2 + 4𝛽𝛾

(
𝛼

2
− 1

2
√

𝛼2 + 4𝛽𝛾

)𝑛 (15)

Let 𝑅(𝑛 + 1) = 𝑋𝑛+2
𝑋𝑛+1

, then we have

𝑅(𝑛 + 1)𝑅(𝑛) =
𝑋𝑛+2
𝑋𝑛+1

𝑋𝑛+1
𝑋𝑛

=
𝑋𝑛+2
𝑋𝑛

= 𝛼𝑋(𝑛 + 1) + 𝛽𝛾𝑋(𝑛)
𝑋𝑛

= 𝛼𝑅 + 𝛽𝛾

(16)
𝑛
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If the limit of the ratio exists as 𝑛 approaches infinity, say lim𝑛→∞(𝑅𝑛) = 𝐿 then we 

have

𝐿2 = 𝛼𝐿 + 𝛽𝛾 (17)

which is satisfied by 𝜑 = 𝛼

2 +
1
2

√
𝛼2 + 4𝛽𝛾 . The existence of the limit can be proved 

by showing that 𝑅𝑛 forms a Cauchy sequence. □

The matrix 𝐴𝑚 has the characteristic equation 𝜆2 − 𝛼𝜆 − 𝛽𝜆 = 0 with two 

eigenvalues 𝜆1 = 𝛼

2 + 1
2

√
𝛼2 + 4𝛽𝛾 and values 𝜆2 = 𝛼

2 − 1
2

√
𝛼2 + 4𝛽𝛾 with 

corresponding eigenvector [𝑋, 𝑌 ]𝑡 =
[

𝛼

2 + 1
2

√
𝛼2 + 4𝛽𝛾, 1

]𝑡

𝜃 and [𝑋, 𝑌 ]𝑡 =[
𝛼

2 − 1
2

√
𝛼2 + 4𝛽𝛾, 1

]𝑡

𝜃, respectively, with 𝜃 ∈ ℜ and 𝜃 ≠ 0. There are two 

eigenspaces, corresponding to 𝜆1 and 𝜆2. The eigenspace corresponding to the 

largest eigenvalue 𝜆1 is 
{[

𝛼

2 + 1
2

√
𝛼2 + 4𝛽𝛾, 1

]𝑡
}

which consists of all linear 

combinations of the eigenvector of the largest eigenvalue 𝜆1 plus the zero vector. 

The eigenspace corresponding to the other eigenvalue is 
{[

𝛼

2 − 1
2

√
𝛼2 + 4𝛽𝛾, 1

]𝑡
}

which consists of all linear combinations of the corresponding eigenvector plus the 

zero vector.

Unlike the original Fibonacci model, in which the population always increasing 

unbounded with a constant golden ratio 𝜑 = (1 +
√
5)∕2 ≈ 1.618033989, the 

modified model of (7) is able to accommodate increasing and decreasing growth, and 

even a steady state. Figure 4 (upper) shows an example for eventually steady growth 

with 𝛼 = 0.5, 𝛽 = 0.5 and 𝛾 = 1 resulting in the ratio of consecutive population is 1. 

Other growth (middle and lower graphs in Figure 4) shows the exponential growth 

with different parameters. The previous theorem shows that the modified golden ratio 

is given by �̂� = 𝛼

2 + 1
2

√
(𝛼2 + 4𝛽𝛾), which for the case of 𝛼 = 𝛽 = 𝛾 = 1 the ratio 

collapses to 𝜑 = (1 +
√
5)∕2 ≈ 1.618033989.

Table 1 reveals that there is an interesting pattern regarding the ratio of two 

consecutive numbers of the modified Fibonacci sequence. The triple (𝛼, 𝛽, 𝛾) is not 

unique, in the sense that different triples may give the same ratio. For example, the 

ratio of two consecutive numbers of the modified Fibonacci sequence is exactly the 

same as the golden ratio (of the original Fibonacci sequence) for several different 

triples. Some parameters in the triple are the function of the golden ratio 𝜑.

Tables 2, 3, 4 and 5 show that if the growth parameters of the population are 

certain form of function of the golden ratio 𝜑, the pattern of the ratio (we called 

it the modified golden ratio �̂�) becomes more prevalent as stated in Theorem 3 and 

Theorem 4. Some numerical example show that the ratio in Table 5 can be expressed 

in a different form as shown in Table 6. These two expression is equivalent as stated 

in Theorem 6.
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Figure 4. An example for eventually steady growth with 𝛼 = 0.5, 𝛽 = 0.5 and 𝛾 = 1 resulting in the 
ratio of consecutive population is 1 (upper figure). The graphs in the middle and lower figures show the 
exponential growth with different parameters resulting in the ratio of consecutive population 1.079 and 
1.618, respectively. All graphs begin with the same population sizes: 10,000 juveniles and 20 adults.

Theorem 4. If 𝛼 = 𝛽 = 𝛾 = 𝑘 with 𝑘 = 1, 2, 3, … then the golden ratio �̃� of 𝑥𝑛+1∕𝑥𝑛

of the generalized Fibonacci sequence is given by �̃� = 𝑘𝜑 where 𝜑 is the golden ratio 

of the Fibonacci sequence.
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Table 1. Examples of different triples of (𝛼, 𝛽, 𝛾) which result in the 
same ratios of the long-term two consecutive time of population sizes.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

0.5 0.5 1 1.000000000

0.5 1 0.5 1.000000000

0.5 0.5 1.25 1.079156198

0.5 1.25 0.5 1.079156198

0.5 0.5 2 + 𝜑 𝜑

0.5 2 + 𝜑 0.5 𝜑

0.5 𝜑 𝜑 0.5 𝜑 𝜑

0.5𝜑 0.5𝜑 𝜑 𝜑

Table 2. Examples of different triples of (𝛼, 𝛽, 𝛾) for 𝛼 = 𝛽 =
𝛾 = 𝑘 which result in the same form of ratios of the long-term 
two consecutive time of population sizes.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

1 1 1 𝜑

2 2 2 2 𝜑

3 3 3 3 𝜑

⋮ ⋮ ⋮ ⋮
𝑘 𝑘 𝑘 𝑘 𝜑

Table 3. Examples of different triples of (𝛼, 𝛽, 𝛾) for 𝛼 = 𝛽 =
𝛾 = 𝑘𝜑 which result in the same form of ratios of the long-term 
two consecutive time of population sizes.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

𝜑 𝜑 𝜑 1 + 𝜑

2 𝜑 2 𝜑 2 𝜑 2 (1 + 𝜑)

3 𝜑 3 𝜑 3 𝜑 3 (1 + 𝜑)

4 𝜑 4 𝜑 4 𝜑 4 (1 + 𝜑)

⋮ ⋮ ⋮ ⋮
𝑘 𝜑 𝑘 𝜑 𝑘 𝜑 𝑘 (1 + 𝜑)

Table 4. Examples of different triples of (𝛼, 𝛽, 𝛾) for 𝛼 = 𝛽 = 𝛾 = 𝑘 + 𝜑

which result in the same form of ratios of the long-term two consecutive 
time of population sizes.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

𝜑 𝜑 𝜑 1 + 𝜑

1 + 𝜑 1 + 𝜑 1 + 𝜑 1 + 2 𝜑

2 + 𝜑 2 + 𝜑 2 + 𝜑 1 + 3 𝜑

3 + 𝜑 3 + 𝜑 3 + 𝜑 1 + 4 𝜑

⋮ ⋮ ⋮ ⋮
𝑘 + 𝜑 𝑘 + 𝜑 𝑘 + 𝜑 1 + (𝑘 + 1) 𝜑

Proof. Recall that the ratio of the modified Fibonacci sequence is given by �̃� =
𝛼∕2 + 1∕2

√
𝛼2 + 4𝛽𝛾 . If 𝛼 = 𝛽 = 𝛾 = 𝑘 with 𝑘 = 1, 2, 3, … then we have by �̃� =

𝑘∕2 + 1∕2
√

𝑘2 + 4𝑘2 = 𝑘(1∕2 + (1∕2)
√
5) = 𝑘𝜑. □
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Table 5. Examples of different triples of (𝛼, 𝛽, 𝛾) for 𝛼 = 𝛽 = 𝛾 = 𝜑𝑘

which result in the same form of ratios of the long-term two consecutive 
time of population sizes.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

𝜑 𝜑 𝜑 𝜑2

𝜑2 𝜑2 𝜑2 𝜑3

𝜑3 𝜑3 𝜑3 𝜑4

𝜑4 𝜑4 𝜑4 𝜑5

𝜑5 𝜑5 𝜑5 𝜑6

𝜑6 𝜑6 𝜑6 𝜑7

𝜑7 𝜑7 𝜑7 𝜑8

𝜑8 𝜑8 𝜑8 𝜑9

⋮ ⋮ ⋮ ⋮
𝜑𝑘 𝜑𝑘 𝜑𝑘 𝜑𝑘+1

Table 6. Examples of different triples of (𝛼, 𝛽, 𝛾) for 𝛼 = 𝛽 = 𝛾 = 𝜑𝑘 in 
Table 5, which result in the same form of ratios containing 𝐹𝑖, where 𝐹𝑖

denotes the 𝑖-th term of the original Fibonacci sequence.

Adult survival Juvenile survival Birth rate Ratio
(𝜶) (𝜷) (𝜸) (�̂�)

𝜑 𝜑 𝜑 𝜑 + 1
𝜑2 𝜑2 𝜑2 2 𝜑 + 1
𝜑3 𝜑3 𝜑3 3 𝜑 + 2
𝜑4 𝜑4 𝜑4 5 𝜑 + 3
𝜑5 𝜑5 𝜑5 8 𝜑 + 5
𝜑6 𝜑6 𝜑6 13 𝜑 + 8
𝜑7 𝜑7 𝜑7 21 𝜑 + 13
𝜑8 𝜑8 𝜑8 34 𝜑 + 21
⋮ ⋮ ⋮ ⋮
𝜑𝑘 𝜑𝑘 𝜑𝑘 𝐹(𝑘−1)𝜑 + 𝐹(𝑘−2)

Theorem 5. If 𝛼 = 𝛽 = 𝛾 = 𝑓 (𝜑) is a function of the golden ratio 𝜑 then the 

ratio �̃� of 𝑥𝑛+1∕𝑥𝑛 of the generalized Fibonacci sequence is also a function of 𝜑, 
specifically:

1. �̃� = 𝑘(𝜑 + 1) whenever 𝑓 (𝜑) = 𝑘𝜑,
2. �̃� = (𝑘 + 1)𝜑 + 1 whenever 𝑓 (𝜑) = 𝑘 + 𝜑,
3. �̃� = 𝜑(𝑘+1) whenever 𝑓 (𝜑) = 𝜑𝑘.

Proof. We present the proof for the above theorem

1. As before the ratio of the modified Fibonacci sequence is given by �̃� = 𝛼

2 +
1
2

√
𝛼2 + 4𝛽𝛾 . If 𝛼 = 𝛽 = 𝛾 = 𝑘𝜑 with 𝑘 = 1, 2, 3, … then we have �̃� = 𝑘𝜑

2 +
1
2

√
(𝑘𝜑)2 + 4(𝑘𝜑)2 = 𝑘𝜑 

(
1
2 +

1
2

√
5
)
= 𝑘𝜑2. Since 𝜑 is one of the solution of 

the characteristic equation associated with the Fibonacci sequence, it satisfies 

𝜑2 = 𝜑 + 1. Hence we have �̃� = 𝑘(𝜑 + 1) as required.

2. As before the ratio of the modified Fibonacci sequence is given by �̃� = 𝛼

2 +
1√

𝛼2 + 4𝛽𝛾 . If 𝛼 = 𝛽 = 𝛾 = 𝑘 + 𝜑 with 𝑘 = 1, 2, 3, … then we have �̃� =
2
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𝑘+𝜑

2 + 1
2

√
(𝑘 + 𝜑)2 + 4(𝑘 + 𝜑)2 = (𝑘 + 𝜑) 

(
1
2 +

1
2

√
5
)
= (𝑘 + 𝜑)𝜑. Since 𝜑 is 

one of the solution of the characteristic equation associated with the Fibonacci 

sequence, it satisfies 𝜑2 = 𝜑 + 1. Hence we have �̃� = (𝑘 + 𝜑)𝜑 = 𝑘𝜑 + 𝜑2 =
𝑘(𝜑2 − 1) + 𝜑2 = 𝑘𝜑2 + 𝜑2 − 𝑘 = 𝑘(𝜑 + 1) + (𝜑 + 1) − 𝑘 = 𝑘𝜑 + (𝜑 + 1) =
(𝑘 + 1)𝜑 + 1. Hence we have �̃� = (𝑘 + 1)𝜑 + 1 as required.

3. As before the ratio of the modified Fibonacci sequence is given by �̃� = 𝛼

2 +
1
2

√
𝛼2 + 4𝛽𝛾 . If 𝛼 = 𝛽 = 𝛾 = 𝜑𝑘 with 𝑘 = 1, 2, 3, … then we have �̃� = 𝜑𝑘

2 +
1
2

√
𝜑2𝑘 + 4𝜑2𝑘 = 𝜑𝑘

(
1
2 +

1
2

√
5
)
= 𝜑𝑘𝜑 = 𝜑𝑘+1 as required.

Note: Some numerical experiment also show that the last equation is equivalent 

to the expression �̃� = 𝐹(𝑛−1)𝜑 + 𝐹(𝑛−2) whenever 𝑓 (𝜑) = 𝜑𝑘, with 𝐹𝑖 denotes 

the 𝑖-th term of the Fibonacci sequence. We can observe that it is obvious 𝜑2 =
𝜑 + 1, and recursively we obtain the following:

𝜑3 = 𝜑(𝜑 + 1) = 𝜑2 + 𝜑 = (𝜑 + 1) + 𝜑 = 2𝜑 + 1,
𝜑4 = 𝜑(2𝜑 + 1) = 2𝜑2 + 𝜑 = 2(𝜑 + 1) + 𝜑 = 3𝜑 + 2,
𝜑5 = 𝜑(𝜑 + 2) = 3𝜑2 + 2𝜑 = 3(𝜑 + 1) + 2𝜑 = 5𝜑 + 3,
𝜑6 = 𝜑(5𝜑 + 3) = 5𝜑2 + 3𝜑 = 5(𝜑 + 1) + 3𝜑 = 8𝜑 + 5
⋮

𝑒𝑡𝑐

We can prove in general that 𝜑𝑘 = 𝐹𝑘𝜑 + 𝐹𝑘−1. It is clear that the formula true for 

some integer above. Let us assume that 𝜑𝑘 = 𝐹𝑘𝜑 + 𝐹(𝑘−1) holds for an integer 𝑘, 

we will prove that it also holds for the integer 𝑘 + 1 as what the follows.

𝜑(𝑘+1) = 𝜑𝑘𝜑 = (𝐹𝑘𝜑 + 𝐹𝑘−1)𝜑 = 𝐹𝑘𝜑2 + 𝐹𝑘−1𝜑

= 𝐹𝑘(𝜑 + 1) + 𝐹𝑘−1𝜑 = (𝐹𝑘 + 𝐹𝑘−1)𝜑 + 𝐹𝑘 = 𝐹𝑘+1𝜑 + 𝐹𝑘

Hence we have 𝜑𝑘 = 𝐹𝑘𝜑 +𝐹𝑘−1 for any 𝑘 ≥ 1. This is actually proof of the following 

theorem. □

Theorem 6. If 𝜑 is the golden ratio of the Fibonacci sequence then 𝜑𝑘 = 𝐹𝑘𝜑 +
𝐹𝑘−1 for any integer 𝑘 ≥ 1.

Corollary 1. If 𝛼 = 𝛽 = 𝛾 = 𝜑𝑘 then the ratio of 𝑥𝑛+1∕𝑥𝑛 of the generalized 

Fibonacci sequence is given by �̃� = 𝜑𝑘+1 = 𝐹𝑘+1𝜑 + 𝐹𝑘.

Proof. The proof is clear from Theorem 5 (point 3) and Theorem 6. □

4. Conclusion

We have presented a discussion regarding one way to modify and generalize the 

Fibonacci sequence via population dynamic perspective. The modified Fibonacci 
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sequence is able to model a steady state growth for certain choice of the triplet 

demographic parameters. A modified golden ratio is also presented and some 

interesting patterns are proved.
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