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Abstract
The	main	aim	of	this	paper	is	to	address	consequences	of	climate	warming	on	loss	of	
habitat	and	genetic	diversity	in	the	enigmatic	tropical	alpine	giant	rosette	plants	using	
the	Ethiopian	endemic	Lobelia rhynchopetalum	 as	a	model.	We	modeled	 the	habitat	
suitability	of	L. rhynchopetalum	and	assessed	how	its	range	is	affected	under	two	cli-
mate	models	and	four	emission	scenarios.	We	used	three	statistical	algorithms	cali-
brated	 to	 represent	 two	 different	 complexity	 levels	 of	 the	 response.	We	 analyzed	
genetic	 diversity	 using	 amplified	 fragment	 length	 polymorphisms	 and	 assessed	 the	
impact	of	the	projected	range	 loss.	Under	all	model	and	scenario	combinations	and	
consistent	across	algorithms	and	complexity	 levels,	 this	 afro-	alpine	flagship	 species	
faces	massive	range	reduction.	Only	3.4%	of	its	habitat	seems	to	remain	suitable	on	
average	by	2,080,	resulting	in	loss	of	82%	(CI	75%–87%)	of	its	genetic	diversity.	The	
remaining	suitable	habitat	is	projected	to	be	fragmented	among	and	reduced	to	four	
mountain	peaks,	further	deteriorating	the	probability	of	long-	term	sustainability	of	vi-
able	populations.	Because	of	the	similar	morphological	and	physiological	traits	devel-
oped	through	convergent	evolution	by	tropical	alpine	giant	rosette	plants	in	response	
to	diurnal	freeze-	thaw	cycles,	they	most	likely	respond	to	climate	change	in	a	similar	
way	 as	 our	 study	 species.	 We	 conclude	 that	 specialized	 high-	alpine	 giant	 rosette	
plants,	such	as	L. rhynchopetalum,	are	likely	to	face	very	high	risk	of	extinction	follow-
ing	climate	warming.
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1  | INTRODUCTION

Both	climate	change	and	land	use	intensification	following	population	
pressure	(Grünenfelder,	2005;	Hedberg,	1964)	are	potential	threats	to	
high-	altitude	species	in	tropical	alpine	habitats.	The	Intergovernmental	

Panel	on	Climate	Change	 (IPCC,	2014)	estimates	 that	anthropogen-
ically	driven	 climate	warming	 in	 the	21st	 century	 is	 likely	to	exceed	
1.5°C	relative	to	the	1850–1900	period	in	all	scenarios	and	exceeds	
2.0°C	in	many	scenarios.	The	rate	of	temperature	increase	in	moun-
tainous	 systems	 is	 projected	 to	 be	 considerably	 higher,	 possibly	
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two-		to	threefolds	compared	to	that	recorded	during	the	20th	century	
(Nogués-	Bravo,	Araújo,	Errea,	&	Martinez-	Rica,	2007).	As	mountain-
ous	areas	present	steep	biotic	and	abiotic	gradients,	such	a	dramatic	
change	is	expected	to	have	a	pronounced	impact	on	biodiversity,	eco-
systems,	and	the	services	they	provide	(Price,	2000).

Organisms	 respond	 to	 changes	 in	 climate	 through	 adaptation	
(Davis,	 Shaw,	 &	 Etterson,	 2005;	 Parmesan,	 2006)	 or	 through	 range	
shifts	 toward	 the	poles	 (Pearson,	Dawson,	Berry,	&	Harrison,	2002;	
Thomas,	Franco,	&	Hill,	2006;	Thomas	et	al.,	2004)	and	higher	eleva-
tions	(Grabherr,	Gottfried,	&	Pauli,	1994;	Keller,	Kienast,	&	Beniston,	
2000;	Lenoir,	Gegout,	Marquet,	de	Ruffray,	&	Brisse,	2008;	Pauli	et	al.,	
2012;	Pearson	et	al.,	2002).	Climate	change	is	also	expected	to	result	
in	local	or	global	extinction	of	many	animals	and	plants	(Dullinger	et	al.,	
2012;	Thomas	 et	al.,	 2004,	 2006;	Thuiller,	 Lavorel,	Araujo,	 Sykes,	&	
Prentice,	2005).	Species	that	are	confined	to	marginal	areas	such	as	
mountain	tops,	polar	regions,	and	islands	may	not	have	sufficient	suit-
able	habitat	left	to	escape	climate	change	and	hence	may	face	massive	
range	contraction	associated	with	high	 risks	of	extinction	 (Dullinger	
et	al.,	2012;	Lenoir	et	al.,	2008).

Upward	 shifts	 in	 response	 to	 recent	 climate	 change	 are	 already	
measurable,	although	they	tend	to	lag	behind	the	velocity	of	climate	
change	(Bertrand	et	al.,	2011).	Several	historical	surveys	using	perma-
nent	plots	have	 shown	 that	 species	with	high	 thermal	demands	are	
invading	higher	 zones,	whereas	 species	with	 lower	 thermal	 require-
ments	are	retreating	to	even	higher	altitudes	(Keller	et	al.,	2000;	Lenoir	
et	al.,	2008;	Pauli	et	al.,	2012).	A	study	of	26	peaks	exceeding	3,000	m	
in	Western	Austria	and	Eastern	Switzerland	found	up	to	70%	increase	
in	 species	 richness	 since	 the	 beginning	 of	 the	 20th	 century	 due	 to	
immigration	of	lower-	elevation	species	(Grabherr	et	al.,	1994).	A	com-
parison	of	the	altitudinal	distributions	of	171	forest	species	between	
1905	 and	 2005	 showed,	 on	 the	 average,	 29	m	 upward	 shift	 of	 the	
species’	 distribution	centers	per	decade	 (Lenoir	 et	al.,	 2008).	Nearly	
the	same	average	upward	shift	rate	(27	m	per	decade)	was	reported	
for	125	species	endemic	to	the	Himalaya	Mountains	(Telwala,	Brook,	
Manish,	&	Pandit,	2013).	An	analysis	of	a	 long-	term	data	set	on	the	
upper	limits	of	plants	from	the	beginning	of	the	20th	century	for	25	
mountains	 in	 the	European	Alps	 showed	an	upward	 shift	exceeding	
100	m	for	most	species,	with	an	average	of	about	10	m	per	decade,	
and	33	species	were	recorded	as	new	to	the	summits	(Frei,	Bodin,	&	
Walther,	2010).	The	nival	 species	of	Swiss	and	Austrian	peaks	were	
reported	to	migrate	5	m	upwards	per	decade	(Grabherr	et	al.,	1994).

There	 are	 also	 conceptual	 (Lenoir	 et	al.,	 2010)	 and	 observation-	
based	reports	(Lenoir	et	al.,	2008;	Pauli	et	al.,	2012)	indicating	that	a	
considerable	proportion	of	species	does	not	follow	this	general	trend,	
with	many	species	not	moving,	or	even	moving	their	centers	of	eleva-
tion	distribution	downslope.	Habitat	modification,	changes	in	rain	and	
snowfall	regimes,	and	changing	competitive	interactions	among	spe-
cies	are	thought	to	explain	these	downward	range	shifts	(Lenoir	et	al.,	
2010).	In	Mediterranean	mountains,	species	richness	has	been	found	
to	 decrease	 probably	 due	 to	 decreased	 moisture	 availability	 (Pauli	
et	al.,	2012).	This	illustrates	that	the	effects	of	changing	temperatures	
are	not	always	easy	to	project,	as	climate	change	may	have	cascading	
effects	on	abiotic	and	biotic	factors.

One	of	the	most	important	features	characterizing	tropical	alpine	
habitats	is	the	lack	of	pronounced	seasonal	variation	in	temperature.	
Instead,	 the	 diurnal	 variation	 in	 temperature	 is	 extremely	 high	with	
warm	days	alternating	with	very	cold	nights,	when	temperatures	can	
drop	well	 below	 0°C.	 Tropical	 alpine	 habitats	 are	 therefore	 unique,	
and	they	are	famous	for	their	conspicuous	giant	rosette	plants,	which	
show	intricate	adaptations	to	such	extreme	diurnal	temperature	vari-
ations	(Fetene,	Gashaw,	Nauke,	&	Beck,	1998;	Halloy,	1983;	Hedberg,	
1964;	Nagy	&	Grabherr,	2009).	Because	of	prolonged	cold	stress	and	
snow	accumulation	in	winter,	temperate	alpine	habitats	do	not	sustain	
plants	of	such	large	 life	forms,	while	the	highest	mountains	 in	tropi-
cal	Africa	are	renowned	for	their	many,	and	often	vicariant,	species	of	
giant	groundsels	(Dendrosenecio)	and	giant	lobelias	(Lobelia;	Hedberg,	
1964).

Although	many	giant	rosette	plants	are	only	distantly	related	phy-
logenetically,	 they	have	developed	 similar	 distinctive	morphological,	
physiological,	and	life	history	adaptations	to	the	diurnal	freeze-	thaw	
cycles	of	tropical	alpine	habitats	(Halloy,	1983).	These	complex	adap-
tations	 include	 the	 following:	 (i)	 retaining	old	 leaves	as	a	 shelter,	 (ii)	
accumulating	water	within	body	parts	to	minimize	thermal	shocks,	and	
(iii)	having	 large	rosette	 leaves	which	fold	during	the	freezing	nights	
through	nyctinastic	leaf	movements	to	protect	the	delicate	buds.	They	
also	share	some	seemingly	paradoxical	morphological	and	physiolog-
ical	traits.	In	tropical	as	well	as	other	mountains,	the	height	of	plants	
normally	decreases	with	increasing	altitude	(Smith,	1980),	while	giant	
rosette	 plants	 have	 evolved	 a	 noticeable	 exception	 to	 this	 general	
pattern	as	one	of	 their	 adaptation	mechanisms	 (Fetene	et	al.,	 1998;	
Meinzer,	 Goldstein,	 &	 Rundel,	 1985;	 Smith,	 1980;	 Smith	 &	 Young,	
1987).	The	temperature	near	the	ground	is	very	low	during	night	and	
highly	fluctuating	 throughout	 the	day	as	 compared	 to	 the	 tempera-
ture	more	than	1	m	above	the	ground	(Fetene	et	al.,	1998).	The	main	
advantage	 gained	 by	 a	 tall	 life	 form	 is	 to	 escape	 the	 strong	 diurnal	
temperature	fluctuation	near	the	ground	and	to	avoid	freezing	of	api-
cal	meristems	(Fetene	et	al.,	1998).	As	the	freeze-	thaw	cycles	aggra-
vate	with	increasing	altitude,	giant	rosette	plants	grow	taller	at	higher	
altitudes	in	order	to	keep	the	apical	meristem	farther	away	from	the	
ground	where	freezing	is	more	severe.	Taller	plants	have	faster	growth	
rate,	implying	that	their	growth	rate	increases	with	age,	representing	
yet	another	paradox.	In	addition,	the	amount	of	water	stored	in	their	
pith	and	leaves	also	increases	with	altitude	(Smith	&	Young,	1987).

In	this	study,	we	assess	the	risk	of	losing	habitat	and	genetic	diver-
sity	in	the	iconic	giant	rosette	plant	Lobelia rhynchopetalum	Hemsl.	due	
to	 climate	 change	 in	 the	 Ethiopian	mountains,	which	 represent	 the	
largest	contiguous	high-	mountain	system	of	Africa.	Under	the	current	
climate,	 this	species	 is	widespread	and	reaches	the	highest	peaks	 in	
the	country,	such	as	in	the	Simen	and	Bale	Mountains	and	in	Mount	
Choke,	and	it	can	therefore	be	expected	to	lose	its	range	under	future	
warmer	climates.	Lobelia rhynchopetalum	 is	endemic	to	the	Ethiopian	
mountains	and	the	only	representative	of	the	giant	rosette	 life	form	
in	this	high-	alpine	area.	While	most	other	plants	rarely	exceed	0.5	m	
in	height	 in	 the	alpine	zone	of	Ethiopia,	L. rhynchopetalum	 can	grow	
taller	than	10	m	(Fetene	et	al.,	1998).	It	is	confined	to	the	alpine	zone	
and	 thus	 serves	 as	 a	 conspicuous	 indicator	 species	 of	 the	 tropical	
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alpine	habitat.	In	addition,	it	is	a	tourist	attraction	and	it	has	thus	not	
only	ecological	importance	but	also	recreational	and	economic	value	
(Geleta	&	Bryngelsson,	2009).

As	L. rhynchopetalum	has	developed	adaptations	to	the	high-	alpine	
tropical	climate	similar	to	those	of	other	tropical	alpine	giant	rosette	
plants	 through	convergent	evolution,	 it	 can	be	considered	as	 repre-
sentative	of	other	giant	rosette	plants	with	respect	to	vulnerability	to	
climate	change.	Here,	we	project	the	current	distribution	of	L. rhyncho-
petalum	and	evaluate	how	its	habitat	range	may	respond	to	different	
future	 climate	 scenarios.	We	do	 so	by	using	 an	 ensemble	 approach	
using	 three	 different	 statistical	methods,	 and	 by	 fitting	 both	 a	 sim-
ple	 and	 a	 complex	model	 parameterization	 (Merow	et	al.,	 2014)	 for	
each	model	 for	building	 the	ensemble.	We	also	assessed	 its	current	
genetic	 diversity	 by	 genotyping	 samples	 from	 three	main	mountain	
systems	across	the	Ethiopian	Highlands	(Simen,	Bale,	and	Choke)	using	
genome-	wide	amplified	fragment	length	polymorphism	(AFLP)	mark-
ers.	In	particular,	we	estimate	to	what	degree	genetic	diversity	is	geo-
graphically	structured	in	these	archipelago-	like	African	high	mountains	
and	predict	loss	of	genetic	diversity	due	to	climate-	driven	range	loss.

2  | MATERIALS AND METHODS

2.1 | Study species and distribution data

Lobelia	 (Lobeliaceae)	 comprises	 ca.	 300	 mainly	 tropical/subtropical	
species,	of	which	18	occur	in	Ethiopia	(Thulin,	2006).	The	exclusively	
alpine	L. rhynchopetalum	(ca.	3,400–4,500	m)	is	characterized	by	a	sin-
gle	erect	stem	growing	to	10	m	or	more	in	height,	by	entire,	smooth,	
glossy,	lanceolate	to	oblanceolate	rosette	leaves	up	to	80	cm	long	and	
12	cm	wide,	and	by	a	single,	dense,	and	several	meters	long	terminal	
inflorescence.

For	 sampling,	we	 selected	 three	 Ethiopian	 alpine	mountain	 sys-
tems	located	at	different	latitudes.	The	Bale	Mountains	(6.9oN,	39.7oE)	
are	found	southeast	of	the	Great	East	African	Rift	Valley,	while	Mount	
Choke	(10.7oN,	37.8oE)	and	the	Simen	Mountains	(13.2oN,	38.8oE)	are	
located	northwest	of	the	Rift	Valley	(Figs.	1a,	b).	We	sampled	a	total	
of	24	transects	running	downwards	 in	eight	different	cardinal	direc-
tions	from	mountain	peaks	(starting	as	high	as	4,500	m	a.s.l.)	that	were	
found	on	different	sides	of	each	mountain	system	to	below	the	treeline	
(ca.	3,500	m).	At	each	50	m	altitudinal	 interval	 in	each	 transect,	 the	
presence	or	absence	of	L. rhynchopetalum	in	one	20	m	x	20	m	plot	was	
recorded	 (Table	 S1).	 For	 the	 area	 below	 the	 treeline,	where	 L. rhyn-
chopetalum	 is	known	to	be	absent,	we	generated	additional,	random	
pseudo-	absence	points	in	a	number	proportional	to	the	area-	weighted	
observation	 density	 made	 above	 the	 treeline.	 These	 two	 data	 sets	
were	combined	and	used	for	model	training.	In	total,	we	sampled	218	
plots	(87	presences),	and	we	added	612	pseudo-	absences	from	below	
the	treeline.	For	model	evaluation,	we	used	an	independent	presence–
absence	data	set	obtained	as	part	of	separate	field	campaigns	in	the	
same	three	mountain	systems	(for	collection	of	samples	for	the	genetic	
diversity	study,	see	below).	This	data	set	contained	26	presence	and	
seven	absence	points	to	which	we	added	113	pseudo-	absence	points	
below	the	treeline	using	the	same	area-	based	weighting.

2.2 | Predictor variables

Averages	of	monthly	precipitation	sum	and	minimum	and	maximum	
monthly	temperature	at	1	km	spatial	resolution	of	both	current	and	
future	 climate	 using	 different	 scenarios	 were	 obtained	 from	 the	
global	climate	data	set	WorldClim	(Hijmans,	Cameron,	Parra,	Jones,	
&	Jarvis,	2005).	 In	order	 to	better	characterize	 the	complex	moun-
tain	topography	on	the	basis	of	these	climate	maps,	we	downscaled	
the	temperature	variables	to	270-	m	spatial	resolution	following	the	
procedure	of	Zimmermann,	Edwards,	Moisen,	Frescino,	and	Blackard	
(2007),	and	we	interpolated	the	precipitation	layers	to	the	same	reso-
lution.	We	computed	19	bioclimatic	variables	according	to	Hijmans	
et	al.	 (2005),	 resampled	 the	 global	 90	m	 resolution	 SRTM	 DEM	
(Jarvis,	Reuter,	Nelson,	&	Guevara,	2008)	 to	270	m	resolution,	and	
derived	maps	of	slope	angle,	slope	aspect,	and	topographic	position	
index	(TPI;	Jenness,	2006).	We	used	eight	categorical	classes	for	as-
pect	(N,	NE,	E,	SE,	S,	SW,	W,	NW).	To	obtain	the	appropriate	scale	
at	which	TPI	explained	the	variation	in	the	data	set,	we	produced	six	
different	TPI	maps	(tpi3–tpi8)	by	setting	the	neighbor	shape	to	rec-
tangle	and	by	varying	the	number	of	neighborhood	cells	from	3	×	3	
(for	tpi3)	to	8	×	8	(for	tpi8)	in	ArcGIS	using	Land	Facet	Corridor	Tools	
(Jenness,	Brost,	&	Beier,	2013)	and	compared	their	performance	 in	
MaxEnt	(Phillips,	Anderson,	&	Schapire,	2006).	We	used	GlobCover	
(Arino	et	al.,	2012)	by	clipping	it	to	the	study	area	boundary	and	re-
sampling	it	to	270	m	using	nearest	neighbor	method	to	represent	a	
categorical	landcover	variable.	Finally,	we	overlaid	these	rasters	with	
the	presence	and	absence	points	of	both	plot	data	sets.	For	further	
analyses,	we	first	calculated	Pearson’s	correlations	between	predic-
tor	variables	and	retained	only	one	of	those	with	correlations	⋝0.7,	
selecting	 the	one	with	highest	 assumed	biological	 importance	 (Fig.	
S1).	We	 finally	 kept	 ten	 variables	 for	 model	 building:	 slope	 angle,	
slope	 aspect,	 TPI7,	 landcover,	 mean	 diurnal	 range	 of	 temperature	
(BIO2),	maximum	temperature	of	the	warmest	month	(BIO5),	annual	
temperature	range	(BIO7),	annual	precipitation	(BIO12),	precipitation	
of	the	warmest	month	(BIO13),	and	precipitation	of	the	coldest	quar-
ter	(BIO19).

2.3 | Model fitting and evaluation

For	mapping	 potentially	 suitable	 habitats	 for	 L. rhynchopetalum,	 we	
selected	 three	model	algorithms	that	differ	 in	general	 structure	and	
statistical	properties:	(i)	MaxEnt,	based	on	parametric	maximum	like-
lihood	 (Halvorsen,	 2013;	 Halvorsen,	 Mazzoni,	 Bryn,	 &	 Bakkestuen,	
2014;	 Phillips	 et	al.,	 2006);	 (ii)	 GAM,	 based	 on	 nonparametric	
maximum-	likelihood	functions	(Wood,	2011);	and	(iii)	GBM,	based	on	
resampling	(boosting)	methods	(Friedman,	Hastie,	&	Tibshirani,	2000).	
For	each	model	algorithm,	we	implemented	two	model	versions,	one	
generating	simple	and	one	generating	complex	response	shapes.	We	
finally	built	ensemble	maps	of	current	and	projected	future	ranges	of	
the	species.	The	three	model	algorithms	differ	in	how	they	relate	a	re-
sponse	to	predictors,	and	the	two	model	complexity	levels	differ	in	the	
degree	to	which	they	fit	the	response	to	the	data	(Merow	et	al.,	2014).	
In	all	three	models,	we	weighted	the	presences	and	absences	inversely	
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proportional	to	their	fraction,	because	we	had	ca.	3×	more	absences	
than	presences	available	in	both	the	training	and	evaluation	data	set.

For	GAM,	we	used	the	mgcv	package	(Wood,	2011).	In	order	to	
generate	 shapes	 of	 varying	 complexity,	we	 set	 the	 k	 parameter	 in	
the	spline	smoother	to	k	=	3	for	simple	and	to	k	=	8	 (i.e.,	 the	 larg-
est	possible	allowed	by	the	model)	for	the	complex	model.	For	both	
model	complexity	settings,	a	manual	predictor	variable	selection	was	
carried	out	by	stepwise	dropping	the	 least	significant	variable	until	
the	two	consecutive	models	revealed	a	significant	difference	in	the	

variation	they	explained	at	a	95%	confidence	level	in	an	ANOVA	chi-	
square	test.

For	GBM,	the	simple	response	was	generated	by	setting	the	tree	
complexity	parameter	to	two	in	the	“gbm.step”	function	of	the	DISMO	
package	 (Hijmans,	 Phillips,	 Leathwick,	 &	 Elith,	 2013)	 and	 “n.drops”	
was	set	to	“auto”	from	the	“gbm.simplify”	function	in	the	gbm	pack-
age	(Ridgeway,	2013).	No	interaction	among	variables	is	thus	allowed	
in	this	setting.	For	the	complex	response,	we	set	the	tree	complexity	
to	five	and	“n.drops”	to	zero,	which	allowed	for	significant	(and	more	

F IGURE  1 Study	area	and	geographic	structuring	of	genetic	variation	in	Lobelia rhynchopetalum.	(a)	Ethiopia;	(b)	the	Ethiopian	high	
landmasses	(>2,700	m	a.s.l.)	considered	for	habitat	suitability	modeling	and	the	three	mountain	systems	investigated	in	the	field;	(c)	two	genetic	
groups	(blue	and	orange)	inferred	from	Bayesian	clustering	of	amplified	fragment	length	polymorphism	(AFLP)	genotypes;	and	(d)	Ordination	
(PCoA)	of	AFLP	genotypes	showing	geographical	structuring	(blue:	Bale	Mts,	yellow:	Mt	Choke,	orange:	Simen	Mts)	
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complex)	 interactions	 among	 variables	 during	 model	 building.	 For	
both	 complexity	 versions,	 several	 models	were	 run	 by	 alternatively	
setting	the	bag	fractions	to	0.5	and	default	(i.e.,	0.75;	Elith,	Leathwick,	
&	Hastie,	2008)	and	using	different	values	of	 learning	 rates	 (slightly	
varying	values	ranging	from	0.0001	to	0.05).	For	final	model	runs,	we	
used	those	combinations	of	bag	fractions	and	learning	rates	for	which	
runs	of	more	than	1,000	trees	 (see	Elith	et	al.,	2008)	yielded	 lowest	
cross-	validation	deviances.

For	MaxEnt,	different	penalty	terms	with	regard	to	values	of	the	
regularization	multiplier	were	used	to	regulate	model	complexity	and	
overfitting.	We	built	several	models	starting	with	a	low	penalty	term	
of	0.5	and	slightly	increased	the	penalty	term	until	smooth	response	
curves	were	obtained	(penalty	term	of	8	in	our	case)	for	most	of	the	
continuous	predictor	variables.	Thus,	we	used	a	regularization	multi-
plier	of	8	for	the	simple,	while	we	used	a	low	penalty	term	with	a	regu-
larization	multiplier	value	of	0.5	for	the	complex	model	version.

All	models	were	validated	against	the	independent	data	set	using	
AUC	as	accuracy	metric.	We	used	three	different	criteria	for	splitting	
the	probabilistic	predictions	 into	binary	presence–absence	maps	 for	
each	model:	 (i)	maximum	sum	threshold	(MST),	the	probability	value	
at	which	the	sum	of	sensitivity	and	specificity	is	maximized;	(ii)	prev-
alence	 threshold	 (PT),	with	 the	 prevalence	 as	 probability	 threshold;	
and	(iii)	maximum	Kappa	(MK),	the	threshold	that	provides	the	highest	
kappa	value.	By	 this,	we	generated	six	binary	maps	per	model	algo-
rithm	(18	in	total).	Finally,	we	combined	all	18	binary	maps	and	classi-
fied	them	into	three	habitat	ensemble	suitability	classes	based	on	the	
proportion	of	models	that	map	the	presence	of	the	species	per	pixel:	
(i)	<30%	predict	the	presence	(=unsuitable	habitat	with	high	certainty),	
(ii)	30%–60%	predict	the	presence	(=uncertain	habitat	suitability),	and	
(iii)	>60%	predict	the	presence	(=suitable	habitat	with	high	certainty).

Using	two	different	future	climate	models,	the	community	climate	
model	version	3	(CCMA3)	and	the	Hadley	Center	Coupled	Model	ver-
sion	3	(HadCM3),	and	two	emission	scenarios	(A2	and	B2)	for	the	year	
2080,	we	estimated	the	range	of	the	species	(where	>60%	agreement	
for	suitable	habitat	in	model	ensembles	was	obtained)	and	carried	out	
range	change	detection.	Future	projection	ensembles	were	thus	built	
on	72	maps,	as	each	model,	version,	and	threshold	were	applied	to	2	
GCMs	and	two	scenarios,	each.

2.4 | Genetic analyses

Leaf	material	of	L. rhynchopetalum	was	obtained	from	the	same	three	
mountain	systems	(Figure	1a,b)	and	dried	in	silica	gel.	Leaves	from	five	
individual	plants	were	collected	within	a	100	m	×	100	m	plot	to	repre-
sent	a	local	population.	A	total	of	102	individuals	from	21	populations	
were	successfully	analyzed	 for	AFLPs	 (see	Appendix	S1	 for	details).	
To	quantify	genetic	diversity,	we	estimated	 the	proportion	of	poly-
morphic	markers	 (P),	Nei’s	gene	diversity	 (D),	and	genetic	rarity	 (Ra)	
using	AFLPdat	(Ehrich,	2006).	We	also	counted	the	number	of	AFLP	
markers	that	were	private	to	each	mountain	system	and	the	number	
of	markers	that	were	shared	among	mountain	systems.	Genetic	struc-
ture	was	 assessed	 using	 principal	 coordinate	 analysis	 (PCoA)	 based	
on	Dice’s	similarity	coefficient	and	a	Bayesian	model-	based	clustering	

method.	Levels	of	genetic	differentiation	were	estimated	in	an	analy-
sis	of	molecular	variance	(AMOVA;	Appendix	S1).

We	quantified	the	expected	loss	of	genetic	diversity	due	to	range	
loss	 using	 a	 similar	 approach	 as	Alsos	 et	al.	 (2012).	As	 genetic	 data	
were	not	available	from	the	whole	range	of	the	species,	in	particular	
not	 from	some	of	 the	 areas	 that	 remained	 suitable	under	projected	
climate	change	(e.g.,	Mt	Guna,	Shewa-	Wallo),	loss	of	genetic	diversity	
was	estimated	by	randomly	removing	a	proportion	of	sampling	locali-
ties	proportional	to	the	area	projected	to	be	lost.	Genetic	diversity	in	
the	remaining	populations	was	expressed	as	the	number	of	remaining	
markers,	as	this	diversity	measure	is	more	sensitive	to	rapid	decrease	
in	population	size	than	Nei’s	gene	diversity	(El	Mousadi	&	Petit,	1996).	
Assuming	that	a	complete	loss	of	gene	diversity	(i.e.,	all	remaining	indi-
viduals	identical)	would	correspond	to	the	average	number	of	markers	
per	individual,	the	proportion	of	genetic	diversity	expected	to	be	lost	
was	calculated	as	1	−	(Nr	−	Ntot)/(Npoly	−	Ntot),	where	Nr	is	the	number	
of	markers	 in	the	remaining	populations,	Ntot	 is	 the	average	number	
of	markers	per	 individual,	 and	Npoly	 is	 the	 total	number	of	polymor-
phic	markers	(Alsos	et	al.,	2012).	The	random	removal	procedure	was	
repeated	200	times	and	reported	as	average	predicted	loss	with	95%	
confidence	intervals	(CI).	As	genetic	data	were	not	available	from	the	
whole	range	of	the	species,	in	particular	not	from	some	of	the	areas	
that	remained	suitable	under	projected	climate	change	(e.g.,	Mt	Guna,	
Shewa-	Wallo),	 loss	 of	 genetic	 diversity	was	 estimated	 by	 randomly	
removing	a	proportion	of	sampling	localities	proportional	to	the	area	
projected	to	be	lost.	We	thus	assume	that	the	genetic	loss	predicted	
in	 response	 to	 the	 area	 loss	 is	 proportional	 to	 the	 loss	 that	 can	 be	
expected	for	range-	wide	genetic	diversity.	To	strengthen	our	assump-
tion,	we	have	also	repeated	this	analysis	by	constraining	the	surviving	
population	to	different	mountains,	so	that	the	loss	is	additionally	dis-
tributed	evenly	among	mountains.

3  | RESULTS

3.1 | Habitat suitability modeling

All	 the	 three	statistical	models	generated	similarly	high	AUC	values	
against	the	independent	data	set	(0.945–0.973;	Table	S2).	GBM	per-
formed	best	at	both	complexity	levels	followed	by	MaxEnt	and	GAM.	
The	AUC	difference	between	complexity	levels	was	low.	Interestingly,	
the	simple	models	performed	slightly	better	than	the	more	complex	
ones	when	applied	 to	 the	 independent	 test	data	 set.	The	predicted	
distribution	patterns	obtained	 from	all	models	 and	both	 complexity	
levels	 were	 also	 quite	 similar	 (Fig.	 S2).	 However,	 the	 binary	 pres-
ence–absence	maps	produced	with	different	methods	for	splitting	the	
probability	predictions	generated	quite	different	results,	with	the	PT	
producing	much	smaller	suitable	habitats	and	thus	contributing	a	con-
siderable	amount	of	uncertainty	to	the	map	products	(Figs.	S3–S8).

The	binary	ensemble	maps	for	each	method	and	complexity	level	
(Fig.	 S9)	 and	 the	 final	 binary	 ensemble	 maps	 combining	 all	 models	
and	complexity	 levels	 (Figure	2a)	consistently	 indicated	that	most	of	
the	alpine	 regions	 in	Ethiopia	currently	presents	 suitable	habitat	 for	
L. rhynchopetalum.	The	species	has	its	largest	zone	of	suitable	habitat	
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south	of	the	Rift	Valley	in	the	Bale-	Arsi	region	(Table	1;	Figure	2a).	The	
second	largest	suitable	area	is	found	at	the	northwestern	edge	of	the	
Rift	 (Shewa-	Wallo-	Guna	 massif)	 followed	 by	 the	 Simen	Mountains.	
However,	 the	 projections	 under	 both	 emission	 scenarios	 for	 both	
climate	models	 suggested	 that	L. rhynchopetalum	would	 lose	 a	 large	
portion	of	 its	 current	habitat	and	would	be	confined	 to	areas	north	
of	the	Rift	Valley,	primarily	to	the	Simen	Mountains	 (Figure	2b;	Figs.	
S10–S13).	The	climate	model	HadCM3	projects	higher	warming	and	
thus	constrains	the	suitable	habitat	under	future	climate	scenario	even	
more	severely	(Table	S3).

Overlaying	projected	future	with	current	habitat	suitability	maps	
revealed	 that	no	habitat	 remained	suitable	with	certainty	 in	 two	of	
our	 study	areas,	Bale	Mts	and	Mt.	Choke	 (Figure	3,	Table	1).	 In	 the	
third	sampling	area,	in	Simen	Mts,	only	13%	of	the	currently	suitable	
habitat	predicted	to	remain	suitable	with	certainty.	In	the	fourth	area,	
the	 Shewa-	Wallo-	Guna	 massif,	 where	 no	 samples	 were	 collected	
for	genetic	analysis,	 the	current	habitat	 that	would	 remain	 suitable	
under	 future	climates	with	certainty	 is	only	2.4%.	Over	Ethiopia	as	
a	whole,	 only	3.4%	 (93.6	km2)	 of	 the	 current	habitat	would	 remain	
suitable,	 and	 the	 comparably	 large	and	disconnected	current	 range	

F IGURE  2 Maps	representing	the	ensemble	mean	of	suitable	habitat	for	Lobelia rhynchopetalum	produced	by	combining	(a)	18	binary	
presence–absence	maps	(from	three	model	algorithms	at	two	complexity	levels	and	three	probability	thresholds;	see	Figs.	S3–S8)	showing	
the	current	suitable	habitat	and	(b)	72	binary	presence–absence	maps	(from	three	algorithms	with	two	complexity	levels	and	three	probability	
thresholds	for	each	of	the	2	GCMs	and	two	emission	scenarios)	showing	the	remaining	suitable	habitat	by	2,080.	0.0–0.3	unsuitable	with	high	
certainty,	0.3–0.6	uncertain,	>0.6	suitable	with	high	certainty	
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of	 the	 species	 would	 be	 further	 fragmented	 and	 confined	 to	 four	
mountaintops	(Figure	3).	Another	13.9%	of	the	current	range	would	
present	uncertain	habitat	suitability	due	to	differences	among	climate	
and	 statistical	 models,	 complexity	 levels	 and	 thresholds	 (Table	1),	
which	 translated	 to	 a	 total	 of	 82.6%–96.6%	 range	 loss	 for	 L. rhyn-
chopetalum.	 Currently,	 L. rhynchopetalum	 was	 predicted	 to	 occur	
between	3,300	m	and	the	highest	peaks	(4,500	m;	Fig.	S14),	whereas	
under	future	climates,	the	lower	altitudinal	limit	would	shift	upward	
to	3,950	m.	Similarly,	 the	optimum	altitude	would	shift	 from	about	
3,700	to	4,100	m.

3.2 | Genetic data

The	final	genetic	data	matrix	consisted	of	102	individuals	genotyped	
for	173	polymorphic	markers.	The	genetic	diversity	estimates	varied	
little	among	the	three	mountain	systems,	although	there	were	some-
what	fewer	polymorphic	loci	and	private	markers	in	Choke	than	in	the	
two	 other	massifs	 (Table	2).	Of	 the	 173	 polymorphic	markers,	 only	
63	(36.84%)	markers	were	shared	among	the	three	mountains	while	
41	(23.69%)	markers	were	not	found	in	the	samples	from	Simen	Mts	
where	 we	 expect	 the	 largest	 portion	 of	 the	 suitable	 habitat	 under	

Mountain regions

Current 
habitat range 
(km2)

Predicted to 
remain 
suitable (%)

Predicted to 
be lost (%)

Predicted to 
be uncertain 
(%) 

Bale-	Arsi	Mts 1,122.0 0.0 87.0 13.0

Mt	Choke	 259.3 0.0 91.0 9.0

Simen	Mts 606.9 12.6 68.9 18.4

Shewa-	Wallo-	Guna	Mts 765.8 2.4 84.2 13.4

Total 2,754 3.4 82.6 13.9

TABLE  1 Predicted	habitat	suitability	
for	Lobelia rhynchopetalum	in	different	
mountain	regions

F IGURE  3 Overlay	of	the	current	and	future	habitat	suitability	maps	showing	predicted	range	loss	for	Lobelia rhynchopetalum.	Details	are	
shown	for	the	three	mountain	ranges	from	where	samples	were	collected	and	one	of	the	mountains	on	which	the	remaining	suitable	habitat	is	
predicted	to	occur	with	high	certainty	in	2,080.	The	two	other	mountains	tops	in	which	the	habitat	of	L. rhyncopetalum	is	predicted	to	remain	
suitable	are	indicated	in	red	rectangles
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future	 climate	 scenario	 (Fig.	 S15).	The	PCoA	 revealed	a	 continuous	
gradient	 in	 genetic	variation	 ranging	 from	Bale	 via	Choke	 to	Simen	
plants	 along	 the	 first	 axis,	which	 explained	 only	 8.7%	 of	 the	 varia-
tion	(Figure	1d).	The	Bayesian	clustering	analysis	suggested	a	similar	
structure	with	two	genetic	groups:	one	contained	all	plants	from	Bale	
and	the	other	contained	all	plants	from	Simen,	whereas	both	genetic	
groups	were	represented	 in	Choke	(Figure	1c,	S16).	 In	the	AMOVA,	
most	 (80%)	 of	 the	 variation	was	 found	within	 populations,	 but	 sig-
nificant	 albeit	 moderate	 variation	was	 also	 found	 among	mountain	
systems	(12%)	and	among	populations	within	mountain	systems	(8%;	
Table	S4).

Removal	of	16–20	of	the	21	analyzed	populations	in	200	random	
repeats,	corresponding	to	a	range	loss	of	76%–95%,	resulted	in	 loss	
of	37.4%–81.6%	of	 the	AFLP	markers	 (Figure	4).	The	predicted	 loss	
of	 genetic	diversity	was	 largely	 proportional	 to	 the	 range	 reduction	
and	decreased	rapidly	with	higher	numbers	of	surviving	populations.	
As	our	range	modeling	projected	that	L. rhynchopetalum	may	survive	
in	four	different	mountain	systems,	the	reduction	in	genetic	diversity	

was	also	estimated	forcing	remaining	populations	to	be	on	different	
mountain	systems.	These	results	were	almost	identical	to	those	from	
the	random	resampling	(Figure	4;	Table	S6–S7).

4  | DISCUSSION

4.1 | Impact of climate change on habitat range

In	this	study,	we	predicted	that	almost	all	Ethiopian	alpine	areas	are	
suitable	for	L. rhynchopetalum	under	the	current	climate.	This	is	con-
sistent	with	 the	 Flora	 of	 Ethiopia	 and	Eritrea	 (Thulin,	 2006),	where	
the	species	is	reported	from	most	floristic	regions	in	Ethiopia.	Under	
warmer	climates,	however,	we	found	that	this	enigmatic	alpine	giant	
will	suffer	massive	reduction	in	range.	Today,	the	species	has	its	larg-
est	proportion	of	suitable	habitat	south	of	the	Rift	Valley,	that	 is,	 in	
the	Bale-	Arsi	massifs.	Under	all	emission	scenarios	and	model	algo-
rithms	considered,	we	predicted	that	no	habitat	will	 remain	suitable	
with	high	certainty	in	any	of	the	mountain	ranges	south	of	the	Rift	by	
the	end	of	the	21st	century,	indicating	very	high	risk	of	local	extinc-
tion.	Furthermore,	no	habitat	in	Mt	Choke	is	projected	to	remain	suit-
able	with	high	certainty.	Under	future	climates,	we	found	that	suitable	
habitat	for	L. rhynchopetalum	will	be	confined	to	only	four	mountain-
tops	in	two	areas	northwest	of	the	Rift	Valley,	the	Simen	Mts	and	the	
Shewa-	Wallo-	Guna	massif.	Thus,	L. rhynchopetalum	will	lose	its	range	
at	low	latitudes	as	well	as	low	altitudes.

Such	large	range	reductions	are	typical	of	mountain	systems	that	
provide	little	room	for	upward	movement	to	higher	altitudes.	In	a	study	
of	climate	change	impacts	on	European	mountain	plants,	similar	range	
losses	as	we	found	here	were	projected	for	the	Pyrenees	and	the	far	
eastern	part	of	the	European	Alps,	while	species	in	most	other	systems,	
such	as	the	main	parts	of	the	Alps,	the	Carpathians,	and	the	Scottish	
and	Scandinavian	mountain	ranges	are	projected	to	be	less	threatened	
by	 climate	 change	 (Engler	 et	al.,	 2011).	Also,	 projected	 range	 loss	 in	
lowlands	is	usually	much	smaller	than	that	projected	for	mountaintops	
that	 barely	 reach	 above	 treeline	 (Lenoir	 et	al.,	 2008;	 Thomas	 et	al.,	
2004,	2006;	Thuiller	et	al.,	2005).	Tropical	mountains	are	specifically	
threatened	 to	 such	 strong	 range	 reduction	 effects	 due	 to	 both	 the	
comparably	strong	fragmentation	of	the	disconnected	mountains	and	
the	comparably	little	reach	above	treelines	in	most	of	these	mountains,	
which	represent	islands	in	a	sea	of	lowland	tropical	vegetation.

Our	 results	 for	L. rhynchopetalum	 add	 to	 a	 growing	body	of	 evi-
dence	 showing	 dramatically	 high	 rates	 of	 range	 loss	 and	 altitudi-
nal	 shifts	 in	 mountain	 plants	 (e.g.,	 27	m	 in	 altitude	 per	 decade	 for	

TABLE  2 Genetic	(AFLP)	diversity	in	Lobelia rhynchopetalum	estimated	in	total	per	mountain	system	and	as	average	of	population	estimates

Mountain 
system N/pop

Mountain system in total Average of population estimates

P D Private DAV [min–max] Ra [min–max]

Bale	Mts 39/8 73.41 0.127 19 0.114 ± 0.02 [0.089–0.139] 1.737	±	0.441	[1.205–2.394]

Mt	Choke 19/4 53.18 0.123 5 0.116 ± 0.01 [0.108–0.120] 1.766	±	0.29	[1.341–1.982]

Simen	Mts 44/9 72.83 0.128 21 0.120 ± 0.02 [0.092–0.154] 1.666 ± 0.446 [1.092–2.402]

N,	number	of	individuals;	pop,	number	of	populations;	P,	percentage	of	polymorphic	markers;	D,	Nei’s	gene	diversity;	private,	number	of	private	markers;	
DAV,	average	Nei’s	gene	diversity	per	population;	Ra,	average	genetic	rarity.

F IGURE  4 Predicted	loss	of	genetic	diversity,	expressed	
as	the	proportion	of	polymorphic	markers	persisting,	in	
Lobelia rhynchopetalum	as	a	result	of	range	loss	by	2,080.	Black	dots	
represent	mean	estimates	for	random	survival	of	populations,	and	
white	dots	represent	mean	estimates	obtained	by	assuming	that	
populations	survive	in	at	least	two	mountain	systems	(with	95%	CI	in	
both	cases)
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Himalayan	 endemics;	 Telwala	 et	al.,	 2013).	 Such	 high	 rates	 can	 be	
expected	 because	 of	 the	 enhanced	 changes	 anticipated	 in	 climates	
in	 mountainous	 regions	 (Nogués-	Bravo	 et	al.,	 2007),	 typically	 nar-
row	 habitat	 ranges	 and	 low	 genetic	 diversity	 that	 may	 counteract	
local	 adaptation	 in	 high-	alpine	 taxa,	 and	 steep	 biotic	 and	 abiotic	
gradients	 in	alpine	areas.	 In	L. rhynchopetalum,	 the	habitat	predicted	
to	remain	suitable	with	high	certainty	 is	very	small	 in	spatial	extent,	
only	936.4	km2.	Furthermore,	this	small	area	seems	to	be	fragmented	
among	four	mountaintops,	which	may	be	too	small	 to	sustain	viable	
populations	(Figure	3).	Thus,	in	terms	of	range	loss	and	fragmentation	
alone,	not	considering	the	expected	dramatic	genetic	erosion	 in	 the	
species	(see	below),	L. rhynchopetalum	can	be	considered	to	face	high	
risk	 of	 extinction	 and	 the	 Ethiopian	 alpine	 region	may	 lose	 its	 only	
representative	of	the	iconic	tropical	alpine	plant	giants.	Other	tropical	
alpine	giant	rosette	plants	will	likely	be	affected	in	a	similar	way	by	a	
warmer	 climate,	 as	 they	occupy	 the	uppermost	 alpine	habitats	with	
narrow	ecological	amplitudes	and	possess	similar	morphological	and	
physiological	syndromes	developed	in	response	to	the	diurnal	freeze-	
thaw	 cycles	 through	 convergent	 evolution.	 Further	 adding	 to	 the	
threat	against	the	tropical	alpine	giants	is	the	expected	upward	shift	of	
the	treeline	and	invasion	of	new	species	from	lower	vegetation	belts,	
resulting	in	shrinking	of	the	alpine	habitat	and	increased	competition.	
Thus,	we	might	 lose	 these	 high-	alpine,	 charismatic	 flagship	 species	
that	render	the	tropical	alpine	areas	so	peculiar.

4.2 | Impact of climate change on genetic diversity

Tropical	African	alpine	habitats	represent	highly	fragmented	ecosys-
tems	being	restricted	to	the	mountain	peaks	that	rise	above	3,500	m	
resulting	in	geographic	isolation	among	populations	(Hedberg,	1951).	
In	L. rhynchopetalum,	we	found	significant	albeit	moderate	geographic	
structuring	in	its	genetic	diversity,	corresponding	to	the	three	major	
mountain	systems	analyzed.	This	is	consistent	with	the	statistically	sig-
nificant	variation	among	populations	of	L. rhychopetalum	from	Simen	
and	Bale	reported	based	on	sequences	of	the	nuclear	ITS	region	and	
eight	plastid	DNA	regions	(Geleta	&	Bryngelsson,	2009).	In	our	study,	
we	found	considerable	numbers	of	AFLP	markers	confined	to	a	single	
mountain	system.	Only	36.4%	of	the	markers	were	shared	among	the	
three	mountain	systems,	and	23.9%	of	the	total	markers	were	absent	
from	Simen	Mts,	where	we	expect	the	largest	patch	of	suitable	habitat	
to	remain	under	future	climates	(Fig.	S15).	Our	results	clearly	show	the	
adverse	genetic	consequences	of	habitat	loss	from	the	two	sampling	
areas	in	particular	and	in	other	geographic	regions	in	general.

The	 overall	 projected	 habitat	 loss	 ranges	 from	 82.6	 to	 96.6%,	
with	only	3.4%	of	the	habitat	being	projected	to	remain	suitable	with	
high	certainty.	Randomly	retaining	sample	populations	equivalent	 in	
number	 with	 the	 habitat	 that	 remains	 suitable	 with	 high	 certainty	
and	re-	computing	the	genetic	diversity	 indicated	an	average	 loss	of	
82%	of	the	AFLP	markers,	which	is	almost	as	high	as	the	range	loss	
(Figure	4).	However,	range	loss	due	to	climate	change	is	not	random.	It	
mainly	occurs	at	the	organisms’	lower	elevational	and	latitudinal	range	
edges.	Although	selection	pressures	may	vary	in	different	parts	of	the	
range,	we	 gave	 equal	weight	 to	 all	 loci	 as	 typical	 in	 studies	 relying	

on	AFLP	markers,	 of	which	 the	majority	 represents	 neutral	 genetic	
diversity	(Alsos	et	al.,	2012).	Range	loss	from	different	areas	is	likely	
to	have	a	similar	impact	on	genetic	diversity	when	genetic	diversity	is	
distributed	evenly	across	geographic	regions	(Alsos	et	al.,	2012).	We	
found	 similar	 levels	 of	 genetic	 diversity	 in	 L. rhyncopetalum	 popula-
tions	from	different	mountains,	and	constraining	the	surviving	popu-
lations	to	different	mountaintops	resulted	only	in	small	differences	in	
genetic	diversity	 loss	compared	 to	 randomly	sampling	 the	surviving	
populations.

In	 a	 compilation	of	 307	 studies	 of	 plant	 species,	Nybom	 (2004)	
found	an	average	AFLP-	based	genetic	diversity	of	0.23	±	0.08,	with	
highest	diversity	in	long-	lived	perennials	(0.25),	outcrossers	(0.27),	and	
late	 successional	 taxa	 (0.30),	 and	 lowest	 diversity	 in	 annuals	 (0.13),	
selfers	(0.12),	and	early	successional	taxa	(0.17).	We	found	very	little	
total	 gene	 diversity	 in	 L. rhynchopetalum	 (0.12),	 even	 if	 this	 species	
is	 a	 long-	lived,	perennial	 and	outcrosser	 (Hedberg,	1964).	Very	 little	
genetic	diversity	has	also	been	found	in	other	afroalpine	species,	pos-
sibly	due	to	strong	fragmentation	and	bottlenecks	during	climatically	
unfavorable	periods	(Gizaw	et	al.,	2013;	Masao	et	al.,	2013;	Wondimu	
et	al.,	 2014),	 rendering	 them	 particularly	 vulnerable	 to	 further	 cli-
mate	change.	A	meta-	analysis	of	the	impact	of	habitat	fragmentation	
revealed	a	 substantial	decrease	 in	expected	heterozygosity,	number	
of	 alleles,	 and	 percentage	 of	 polymorphic	 loci	 without	 substantial	
variation	among	organisms	with	different	 life	history	traits	 (Vranckx,	
Jacquemyn,	Muys,	&	Honnay,	2012).	For	L. rhynchopetalum,	 it	seems	
therefore	likely	that	further	fragmentation	into	very	small	areas	under	
future	 climates	will	 accelerate	 decrease	 in	 its	 genetic	 diversity	 and	
possibility	 for	 survival.	 Species	which	 are	 expected	 to	 lose	 80%	 of	
their	populations	within	100	years	are	proposed	to	be	 listed	as	crit-
ically	 endangered	 by	 the	 IUCN	 (IUCN,	 2001).	 Thus,	 inferred	 from	
habitat	loss	alone,	climate	change	will	seriously	threaten	the	survival	
of	 L. rhynchopetalum.	 In	 addition,	mountain	 species	 are	 expected	 to	
suffer	more	from	climate-	induced	range	reductions	(Frei	et	al.,	2010;	
Lenoir	et	al.,	2008;	Telwala	et	al.,	2013;	Thuiller	et	al.,	2005)	and	the	
associated	 loss	 in	 genetic	 diversity	 (Alsos	 et	al.,	 2012)	 than	 species	
from	lower	and	warmer	regions.

4.3 | Implications from model calibration and 
sampling design

We	 found	 that	 the	 different	 statistical	 models	 and	 the	 different	
complexity	levels	for	calibrating	the	models	revealed	very	similar	re-
sults.	This	is	unanticipated,	as	previous	studies	have	shown	that	the	
choice	of	 statistical	models	 generates	high	uncertainty	 in	projected	
future	 ranges	of	 suitable	habitats	 (Buisson,	Thuiller,	Casajus,	 Lek,	&	
Grenouillet,	 2010).	 In	 addition,	 our	 tests	 against	 independent	 data	
reveal	 that	 the	 more	 complex	 parameterization	 schemes	 did	 not	
improve,	but	 rather	deteriorate	 the	model	accuracies.	This	 is	 in	 line	
with	 the	 results	of	Randin	et	al.	 (2006),	who	also	 found	 the	simpler	
GLM	models	to	outperform	GAM	models	when	transferred	between	
Eastern	Austria	and	Western	Switzerland.

Merow	et	al.	 (2014)	 suggest	 using	 simple	modeling	 schemes	 for	
data	sets	that	are	small	and	lack	sound	statistical	designs.	We	believe	
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that	 our	 data	were	well	 sampled	 and	 larger	 than	minimal	 and	 thus	
would	 allow	 for	more	 complex	model	 calibration.	We	 restricted	our	
study	area	to	highlands	(>2,700	m),	thus	resulting	in	a	relatively	small	
area. L. rhynchopetalum	is	currently	ubiquitous	across	Ethiopian	alpine	
areas	 (Fetene	et	al.,	1998;	Thulin,	2006)	and	seems	to	be	 in	equilib-
rium	with	its	niche	requirements.	The	sampling	design	of	presence	and	
absence	observations	covers	the	most	important	ecological	gradients,	
which	are	latitude,	altitudes,	and	aspect.	This	may	also	have	led	to	few	
false	absences	and	little	noise	in	the	data	set	which	in	turn	potentially	
minimized	the	differences	 in	performance	among	models	and	model	
complexity	levels.	This	may	show	how	sampling	strategy	may	be	more	
important	 than	 selections	 of	 model	 algorithms	 and	 model	 settings,	
especially	for	species	that	appear	to	be	in	equilibrium	with	their	niche	
requirements.

Although	 the	 different	 statistical	 models	 and	 the	 two	 different	
complexity	 levels	 for	calibrating	 these	models	produced	very	similar	
results	under	current	climate,	the	different	cut	thresholds	to	produce	
binary	presence–absence	predictions	 added	 considerable	uncertain-
ties	to	the	predictions.	Notably,	the	PT	was	quite	different	and	mapped	
a	much	 smaller	area	as	 suitable	 than	 the	other	 two	methods.	Using	
the	prevalence	of	the	data	used	for	model	building	as	a	threshold	 is	
not	a	common	practice	but	 it	considered	as	one	of	the	most	robust	
approaches	(Liu,	Berry,	Dawson,	&	Pearson,	2005).	Although	it	is	rec-
ommended	to	be	used	for	data	sets	 in	which	the	presence–absence	
data	are	systematically	collected	(Halvorsen,	2013;	Liu	et	al.,	2005),	it	
is	still	considered	useful	in	other	data	sets	(Liu	et	al.,	2005).	The	effect	
of	this	model	step	for	analyzing	projected	gain	and	loss	in	suitable	hab-
itat	is	not	well	studied	to	date	and	requires	further	exploration.

Relying	on	different	algorithms	for	modeling	and	combining	uncer-
tainty	 sources	 in	 an	ensemble	map	 is	becoming	a	 common	practice	
(Buisson	et	al.,	2010).	Here,	we	produced	multiple	maps	not	only	by	
combining	different	 algorithms	of	different	 statistical	 properties	but	
also	models	of	different	complexity	levels	and	their	binary	maps	pro-
duced	using	different	threshold	criteria,	which	means	we	have	further	
enhanced	the	sources	of	uncertainties.	Increasing	uncertainty	sources	
by	fitting	models	of	different	complexity	 levels	and	using	more	than	
one	 threshold	 criterion	 per	 model	 has	 not	 been	 common	 practice	
so	 far.	Although	 it	 adds	more	uncertainty	 sources,	 the	consensus	 in	
predicting	 suitable	 habitat	 among	 these	 multiple	 maps	 gives	 more	
confidence	 for	 management	 and	 conservation	 practices,	 especially	
in	 delineating	 priority	 areas	 for	 conservation	 purposes	 and	 reintro-
ductions	of	endangered	species.	It	also	enhances	reliability	of	model	
results.
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