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A B S T R A C T   

Since December 2019, the novel coronavirus disease (COVID-19) caused by the syndrome coronavirus 2 (SARS- 
CoV-2) strain has spread widely around the world and has become a serious global public health problem. For 
this high-speed infectious disease, the application of X-ray to chest diagnosis plays a key role. In this study, we 
propose a chest X-ray image classification method based on feature fusion of a dense convolutional network 
(DenseNet) and a visual geometry group network (VGG16). This paper adds an attention mechanism (global 
attention machine block and category attention block) to the model to extract deep features. A residual network 
(ResNet) is used to segment effective image information to quickly achieve accurate classification. The average 
accuracy of our model in detecting binary classification can reach 98.0%. The average accuracy for three 
category classification can reach 97.3%. The experimental results show that the proposed model has good results 
in this work. Therefore, the use of deep learning and feature fusion technology in the classification of chest X-ray 
images can become an auxiliary tool for clinicians and radiologists.   

1. Introduction 

Pneumonia-type illnesses are more contagious during the flu season 
[1,2]. Chest X-rays (CXRs) play an important role in patient care. Ra-
diologists can use CXR features to determine the type of pneumonia and 
the underlying pathogenesis [3]. X-ray is one of the most common 
radiological examination methods for screening and diagnosing chest 
diseases, as well as the main means of classifying and screening pneu-
monia, tuberculosis and breast cancer, and is a painless and noninvasive 
examination method suitable for high populations with relatively low 
costs [4]. 

The pandemic of global concern caused by COVID-19 has also 
brought enormous challenges to governments and the healthcare in-
dustry [5-7]. The outbreak was declared a Public Health Emergency of 
International Concern on 30 January 2020. It was named COVID-19 by 
the World Health Organization (WHO) in February 2020; around March 
2020, the World Health Organization announced that the disease has 
affected the whole world and is a global pandemic disease [8,9]. The 
characteristics of COVID-19 are diverse and unpredictable. The common 
clinical symptoms are mainly respiratory symptoms, and some patients 
may have gastrointestinal symptoms [10,11]. Real-time polymerase 
chain reaction (RT–PCR), loop-mediated isothermal amplification 

(LAMP), antigen testing and other methods can be used to detect COVID- 
19. Although the specificity of RT–PCR is sufficiently high for COVID-19, 
its sensitivity is relatively low in detecting COVID-19 [6,12]. LAMP 
technology has high sensitivity, fast reaction rate and strong specificity, 
but the design of primers is very complicated, and it is easy to produce 
nonspecific amplification [13]. Although the antigen test has a relatively 
fast detection speed, its sensitivity is poor. 

Therefore, CXR, as a sensitive method to detect COVID-19 as well as 
other chest problems, plays an integral role in the early diagnosis and 
treatment of the disease [12,14]. Previous studies have shown that CXR 
images have specific differences in the imaging manifestations of com-
mon pneumonia and COVID-19. These differences or subtle features can 
be detected by artificial intelligence. For example, as shown in Fig. 1 
[21], it can assist doctors in achieving more accurate classification and 
diagnosis. 

In this study, we reviewed the relevant literature and work on CXR 
classification. At the same time, artificial intelligence methods were 
used to efficiently and quickly identify different cases of common 
pneumonia and COVID-19 as well as to distinguish healthy patients. 
Therefore, helping doctors to distinguish more accurately among ordi-
nary pneumonia, COVID-19, and healthy patients could lead to more 
targeted treatment for patients and reduce the duration of illness. 

* Corresponding author. 
E-mail address: cjy@qlu.edu.cn (J. Cheng).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2022.103772 
Received 2 January 2022; Received in revised form 22 April 2022; Accepted 27 April 2022   

mailto:cjy@qlu.edu.cn
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2022.103772
https://doi.org/10.1016/j.bspc.2022.103772
https://doi.org/10.1016/j.bspc.2022.103772
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.103772&domain=pdf


Biomedical Signal Processing and Control 77 (2022) 103772

2

The following is the main contribution and summary of the work:  

• Prior to this work, an image preprocessing method was applied to 
CXR data, and segmented images were selected to be sent into the 
model for more accurate and effective data analysis.  

• In this work, we introduced the fine-tuned global attention block 
(GAB) and category attention block (CAB) for the imbalance of data 
and distribution to obtain more detailed information of small lesions.  

• We fused the DenseNet and VGG models and fine-tuned the model to 
better detect different pneumonia diseases with convenience, speed 
and precision. 

• We conducted two-category work for healthy and pneumonia pa-
tients and three-category work for healthy, common pneumonia, and 
COVID-19 patients. Compared with other advanced methods, the 
results show that our model can classify chest X-ray data with high 
accuracy. 

Therefore, in this work, we propose a method based on feature fusion 
that can more accurately distinguish among healthy, common pneu-
monia, and COVID-19 patients using chest X-ray images. The main 
structure of the paper is as follows: Section II discusses the advanced 
work on using X-ray images for COVID-19. Section III shows data pre-
processing of the datasets applied in the work. Section IV provides an in- 
depth exploration of the fusion models and experiments. Section V ob-
tains and analyzes the experimental results. Artificial intelligence 
methods were used for the efficient and rapid identification of different 
cases of general pneumonia and COVID-19 as well as for healthy pa-
tients. Section VI analyzes the limitations of this work. Section VII dis-
cusses the research topic and prepares for future work. 

2. Related work 

In recent years, the development of artificial intelligence has been 
effective in a range of medical fields. The use in healthcare is also on the 
rise, particularly in medical imaging [15]. Radiological imaging tech-
nology, such as chest X-ray scans, can protect patients more effectively, 
isolate infected patients in time, and distinguish pneumonia types more 
accurately. A. Narin et al. [16] applied five convolutional neural 
network models (ResNet50, ResNet101, ResNet152, InceptionV3 and 
Inception-ResNetV2) to detect patients infected with coronavirus 
pneumonia using chest X-rays. M. Turkoglu [17] used transfer to learn 
the features of the convolutional and fully connected layers of the 
AlexNet model. The SVM classifier was used to detect and classify the 
important features identified by Relief. The VGG16 pretraining model 
combined with data enhancement and patching (RICAP) was used to 
improve robustness and assess the healthy population and COVID-19 
[18]. Khan et al. [19] proposed the application of the CoroNet deep 
convolutional neural network model for automatic chest X-ray detec-
tion. Moreover, COVID-19, pneumonia and healthy patients were also 

classified into three categories, and the classification accuracy of the 
proposed model was 95%, which greatly promoted the detection of chest 
diseases. Ouchicha et al. [20] proposed the deep convolutional neural 
network (CNN) model of CVDNet, which uses chest X-ray images to 
classify COVID-19 infection from normal and other cases of pneumonia. 
The architecture is based on a residual neural network, employing two 
parallel layers of different convolution kernel sizes to capture the local 
and global features of the input. Through the study and research of the 
above methods, it was found that although the accuracy of the classifi-
cation was more accurate in the process of binary classification (healthy 
population vs. common pneumonia patients, normal vs. COVID-19 pa-
tients, and common pneumonia patients vs. COVID-19 patients), in the 
process of three category classification (healthy, common pneumonia, 
and COVID-19 patients), the accuracy is generally low, and the three 
categories cannot be more accurately classified. 

3. Dataset 

3.1. Dataset 

This study used two different publicly available datasets to collect 
chest X-ray images to create one dataset. The dataset contains a total of 
6518 images, and the test set data account for 20% of the total data. The 
first is from a publicly available dataset. Chest X-ray images (before and 
after) were selected from pediatric patients aged 1 to 5 years at the 
Guangzhou Women’s and Children’s Medical Center [21]. All chest X- 
ray imaging was performed as part of the patient’s routine clinical care. 
To analyze chest X-ray images, all chest X-ray images were screened for 
quality control by removing all low-quality or unreadable scans. The 
second dataset is the COVID-19 X-ray image database developed by 
Joseph et al. [22], which utilizes images from various open access 
sources. The authors collected images relevant to radiology from various 
authentic sources (Radiology Society of North America (RSNA), Ency-
clopedia of Radiology, etc.). Most research on COVID-19 has used im-
ages from this source. The repository contains an open database of 
COVID-19 cases with chest X-ray images and is being updated regularly. 

3.2. Data preprocessing 

Low-dose X-ray images suffer from blurred edges, low contrast due to 
objective factors, and a low signal-to-noise ratio of projections. To better 
extract chest X-ray image features, image segmentation technology was 
used to remove the background noise and retain only the effective chest 
shadow area. In the course of our experimental study, data enhancement 
techniques were applied to enrich medical image datasets. In the images 
of the datasets used in this study, the size, shape, shadow area and 
location of the chest lesions precisely varied from patient to patient. 

(1) All images in the training set were traversed, and the “inference” 
function was called. ResNet34 [23] was used for semantic segmentation 

Fig. 1. Detection of chest X-ray image features by artificial intelligence.  
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learning, and the segmentation threshold was set to 0.2. 
(2) Images of different sizes were scaled to 512 × 512. The mask area 

marked with red and green was returned. 
(3) The original image data value was converted into a 255-level 

gray value image by enhancing the information of the lung shadow 
area and surrounding tissues. 

(4) Finally, the effective region was segmented by the dot product of 
the grayscale image and the mask data matrix. The redundant parts were 
removed, and chest X-ray images without background were obtained. 

Therefore, we created a new chest X-ray image dataset: the chest X- 
ray images were horizontally flipped, and 3x3 Gaussian blur was added 

to reduce the overfitting of the model during training and effectively 
achieve the invariant stability of the model learning process. The 
segmented images not only have the noise redundant background re-
gions removed but also help the model to accurately analyze images of 
healthy, common pneumonia, and COVID-19 patients. Fig. 2 shows the 
step-by-step segmentation of normal subject chest X-ray images (X-ray 
image, recognition of the chest region image, and chest image after 
removing the background). 

We unified the segmented images in the form of.jpg and classified 
them by type. Eighty percent of the data were used for training, and the 
remaining 20% were used for testing. That is, the total amount of data in 
the training set was 5230, and the total amount of data in the test set was 
1288. The specific situation of the chest X-ray dataset prepared by us is 
presented in Table 1. 

4. Method 

4.1. Model connection and feature fusion 

4.1.1. DenseNet 
For our first piece of model, we use a 201-layer dense connected 

Fig. 2. Stepwise segmentation of chest X-ray images by ResNet34 (X-ray image, recognition of the chest region image, and chest image after removing 
the background). 

Table 1 
Distribution of different types of data in the dataset.  

Labels Train (80%) Test (20%) Total (100%) 

COVID-19 460 116 576 
HEALTHY 1266 317 1583 
PNEUMONIA 3418 855 4273 
Total 5230 1288 6518  

Fig. 3. Structure diagram of the DenseNet201 model.  

Fig. 4. VGG16 model structure diagram.  
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convolutional network (DenseNet). As shown in Fig. 3, the network 
layer of DenseNet201 is densely linked by four network blocks, and the 
dense blocks are uniformly connected by transition layer pooling. 
Finally, the feature map of the last layer is pooled by global average 
pooling to form a feature point. These feature points constitute the final 
feature vector, which is calculated in SoftMax [24]. The DenseNet model 
mainly realizes feature reuse through feature connection on the channel. 
There are two basic methods in feature reuse: bypass and concatenation. 
Since gradient disappearance usually occurs in the deep layer of the 
network, it is more appropriate to place bypass layers at the beginning of 
the deep layer of the network [25]. The dense connection mechanism is 
that each layer will be connected with all the previous layers on the 
channel dimension as input to the next layer. It is more efficient to 
achieve feature reuse. In the traditional network, the output of the l layer 
is represented as, xl = Hl(xl− 1) while in DenseNet, all layer dense 
connection modes are represented asxl = Hl([x0,x1,...,xl− 1]). Hl(⋅) stands 
for nonlinear transformation. The structure of Batchnorm + ReLU + 3 ×
3Conv can be used to obtain more input features and improve the effi-
ciency of feature reuse. It not only greatly reduces the number of 
network parameters but also alleviates the vanishing gradient problem 
to a certain extent [26]. 

4.1.2. Vgg16 
The second model used in this work is the VGG network structure. 

The VGG16 network can not only increase the network depth but also 
improve the performance more effectively. The simple module is 
composed of a small convolution kernel, small pooling kernel and ReLU. 
As shown in Fig. 4, there are 5 convolutional layers, 3 fully connected 
layers and a softmax output layer. Max pooling is used to separate the 
layers, and the ReLU function is used for the activation units of all 
hidden layers [27]. Therefore, one of the great advantages of VGG 
networks is that they simplify the structure of neural networks. The 
obtained 7 × 7 × 512 feature map is fully connected, and then softmax 
activation is carried out to output the recognition results of the three 
objects. 

4.1.3. Model fusion 
Since we have adopted datasets of different scales and styles in our 

work, we use different network models to extract and identify their 
application performance. Therefore, to achieve the best quality model 
classification, we used the methods of model connection [28] and 
feature fusion [29] to build the model in this study, which are mainly 
applied to the two network structures. DenseNet and VGG16 have a clear 
division of labor. Using the characteristics of the two networks, corre-
sponding adjustments are made in the input of the dataset. The original 
image is first fed into the DenseNet network model architecture, which 
slows down the vanishing gradient problem and enhances feature 
propagation [30]. Then, the dataset generated by ResNet34 is sent to the 
VGG16 network model. Increasing the network depth affects the final 
performance of the network to a certain extent. The mobility is enhanced 
while reducing the error rate, and the generalization to other image data 
is also good [31]. Finally, ensemble learning is used to fuse the features, 
and two attention mechanisms (global attention block and category 
attention block) are used to solve the problem of the weak generaliza-
tion ability of a single neural network, as shown in Fig. 5. 

Fig. 5. Model fusion network diagram after segmentation and addition of the attention mechanism.  

Fig. 6. Distribution of imbalanced datasets.  
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4.2. Sample balance and attention mechanism addition 

From Fig. 6, we can clearly find that there is a serious imbalance in 
the proportion of images obtained in different datasets, which can easily 
lead to problems such as a decline in the predictive ability of the model 
and a large error [32]. In response to the imbalance of data samples, two 
main parts are added to the work to equalize the data samples: (1) the 
“class_weight” function in the Keras library and (2) the attention 
mechanism. 

4.2.1. Sample balance 
Using the class_weight function in the Keras library changes the 

range of loss, which may affect the stability of training [33]. We can 
choose “balanced” to let the library automatically increase the weight of 
illegal user samples. “Balanced” improves the weight of certain cate-
gories so that more sample categories will be classified into high-weight 
categories than without considering the weight, thus balancing the 
number of samples in the dataset. The weight calculation formula under 
“balanced” can be expressed as: 

Wi = Sum/(Class × Sumi) (1) 

Wi indicates the final calculated weight value of each category, and i 
represents the number of 3 categories. Sum represents the size of all 
samples in this type of dataset. Class represents the number of categories 
in the total sample. Sumi indicates the number of samples corresponding 
to classi. 

4.2.2. Attention mechanism 
For the problems in Fig. 6, the uneven distribution of COVID-19, 

healthy, and pneumonia data leads to a high level of concern in the 
model. The sample imbalance greatly affects the performance of the 
final classification. As mentioned in the literature [34], CBAM is a 
lightweight general module that can be better applied to any CNN ar-
chitecture and has a small sales volume, thus playing a significant role in 
the application of GAB and CAB [35]. GAB can be used to preserve 
detailed pathological information in pneumonia images and suppress 
color features and brightness features of similar parts. CAB can be used 
to learn distinguishing features to better solve the problem of low ac-
curacy caused by an uneven distribution of data. 

In Eq. (2), Zch at is used to calculate the attention feature of the 
channel, where H represents the height, W represents the width, and C 
represents the number of channels. δ means using the sigmoid activation 
function, GAP means average pooling, and ZG− IN uses a 1 × 1 convolu-
tion to reduce the number of channels. 

Zch at = (δ(Conv2(GAP(ZG− IN)))) ⊗ ZG− INZ ∈ RH×W×CZG− IN ∈ RH×W×C′

C
′

= C/2
(2) 

C G stands for cross-channel average pooling and saves more 
detailed information about small lesions in Eq. (3). Different lesions in 
chest X-ray images can be better divided into details as input ofCAB. The 
number of channels required by Z′ to detect each category discrimina-
tion area is obtained. Z′′ retains half of the features. The dropout func-
tion is removed, and all the features are predicted. 

ZG− OUT = Zch at ⊗ (δ(C G(Zch at))) (3) 

The representative in Eq. (4) responds to the importance of each 
category feature map. GMP stands for global max pooling. By averaging 
the sum of Z′′ pooling, the score S = {S1, S2, ....SL} of each category is 
calculated. 

Si =
1
m

∑m

j=1
GMP(z′′ij)i ∈ {1, 2, 3, ...,L}S = {S1, S2, ....SL} (4) 

Zi avg in Eq. (5) represents the mapping response of the semantic 

features of the i-th class. z′

ij represents the response of the j-th feature of 
the i-th class inZ′

. The calculated scores for each class are multiplied, 
summed, and averaged by the semantic features of that class to 
obtainACAB, which provides the area of diagnosis, as shown in Eq. (6). 
Finally, ZG− IN can be transformed into feature map Zc− out through the 
category attention mechanism. We can obtain the classification situation 
after sample equilibrium more accurately. Compared with the balanced 
sample, the efficiency is up to 97.3%. 

Z ′

i avg =
1
m

∑m

j=1
z′

iji ∈ {1, 2, 3, ..., L} (5)  

ACAB =
1
L

∑L

i=1
SiZ

′

i avgACAB ∈ RH×W×1 (6)  

ZC− OUT = ZC− IN ⊗ ACAB (7)  

4.3. Setting hyperparameters 

In this paper, the hyperparameters of the model are tuned, and much 
work is mainly done on the batch size (Batch_size), optimizer (Opti-
mizer), loss function (Loss), and normalization operation (BN). The best 
results of the work comparison are provided in Table 2. Although the 
sample of the initial dataset was unbalanced, the optimizer combined 
with Adam was faster and more efficient than other optimizers with the 
application of class_weight and the adjustment of the attention mecha-
nism [36]. The Adam optimizer has the highest accuracy and plays an 
indispensable role in other deep learning algorithms in the medical field 
[37]. The difference between the probability distribution trained by the 
cross entropy loss function (categorical_crossentropy) [38] and the true 
distribution is obtained. It describes the distance between the actual 
output (probability) and the expected output (probability); that is, the 
smaller the cross entropy value is, the closer the two probability distri-
butions will be [39], as shown in Eq. (8). At the same time, the Label_-
smoothing function is used to set the parameter “Label_smoothing” to 
smooth the label. It increases the generalization ability of the model and 
prevents overfitting to some extent. 

loss = −
∑n

i=1
ŷi1logyi1 + ŷi2logyi2 + ...+ ŷimlogyim (8)  

δloss
δyi1

= −
∑n

i=1

ŷi1

yi1  

δloss
δyi2

= −
∑n

i=1

ŷi2

yi2
(9)  

δloss
δyim

= −
∑n

i=1

ŷim

yim 

n represents the number of samples, m represents the number of 
classifications, ŷ represents the true label of the original image, and y 
represents the predicted label. Since loss is a multioutput function, the 
calculation of loss is also a multiple process. For example, Eq. (9) is 
affected by the error, so when the error is large, the weight updates 
quickly, while when the error is small, the weight updates slowly. 

Table 2 
Optimal hyperparameter values.  

Hyperparameter Value 

Batch_size 16 
Optimizer Adam 
Learning_rate 0.0001 
Loss categorical_crossentropy 
Epochs 80  
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5. Work results and analysis 

5.1. Fivefold Cross-validation 

To effectively adjust the volatility and stability of the detection re-
sults, the model in this paper adopts the k-fold cross-validation method. 
We randomly divided the dataset into m equal parts, which givesD1, ...,

Dm. For example, 

⋃m

i=1
Di = Ddataset∀1⩽i⩽m|Di| ≈

|Ddataset|

m
∀1⩽i⩽m (10) 

In this work, we set m = 5 and perform the following steps: 
Step 1: Divide the data sample into 5 equal parts. 
Step 2: Take one copy of each work for testing, and use the rest for 

training. 
Step 3: Average five times. 
As shown in Fig. 7, for the first time, the work takes the first copy as 

the test set and the rest as the training set. For the second time, the work 
takes the second copy as the test set and the rest as the training set. The 
result is averaged by Eq. (11). 

Accuracytest =
1
m

∑m

i=1
Accuracyi (11) 

From Table 3 and Table 4, the work of fivefold cross-validation is 

carried out for two classes and three classes, respectively. Finally, the 
performance indicators (precision, recall and F1-score) are considered, 
and the classified reports are given. The overall performance is obtained 
by averaging each fold. Through the corresponding confusion matrices 
in Figs. 11 and 12, the classification performance can be analyzed better. 

5.2. Ablation experiment 

To evaluate the effectiveness of model fusion with the addition of an 
attention mechanism, we conducted additional ablation experiments on 
chest X-ray, as shown in Table 5. The work application model is mainly 
composed of DenseNet and VGG16. One component is deleted at a time, 
including model actions, attention actions, and fusion actions. First, the 
attention mechanism is removed, and the accuracy, precision, recall and 
F1-score under a single model are calculated separately. The accuracy 
index decreased by approximately 0.04 at most, and other evaluation 
criteria also declined. Second, the overall performance of the two 
models is slightly improved by combining the relevant features. The 
accuracy increased by approximately 0.03. Finally, the attention 
mechanism is added to the basic model, and the overall index rises by 
approximately 0.01, indicating that the attention module plays an 
important role in enhancing relevant features. Therefore, the proposed 
feature fusion model can improve the efficiency of chest X-ray image 
classification to a certain extent. 

5.3. Comparison of work effects 

In this paper, the work environment carried out research and dis-
cussion on multiple classifications of two different datasets: healthy vs. 
pneumonia-type patients and healthy vs. pneumonia vs. COVID-19 
patients. 

5.3.1. Work analysis of HEALTHY patients and patients with pneumonia 
(Two Categories) 

Chest X-ray images were used to distinguish the work of healthy 
patients from those of pneumonia patients (bacterial, viral, and COVID- 

Fig. 7. Fivefold cross-validation renderings.  

Table 3 
Accuracy and loss values after fivefold cross-validation (two classifications).  

Folds Accuracy Loss RMSE Precision Recall F1-score 

Fold1  0.980  0.074  0.171  0.939  0.984  0.962 
Fold2  0.970  0.151  0.169  0.920  0.956  0.938 
Fold3  0.977  0.123  0.170  0.922  0.965  0.935 
Fold4  0.979  0.094  0.173  0.952  0.965  0.959 
Fold5  0.988  0.056  0.166  0.923  0.985  0.954 
Average  0.979  0.100  0.169  0.931  0.971  0.950  

Table 4 
Accuracy and loss values after fivefold cross-validation (three category 
classification).  

Folds Accuracy Loss RMSE Precision Recall F1-score 

Fold1  0.978  0.218  0.193  0.954  0.932  0.942 
Fold2  0.968  0.276  0.219  0.928  0.952  0.937 
Fold3  0.974  0.185  0.204  0.971  0.933  0.952 
Fold4  0.967  0.123  0.213  0.941  0.966  0.953 
Fold5  0.979  0.195  0.192  0.982  0.956  0.969 
Average  0.973  0.199  0.204  0.955  0.948  0.951  

Table 5 
Comparison of ablation experiments.  

Model Accuracy Precision Recall F1-score 

DenseNet  0.943  0.942  0.957  0.948 
VGG16  0.931  0.946  0.946  0.946 
DenseNet + VGG16  0.964  0.943  0.949  0.946 
DenseNet + GAB + CAB  0.953  0.948  0.954  0.951 
VGG16 + GAB + CAB  0.951  0.949  0.950  0.949 
Our Model  0.973  0.948  0.951  0.955  
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19). From Fig. 8(a)(b), we can clearly see that 80 iterations can make the 
accuracy stable. In the first 20 iterations, the growth rate of accuracy 
increased significantly, and then the growth rate gradually showed a 
slow upward trend. In comparison with other advanced models, work in 
this field has achieved good results, as shown in Table 6. The results in 
Table 7 show that the accuracy effect calculated by this work model is 
relatively successful. The confusion matrix in Fig. 11 clearly shows the 

classification effect of the binary classification. In addition, it also has a 
relatively high result in other evaluation indicators, and the model has 
obvious advantages in classification. 

5.3.2. Work analysis of Healthy, common pneumonia and COVID-19 
patients (Three Categories) 

To verify the generalization ability of the model, we also conducted 
research on the three categories of healthy, common pneumonia and 

Fig. 8. (a): Comparison of accuracy and val_accuracy in binary classification (HEALTHY vs. PNEUMONIA); (b): Comparison of loss and val_loss in two classifications 
(HEALTHY vs. PNEUMONIA). 

Table 6 
Binary classification (HEALTHY vs. PENUMONIA) results under different 
advanced models.  

Reference Type Dataset Result 
(Accuracy) 

[40] HEALTHY vs. 
PENUMONIA 

5856 images 
(CXR)  

93.01% 

[41] HEALTHY vs. 
PENUMONIA 

453 images (CXR)  73.10% 

[42] HEALTHY vs. 
PENUMONIA 

618 images (CXR)  86.7% 

[43] HEALTHY vs. 
PENUMONIA 

5856 images 
(CXR)  

96.2% 

Our Model HEALTHY vs. 
PENUMONIA 

6518 images 
(CXR)  

97.9%  

Table 7 
Work results on the same dataset under different advanced models.  

Reference Accuracy Precision Recall F1-score 

[44]  0.940  0.970  0.930  0.950 
[45]  0.930  0.870  0.970  – 
[46]  0.950  –  –  – 
Our Model  0.979  0.95  0.96  0.96  

Fig. 9. (a): Comparison of accuracy and val_accuracy in three categories (HEALTHY vs. PNEUMONIA vs. COVID-19); (b): Comparison of loss and val_loss in three 
categories (HEALTHY vs. PNEUMONIA vs. COVID-19). 

Table 8 
Results of three category classification (HEALTHY vs. PENUMONIA vs. COVID- 
19) under different models.  

Reference Type Dataset C-Result 
(Accuracy) 

[47] HEALTHY vs. PENUMONIA 
vs. COVID-19 

171 COVID19, 
60 
PNEUMONIA, 
76 HEALTHY  

90.82% 

[48] HEALTHY vs. PENUMONIA 
vs. COVID-19 

434 COVID19, 
1100 
PNEUMONIA, 
1100 HEALTHY  

94.1% 

[49] HEALTHY vs. PENUMONIA 
vs. Influenza-A 

219 COVID19 
(CT), 
224 Influenza-A, 
175 HEALTHY  

86.7% 

[14] HEALTHY vs. PENUMONIA 
vs. COVID-19 

53 COVID19 (+), 
5526 COVID19 
(-), 
8066 HEALTHY  

92.4% 

Our Model HEALTHY vs. PENUMONIA 
vs. COVID-19 

576 COVID19, 
4273 
PNEUMONIA, 
1583 HEALTHY  

97.3%  
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COVID-19 patients. Different forms of datasets are input for different 
models, and detailed segmentation is used to better optimize the X-ray 
images of the chests and extract key features. From the work results in 
Fig. 9(a)(b), the fit of the training data and the test data curve is good. 
During the first 15 iterations, the overall upward trend was faster. We 
also compare this field with other advanced models, as shown in Table 8. 
The accuracy can reach 97.3%. 

Similar datasets are compared in Table 9. The accuracy of the eval-
uation index is generally stable and high. Compared with the recall data 
in Ref. [19], the value is relatively low, but the average value among 
other data is relatively stable and above 0.95. According to the model 

commonly used in medical images, a comparison is made. Fig. 10 and 
Table 10 show the comparison of accuracy, loss and time consumption 
of different models on the same dataset. Under different models, our 
model training and test sets have the highest accuracy and the lowest 
loss. Although slightly longer in time consumption, the overall perfor-
mance is the best. The confusion matrix in Fig. 12 clearly shows the 
classification effect of the three category classification. 

As shown in Fig. 13(a)(b), the ROC distribution diagram also shows 
that the accuracy of the ROC in the second classification is as high as 
99%, and the accuracy of different diseases in the third classification 
fluctuates at 99%. It can also be better explained that the higher the 
index is, the higher the accuracy of the model diagnosis. 

6. Limitations 

Due to the limited number of COVID-19 datasets now available for 
public research applications, the sources for obtaining COVID-19 images 
are constantly updated. The research object of the work is relatively 
limited. Two publicly available datasets were used in this study. How to 

Table 9 
Comparison of similar datasets under different models.  

Reference Accuracy Precision Recall F1-score 

[50]  0.910  0.920  0.870  0.880 
[51]  0.940  0.913  –  – 
[19]  0.95  0.950  0.969  0.956 
Our Model  0.973  0.955  0.948  0.951  

Fig. 10. (a): Comparison of accuracy and val_accuracy of different models under the same dataset; (b): Comparison of loss and val_loss of different models under the 
same dataset. 

Fig. 11. (a): Confusion matrix for binary classification (HEALTHY vs. PNEUMONIA vs. COVID-19); (b): Confusion matrix (percentage) for binary classification 
(HEALTHY vs. PNEUMONIA vs. COVID-19). 
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better assist doctors in becoming an important part of the clinical work 
testing process requires more data and image learning and research. 

7. Conclusion 

At a time when an increasing number of people are infected with 
COVID-19, using AI methods to create effective and rapid tests will 
certainly reduce the workload of healthcare workers. In this paper, a 
feature fusion-based chest X-ray image classification method is pro-
posed. Successful detection of healthy, common pneumonia, and 
COVID-19 cases from chest images (X-ray) is demonstrated. By using 
ResNet34 to effectively process the segmentation of the dataset, the 
extraction of features is more efficient. Based on the fusion of DenseNet 
and VGG16, GAB and CAB attention blocks can be added to carry out 
detailed feature extraction of regions. Due to the highly similar X-ray 
results of COVID-19 and other common pneumonia diseases, doctors 
may have some misdiagnoses in diagnosis. It is therefore crucial to make 
a precise distinction between ordinary pneumonia and COVID-19. The 
work showed that when distinguishing ordinary pneumonia, COVID-19 

and healthy patients, the accuracy, precision, recall and F1-score 
reached 97.3%, 95.5%, 94.8% and 95.1%, respectively. Compared 
with those with pneumonia, the accuracy, precision, recall and F1-score 
reached 97.9%, 95.0%, 96.0% and 96.0%, respectively. The model was 
tested using X-ray images of tuberculosis to see if it had a strong 
generalization ability [52]. The accuracy, precision, recall and F1-score 
reached 99%, 99%, 99% and 99%. Despite the positive results, more 
clinical trials and studies are needed to test this model. Better auxiliary 
imaging for doctors, improvement of the accuracy of diagnosis, and a 
more in-depth study of the differences between different pneumonias in 
a timely manner so that patients could avoid the pain of the disease are 
needed. Considering the present work, there are still gaps in some 
research fields, which can be discussed and realized in future work:  

1. To better realize clinical applications, it is necessary to expand the 
number of multiclass datasets so that the model can accurately judge 
chest X-ray and provide a more accurate classification diagnosis. 

Fig. 12. (a): Confusion matrix for three categories (HEALTHY vs. PNEUMONIA vs. COVID-19); (b): Confusion matrix (percentage) for three categories (HEALTHY vs. 
PNEUMONIA vs. COVID-19). 

Table 10 
Comparison of different models under the same dataset.  

Datasets Models Train_acc Test_acc Train_loss Test_loss Time  

Three classes (X-ray) 
DenseNet201  0.965  0.938  0.104  0.165 104 min 
VGG16  0.987  0.891  0.294  0.281 90 min 
DenseNet169  0.962  0.947  0.109  0.144 103 min 
Xception  0.944  0.930  0.167  0.202 100 min 
Our model  0.999  0.973  0.004  0.098 110 min  

Fig. 13. (a): Distribution of ROC curves for binary classification (HEALTHY vs. PNEUMONIA); (b): Distribution of ROC curves for three categories (HEALTHY vs. 
PNEUMONIA vs. COVID-19). 
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2. The proposed model should be further optimized and improved and 
combined with an SVM classifier to improve the multicategory 
diagnosis ability. 
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