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Pathology reports primarily consist of unstructured free text and thus the clinical information contained in the reports
is not trivial to access or query. Multiple natural language processing (NLP) techniques have been proposed to auto-
mate the coding of pathology reports via text classification. In this systematic review, we follow the guidelines pro-
posed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Page et al., 2020:
BMJ.) to identify the NLP systems for classifying pathology reports published between the years of 2010 and 2021.
Based on our search criteria, a total of 3445 records were retrieved, and 25 articles met the final review criteria. We
benchmarked the systems based on methodology, complexity of the prediction task and core types of NLP models:
i) Rule-based and Intelligent systems, ii) statistical machine learning, and iii) deep learning. While certain tasks are
well addressed by these models, many others have limitations and remain as open challenges, such as, extraction of
many cancer characteristics (size, shape, type of cancer, others) from pathology reports. We investigated the final
set of papers (25) and addressed their potential as well as their limitations. We hope that this systematic review
helps researchers prioritize the development of innovated approaches to tackle the current limitations and help the ad-
vancement of cancer research.
Introduction

Although the cancer death rate has dropped 2.2% since 2016, it remains
the second leading cause of death in the United States, and it is estimated
that 1.9millionAmericanswill be diagnosedwith cancer in 2021.2,3 In thema-
jority of the cases, a biopsy is performed, and the diagnosis is made via histo-
pathological analysis. During this process, pathologists record highly
descriptive and specific observations of cells, organs, and tissue specimens in
unstructured and/or semi-structured pathology reports. These reports contain
immense quantities of relevant information,which is critical to advance cancer
research in fields like treatment selection, case identification, prognostication,
surveillance, clinical trial screening, risk stratification, retrospective study, and
many others.4–7 One essential challenge when retrieving these important de-
scriptive observations from pathology reports is that a large portion of the di-
agnosis is encoded in an unstructured, free-text format. State or national
cancer registries who track thousands or millions of patients typically must
extract this relevant information by using human experts to code information
to a normalized and structured form. This manual processing of information is
time-consuming, costly, error prone, and also imposes inherent limitations on
the volume and types of information that can be extracted.
ociation for Pathology Informatics.
To address these limitations and automate the information extraction
(IE) process on pathology reports, NLP has recently receivedmuch attention
from the cancer research communities.8–10 While a surge of research has
been published, only a few review/survey articles are available in this area
- with the latest one published in 2016,11 which mainly focuses on word/
phrase matching, probabilistic statistical machine learning, and rule-based
systems. Since then, the IE field in pathology has moved rapidly towards
deep learning12–14 and to our knowledge, no comprehensive review article
exists to cover the recent deep learning-based IE systems and benchmark
themagainst existing rule-based systems. Given the breadth of the pathology
IE field, there is a need to properly summarize these works and the current
status of the field to provide a steppingstone for future advancements.

In order to fill the gap, we performed a systematic review following the
standard PRISMA guidelines1 to describe the current literature in the area
of IE for pathology reports - primarily focusing on classification of diagnosis
labels and information extraction from cancer pathology reports. We assess
how these systems have been assisting in developing clinical decisions by
extracting relevant information from pathology reports and how they
have improved the quality of data creation. We benchmark the systems
based on the type of AI model, architecture, intelligent techniques, and
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performance measures. The remainder of the paper is organized as follows:
Section 2 - detailed methodology; Section 3 - main findings; Section 4 -
conclusion, including main contributions, limitations, and future research
directions in the field.

Methodology

This systematic review followed the PRISMA guidelines1 to identify,
select, and critically appraise all relevant research in natural language pro-
cessing systems that automatically classify and/or extract information from
cancer pathology reports.

In this systematic literature review, we retrieved articles from three
popular literature search engines: PubMed, Science Direct, and Google
Scholar. Afterwards, three reviewers with varying experience level
(TS (MS - Phd student), AT (Ph.D., Postdoc), and IB (Ph.D, Assis. Prof.))
screened all retrieved papers for relevance during screening phases, and
the reported results were based on the final set of selected papers. The over-
all search strategy is illustrated on Fig. 1.

The first step was to identify and retrieve papers based on the following
keywords: pathology AND cancer AND natural language processing.
Secondly, we excluded papers published before 2010 to focus on the re-
cent literature, yielding 3445 unique papers from three search engines.
Figure 1. Flow diagram of the search and inclusion process in the study. This studywas re
Analyses guidelines.1

2

The primary exclusion criteria were: (i) articles that were not peer re-
viewed, such as those in arXiv, (ii) articles that lack methodological de-
tails, (iii) articles not written in English, and (iv) studies that did not
primarily focus on NLP.

Next, we refined our selected papers to contain only articles related to
text classification and information extraction for cancer. In addition, we ex-
cluded articles which did not use pathology reports as the core input
dataset. These key steps were important to retrieve the relevant papers re-
lated to the focus of the review.

Lastly, we reviewed the papers methodology and model architecture.
Many papers have primarily focused on the clinical aspects but did not
provide sufficient details about the applied NLP methods. Therefore, we
excluded the papers which failed to describe the core benchmarking
criteria of our study - IE problem, the architecture of the model, the
datasets, or the evaluation metrics. Furthermore, we also excluded papers
which only used a commercial NLP software as their main model (e.g.,
DeepPhe15). After these steps, 25 studies remained matching the study
criteria. Papers were categorized into types of statistical machine learning
systems: (i) rule-based and intelligent systems, (ii) statisticalmachine learn-
ing, (iii) deep learning. Figure 2 represents a temporal publication timeline
of the papers included in this literature review in ascending order of publi-
cation date along with its category.
ported according to the Preferred Reporting Items for Systematic Reviews andMeta-



Figure 2. A temporal illustration of the reviewed papers included in this systematic review according to the publication date. Each color indicates different aspects of the
review: (i) black indicates a rule-based and intelligent system, (ii) green indicates a statistical machine learning model, and (iii) blue indicates a deep learning model
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Results

From the literature search, 25 papers were selected when applying the
inclusion and exclusion criteria (see Section 2). Themajority of the selected
papers aimed to develop NLP models to extract common cancer character-
istics (grade, stage, laterality, etc.) from pathology reports by formulating
the information extraction task as a classification problem. Other objectives
included prediction of International Classification of Diseases (ICD) codes
from cancer pathology reports. Table 1 summarizes the studies and in the
following section, we discussed the results in the following categories: (i)
rule-based and intelligent systems, (ii) statistical machine learning-based,
and (iii) deep learning-based.
Rule-based and Intelligent Systems

Rule-based natural language processing systems rely on expert-
developed rules to understand free-flowing text and extract information
such as named entities, interesting concepts, and relationships between en-
tities of interest. In the context of pathology reports, rule-based NLP was a
popular choice for processing pathology reports through 2019 at which
point both rule-based and statistical machine learning-based systems were
replaced in favor of deep learning although some rule-based systems
3

continued to be developed through 2019. In our review, we included nine
rule-based systems.

Earlier studies have focused mostly on applying rule-based NLP tech-
niques for IE on pathology reports with varying results.4,16–23 Buckley et
al.16 elaborated a combination of rules for extracting cancer entities (inva-
sive ductal cancer, invasive lobular cancer, ductal carcinoma in situ, atypi-
cal ductal hyperplasia, lobular carcinoma in situ, and usual ductal
hyperplasia and its variations, from pathology reports. Nguyen et al.19

designed a set of rules in combination with Medtex24 and SNOMED25 con-
cepts to identify if malignancy is presented in the pathology report. Glaser
et al.22 leveraged the combination of rule-based techniques, heuristics, and
regular expressions to extract the cancer stage - low grade, high grade, and
presence of muscularis propria from bladder cancer pathology reports.
These rule-based systems require domain expertise and large amounts of
manual effort in designing specific and carefully crafted rules for IE.
Furthermore, the design of such rules brittle and susceptible to small
changes in language, distribution of pathology, or redefinition of pathology
terms, and is therefore unsustainable in long-term.

Statistical Machine Learning

An alternative approach to manual rule engineering is to employ statis-
tical machine learning techniques like Support Vector Machines, Logistic



Table 1
Benchmarking of the natural language processing systems for pathology reports - prediction task, data and evaluation. Listed in ascending ordered according to the year of publication 2021–2010.

Citation Year Methodology Prediction Task Data Evaluation

Khosravi
et al.41

2021 Deep learning Classify cancer vs. benign and high vs. low-risk of prostate disease Local urology center database of 400 prostate cancer MRI
images and pathology re-ports

AUCs of 0.89 and 0.78 for classification of cancer vs benign and high vs
low risk, respectively

Gao et al.50 2020 Hierarchical
deep learning

Six cancer classification tasks: site, subsite, laterality , histology,
behavior, and grade

546, 806 cancer (all types) pathology re-ports obtained
from the SEER cancer registry program

F1 Micro of 0.92, 0.64, 0.92, 0.8, 0.98, and 0.82 for site, subsite,
laterality, histology, behavior, and grade, respectively

Saib et al.51 2020 Hierarchical
deep learning

Classify 9 ICD-O morphology grading 1813 breast cancer pathology reports obtained from a
local center database

F1 Micro of 0.91 and F1 Macro of 0.69 for classification of 9 ICD-O codes

Alawad
et al.43

2020 Deep learning Two cancer classification tasks: subsite with 317 labels and
histology with 556 labels

878,864 cancer (all types) pathology reports obtained
from the SEER cancer registry program

F1 Micro of 0.68 for subsite; F1 Micro of 0.79 for histology

Glaser et al.22 2019 Rule-Based Extract stage, grade, and presence of muscularis propria 3,042 Transurethral Resection of the Bladder Tumor
(TURBT) reports obtained from a local database

Accuracy of 82%, 88% , and 100% for extracting stage, specimens and
grade, respectively

Soysal et al.23 2019 Rule-based Extract cancer-related information in pathology reports (e.g., tumor
size, tumor stage, specimen, biomarkers, and others)

400 cancer (all types) pathology reports obtained from a
local center database

F1 average performance ranging from 0.87 to 0.99 for extracting cancer
information

Yoon et al.40 2019 Multi-task deep
learning

Four cancer classification tasks: subsite, laterality, behavior, and
histological grade

942 unstructured cancer (all types) pathology reports
obtained from the SEER cancer registry program

F1 Micro of 0.98, 0.98, 0.99, and 0.97, for Site, Laterality, Behavior, and
Grade, respectively F1 average of 0.98

Gao et al.49 2019 Hierarchical
deep learning

Five cancer classification tasks: site, laterality, behavior, histology,
and grade.

374,899 cancer (all types) pathology reports obtained
from the SEER cancer registry program

Accuracy of 0.9, 0.89, 0.96, 0.76, 0.71 for site, laterality, behavior,
histology, and grade, respectively

Alawad
et al.56

2019 Multi-task deep
learning

Five cancer classification tasks: site, laterality, behavior, histology,
and grade.

95,231 (all types) pathology reports obtained from the
SEER cancer registry program

F1 Micro of of 0.94, 0.82, 0.95, 0.65, and 0.76 for site, laterality, grade,
and behavior, re- spectively

Lee et al.21 2018 Rule-based Extract tissue slide identifier, biomarker names, and test result
identifier

867 bladder tumor (TURBTs) Pathology Reports
obtained from a local center database

F1 score of 0.99, 0.97, and 0.96 for extracting tissue slide identifier,
biomarker names, and test result, respectively Accuracy of 0.88

Yoon et al.39 2018 Deep learning Classify 12 ICD codes 942 pathology reports (breast and lung) obtained from a
local center database

F1 Micro of 0.78 for classification of 12 ICD-O codes

Alawad
et al.55

2018 Multi-task deep
learning

Three cancer classification tasks: site, laterality, and histology 942 site, 642 histology, and 815 laterality pathology
reports obtained from a local center database

F1 Micro of 0.77, 0.79, and for primary site, grade, and laterality,
respectively

Qiu et al.38 2017 Deep learning Classify 12 ICD codes 942 pathology reports (breast and lung) obtained from a
local center database

F1 Micro of 0.72 for classification of 12 ICD-O codes

Gao et al.47 2017 Hierarchical
deep learning

Two cancer classification tasks: primary site, and grade 942 cancer (all types) pathology reports obtained from
the SEER cancer registry program

F1 Micro score of 0.8 and 0.91 for primary site and histological grade,
respectively

Schroeck
et al.4

2017 Rule-based Extract histology, invasion , grade, carcinoma, and presence of
muscularis propria

600 bladder pathology reports obtained from a local
center database

Accuracy ranged from 0.83 to 0.96 for extracting histology, invasion,
grade, carcinoma, and muscularis.

Nguyen
et al.19

2017 Rule-based Identify cancer notifiable patients 45.3 million pathology HL7 messages Sensitivity of 0.96 and specificity of 0.96

Breischneider
et al.20

2017 Rule-Based Extraction of size, grading, hormone, and lymph nodes 8,766 breast cancer reports obtained from a local center
database

Accuracy of 0.41, 0.77, 0.86, and 0.78 for extracting size, grading,
hormone, and lymph nodes, respectively

Oleynik
et al.32

2017 Statistical
Machine
Learning

Classify ICD codes 94,000 pathology reports obtained from a local center
database

F1 of 0.82 and 0.73 for classifying ICD codes from topography and
morphology classes.

Yala et al.33 2017 Statistical
Machine
Learning

IE of tumor characteristics 91,000 breast pathology reports F1 score of 0.92

Napolitano
et al. 57

2016 Statistical
Machine
Learning

Classify pathology reports and chunk recognition 798 surgical pathology reports obtained from a local
center database

Accuracy of 0.994

Wieneke
et al.31

2015 Statistical
Machine
Learning

Three classification tasks: procedure, laterality, and result 3234 pathology reports F1 Micro score of 0.8, 0.92, and 0.5 for procedure, laterality, and result,
respectively

Kavuluru
et al.30

2013 Statistical
Machine
Learning

Classify ICD-O-3 codes 56,000 pathology reports obtained from a local center
database

F1 Micro of 0.9 and F1 Macro of 0.71 for classification of ICD- O-3 codes
F1 score of 0.93

Buckley
et al.16

2012 Rule-based IE of cancer characteristics 76,333 breast pathology reports obtained from a local
center database

Specificity of 0.96

Martinez
et al.29

2011 Statistical
Machine
Learning

IE of cancer characteristics 217 clinical records obtained from a local center
database

F1 of 0.58 and 0.7 for Tumor Site and Nodes Examined, respectively
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Regression, and Random Forest classifiers.26–28 Instead of using manually
curated rules, these approaches use a hidden vector space representation
of the textual reports to learn patterns in the data to automate extraction
of relevant terms/information from pathology reports.29–33 However,
such systems need supervision in the form of labeled data.

To automate the extraction of ICD codes from cancer pathology reports,
Kavuluru et al.30 used Unified Medical Language System (UMLS)34 entities
to map the text and utilized Concept Unique Identifiers (CUIs) from UMLS
codes as feature inputs to a support vector machinemodel for classification.
To automatically convert free-text pathology reports into structured data,
Yala et al33 presented a boosting classifier using weak learners to identify
tumor features. Their primary contributionwas the establishment of a data-
base of pathology report features that could be utilized to identify patient
groups with certain characteristics. The main drawback of these methods
is that they are not able to capture either the semantic or syntax information
from the text whenmaking a prediction. In otherwords, they are not able to
create complex sentence representations since often they only consider the
presence or frequency of word occurrences, irrespective of their ordering in
a sentence which could have significant impact in actual meaning of
the text.

Deep Learning

Deep learning algorithms have improved upon the limitations of tradi-
tional statistical machine learning models and demonstrated superior per-
formance in many NLP tasks, including Text Classification and Information
Extraction. These improvements are strongly related to the deeper network
designs and their ability to create complex sentence representations known
as word embeddings. Distributed representation of words involves low-
dimensional real-valued vectors in which words that have similar meaning
or are used in similar ways have a similar representation. Moreover,
sequential deep learning models like recurrent neural networks (RNN)
and long short-term memory networks lend themselves naturally to the
task of processing sequences of free-flowing text, which enables them to
capture the meaning of word-ordering for a variety of tasks like machine
translation35 and named entity recognition.36

We have found that many of the most recent NLP application in pathol-
ogy are designed based on deep learning models and use a distributed rep-
resentation of words to represent the data input.37–41 John et al.38

investigated the usage of convolutional neural networks (CNN)42 to classify
ICD codes from breast and lung cancer pathology reports. The authors re-
ported their best system with a F1-micro score of 0.722 over 12 ICD-O-3
topography codes. Mohammed et al.43 proposed to use concept CUIs from
UMLS as another source of information to a CNN model to improve
model performance towards class imbalanced datasets.

The likely explanation for the improvement of performance of deep
learning models over traditional statistical machine learning models is
that these deep networks are able to learn very complex structures and
relationships between words and labels that are often too complex to be
observed by simpler techniques. Although DL methods have made many
breakthroughs and have achieved state-of-the-art results in many clinical
and non-clinical NLP tasks, these methods have several limitations. First,
the number of trainable parameters is extremely high, making these
methods very computationally expensive to train. As a consequence, DL
models require a large volume of quality labeled data to be effectively
trained and to be able to generalize on unseen data, also known as out-of-
distribution data. There is also an issue of opacity - once a deep learning
system has been trained, it is not always clear how the model makes deci-
sions which limits the ability to troubleshoot in case of errors. As a result,
deep learning models frequently lack interpretability, which can lead to
unseen biases, decreased trust, and ultimately decreased adoption.

Hierarchical-deep Models
Despite recent advancements, adapting generic deep learning architec-

tures to perform IE from pathology reports is challenging since pathology
reports present a unique challenge where only a small fraction (usually 2–
5

3 sentences) of a lengthy document is relevant to the specific classification
task and positioning of that segment is not standard. Common DL models
architectures like RNNs and CNNs have difficulty retaining information
over long text sequences44 and they often cannot perform well under such
specific conditions.

To overcome such limitations, recent work in pathology NLP has been
focused on attention mechanisms45 and hierarchical models.46 Attention
mechanisms learn relative importance of each textual token in the input
text sequence in the context of downstream task such as classification,
allowing them to focus on relevant parts of long input sequences. Hierarchi-
cal models leverage the hierarchical nature of textual input where words
form sentences, and sentences form documents. Hence, word embeddings
are aggregated to build sentence embeddings, and the model is trained to
learn sequential sentence embedding to form document representation.
The main goal of both approaches is to be able to get a more complex
sentence and document representation, which can lead to a boost in per-
formance of the deep learning model and also improve the interpretability
of the models at multiple scales - sentence and word levels.47–51

Shang Gao et al.49 proposed a hierarchical self-attention networks
(HiSANs) model for cancer pathology information extraction and text
classification. Inspired by the transformer architecture45 and its attention
mechanism, Shang Gao et al.49 proposed to replace the vanilla RNN part
of the previous model (sentence-wise and word-wise) with a transformer
self-attention layer. The authors reported a macro F1 score52 of 63.4, 50,
84, 30.2, and 74.3 for detecting site, laterality, behavior, histology, and
tumor grade, respectively, using a large cancer pathology report dataset ob-
tained from the National Cancer Institute’s Surveillance, Epidemiology, and
End Results (SEER) program. To capture document-level relationships be-
tween clinical reports from the same patient, Shang Gao et al.50 expanded
their previous HiSANs49 architecture to incorporate case-level context
(aggregating information across multiple documents) from a sequence of
related cancer pathology reports for information extraction and classifica-
tion. The authors observed a substantial improvement in performance indi-
cating that case-level context improved tumor site and morphology
categorization considerably. Waheeda Saib et al.51 proposed a hierarchical
CNN model to automate the classification of breast pathology reports into
relevant International Classification of Disease for Oncology codes. The
authors reported a micro and macro F1 of 0.918 and 0.692, respectively,
for classifying 9 distinct ICD-O classes from 1813 anonymized unstructured
breast cancer pathology reports. Although these methods have boost the
performance of pathology report classification, they are often designed to
operate on a single-task for extracting a particular characteristic. In conse-
quence, different DL models must be developed for each task separately
to generate a comprehensive understanding of pathology documentation
(e.g., different cancer subgroups, stages), imposing additional duplicate
workflows. Furthermore, the model does not consider possible shared key
characteristics that might be common between different cancer types in
pathology reports.

Multi-task learning (MTL)
Multi-task deep learning frameworks allow training of a unified model

for several related downstream tasks such as part-of-speech tagging and
named entity recognition from a text document.53 It is intuitive to assume
that derived features useful for one predictive task must be relevant to
another related predictive task. Multi-task frameworks allow related tasks
to jointly learn and share hidden layer representations, improving quality
of these representations and generalization capability of overall framework.54

Hong-Jun Yoon et al.37 were one of the first researchers to look into
using MTL to extract information from pathology reports. They observed
that MTL may be used in conjunction with DL models to enhance overall
quality and performance when extracting information from pathology re-
ports. Mohammed Alawad et al.55 proposed a single end-to-end multi-task
CNN model to extract the primary site, histological grade, and laterality
from unstructured cancer pathology text reports. In their work, they devel-
oped an approach using two stages. In the first stage, a MTL CNN model is
trained for all tasks. Subsequently, using a transfer learning approach, the
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MTL CNN model parameters are used to initialize a CNN model for each
individual task (onemodel per task). The drawback of their work is the lim-
ited number of cancer types and information extraction tasks performed.
Another limitation was the size of the corpus, which included only a
few hundred reports in each task. To address many of these challenges,
Mohammed Alawad et al.56 improved their previous CNN network55 by
adding a cross-stitch method to train a word-level CNN for the automatic
extraction of cancer data from pathology reports. Their proposed method
enhanced the state-of- the-art performance on IE from pathology reports
by demonstrating how related information may be utilized to create shared
representations. Although these methods have achieved state-of-the-art re-
sults on IE from cancer pathology reports, they are still very dependent on
the CNN architecture and its limitations. For instance, because CNNmodels
use a fixed window (which is usually small) for the convolution operation,
thesemodels can only capture linguistic relationshipswithin thatfixedwin-
dow size of words. This brings back the challenge of how to extract rela-
tively small elements of relevant information from lengthy pathology
reports.

1. Discussion and Future Directions

Our systematic review shows there has been a considerable increase in
the number of studies using NLP and deep learning on pathology reports in
recent years. We observed that the majority of studies contain NLP systems
that perform one of three tasks: (i) extraction of cancer characteristics
(grade, stage, histology, laterality, etc.), (ii) classification of ICD 9/10
codes from cancer pathology reports, or (iii) extraction of anatomic infor-
mation including lesion characteristics (size, shape, and cellular appear-
ance of a specimen). The major benefit of using NLP is automation - such
systems can reduce manual effort when extracting useful information in a
large scale. In this section, we discuss the pros and cons of the recent pub-
lications and offer some insights of how NLP is developed and applied to
the pathology domain. Furthermore, we discuss their limitations and offer
some recommendations that summarize the recent trends.

1.1. Principal Findings

Recently, deep learning has been adapted for many NLP tasks and
yielded promising results, including information extraction from pathology
reports. The key difference between ML and DL approaches is the fact that
unlike traditional ML models, DL algorithms do not use one-hot encoding
for word representations. Instead, DLmodels represent words as embedded
vectors, known as word embeddings. In deep learning, CNN architectures
was the most popularmethod used among the reviewed papers. This recent
trend is due to the fact that 1D-CNNs which are designed tofind spatial pat-
terns in images, are able to efficiently capture the semantics of short textual
sequences from pathology reports and generate superior performance to
ML models. Although ML and DL approaches are more powerful, they can-
not be used for very small and/or imbalanced datasets, in which case rule-
based/intelligent techniques may be more effective. Deep learning models
also have an extremely high number of trainable parameters, making these
methods very computationally expensive to train. One research direction to
alleviate some of these limitations are the use of pre-trained models and
shared-task representation. These approaches often only require fine-
tuning the model for the downstream task, which reduces the computa-
tional cost. John et al.38 studied how word-vector representations using a
CNN classifier performed consistently better than conventional Term
Frequency-Inverse Document Frequency (TF-IDF)58 approaches when
classifying ICD codes from pathology reports. Another method to improve
DL model performance is to incorporate domain expertise knowledge.
Mohammed et al.43 observed that the combination of word embeddings
and CUIs from UMLS with a CNN classifier improved model performance
towards class imbalanced on pathology datasets. Further work in this area
could result in more stable and generalizable models and improve model
performance when dealing with small or imbalanced datasets.
6

Lately, there has been a significant shift in NLP research toward
bi-directional encoder representations from transformers (BERT).59 This
algorithm utilizes a self-attention mechanism transformer,45 and is a
context-preserving NLP technique. In other words, BERT can represent
words or sequences in a way that captures the contextual information, caus-
ing the same sequence of words to have different representationswhen they
appear in different contexts. In the clinical domain, specialized domain
BERT models have been introduced such as BioBERT,60 ClinicalBERT,61

Blue-BERT,62 and CharacterBERT63 that are tailored for medical report in-
terpretation. Shang Gao et al.49,50 proposed two hierarchical classification
models where they replaced the vanilla RNN of the word and sentence
representations with a transformer self-attention layer.45 They observed a
substantial improvement of performancewhen comparedwith a traditional
DL model like CNNs. They also found that these models can give a signifi-
cant attentionweight even for rare words, which are often present in under-
represented or undersampled entities. However, despite this new trend and
the advancements to enhance text representation made by Transformer
models,45 to our knowledge, there are no studies adapting BERT models
to pathology tasks. Therefore, more exploration on the use of contextual-
ized embeddings and attentionmechanisms are needed in order to enhance
pathology text representations.

Multiple pathology reports may be generated over the course of a pa-
tient’s disease and include information regarding evolution of the same ma-
lignancy. However, there are currently relatively few publications that look
at how longitudinal datamay be used to improve the overall quality and per-
formance of cancer pathology report classification. It stands to reason that
prior information is valuable for IE, given that a patient with a given cancer
type is more likely to continue to have reports pertaining to the same cancer,
hence narrowing the list of potential pathology entities to be classified in fu-
ture reports. Mohammed Alawad et al.56 developed a hard parameter shar-
ing word-level MT-CNN model and a cross-stitch word-level MT-CNN
model that effectively showed how related information from multiple pa-
thology reports could be used to learn shared representations acrossmultiple
tasks (primary site, laterality, grade, etc) and achieve state-of-the-art perfor-
mance in classification accuracy. Future research should explore how these
different aspects of amalignancymay be related and how these relationships
can be incorporated with deep learning methods.

Finally, we observed that most studies remain in a proof-of-concept
stage and have not yet been deployed in a clinical setting. We believe that
there may be several reasons for the lack of implementation of NLP systems
in routine clinical practice. First, althoughmost studies used annotated data
as their gold-standard for measuring model performance, inter-annotator
agreement for most studies is unknown. In addition, some studies lack in
describing the training, test, and validation splits. These measures are es-
sential to ensure reproducibility and comparison to future work. Another
issue is that the majority of the reviewed studies used retrospective data
from a single institution when training and testing the NLP systems which
may result in overfitting and decreased generalizability at external sites.
Although performance ofmodels should be assessed usingmultiple datasets
across institutions, the availability of data remains limited due to ethics and
privacy concerns.

1.2. Recommendations

This systematic review has shown that there is a clear necessity for pa-
thology NLP systems to evolve beyond traditional deep learning methods.
To progress the field, the following recommendations could be considered:

1. Increase focus on enhanced word and sentence representations. While
progress has beenmade in using deep learningmodels andword embed-
dings for text representation, further efforts must be made to develop
contextualized representations from pathology reports.

2. Focus on extracting multiple elements from pathology reports with
shared model parameters and text embedding representations. The
majority of pathology report datasets included in this review had
many cancer types reported. As such, significant attention should be
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given to multi-task models to extract multiple cancer types and its
characteristics.

3. Clarify methodologies. To enable inter-study comparisons and increase
study reproducibility, authors must report study properties clearly, for
example:

• Data characteristics: dataset size, number of reports, sentences, unique
words, distribution of the dataset, number of patients, demographic
information of patients (if applicable), and others.

• Performance metrics: authors should clearly state which metrics they
are using. In addition, authors should not solely rely on just one evalu-
ation metric, they should include a range of metrics, like precision, ac-
curacy, recall, F1 score, receiver operating characteristic curve (ROC),
area under the ROC curve (AUC), and many others.

• Test of significance: When comparing different methods, a test of sig-
nificance, like p-value test, should be performed.

4. Usage of prospective validation and external validation data. In order to
avoid model over-fitting and to make generalizable models, authors
should perform external validation. In addition, authors should also per-
form a prospective validation, where the most up-to-date data is re-
served for testing.

5. In order to effectively advance pathology NLP systems, large-scale cor-
poramust become available to researches. While other fields like radiol-
ogy have shared datasets like MIMIC64 and i2b2,65 there are no publicly
available pathology report datasets.

1.3. Limitations of Study

This systematic review examined the last 11 years literature of the use
of NLP to automatic classify cancer pathology reports andmay have the fol-
lowing limitations. We limited our search to only three online sources:
PubMed, Science Direct, and Google Scholar. Furthermore, as the publica-
tion search is based on the reviewer criteria and the search keywords, it is
subject to bias. Finally, the review is limited to articles written in English.
While we try to be precise and objective during our review process, because
of the listed limitations, it is possible that our search strategies did miss rel-
evant publications.
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