
APC = antigen presenting cell; CIA = collagen-induced arthritis; FLS = fibroblast-like synovial cells; IKK = IκB kinase; MMP = matrix metallo-
proteinases; NFκB = nuclear factor kappa B; PDGF = platelet-derived growth factor; PI(3)K = phosphatidylinositol 3-kinase; RA = rheumatoid
arthritis; SCW = streptococcal cell wall; Th cells = T helper cells; TNF = tumor necrosis factor.
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Introduction
Chronic inflammation perpetuates and amplifies itself
through the numerous autocrine and paracrine loops of
cytokines, acting on the cells within the lesion. The vicious
circle can be broken either by neutralizing the biological
activities of extracellular inflammatory mediators or by
inhibiting cytokine production. The pattern of gene expres-
sion is controlled by transcription factors, which relay into
the nucleus signals emanating from the cytoplasmic mem-
brane. In the nucleus, transcription factors selectively bind
their cognate sites in the regulatory elements of targeted
genes and activate or repress transcription. It appears that
the complexity of inflammatory pathways is significantly
reduced on the level of transcription factors. Whereas the
cell within the inflammatory lesion is subjected to many
dozens, perhaps hundreds, of extracellular stimuli, only a
handful of inducible transcription factors, including AP-1,

C/EBPs, STATs, NF-AT, and NF-κB, appear to play a
major role in the regulation of inflammatory genes. This
suggests that neutralization of these transcription factors
may provide an efficacious therapeutic strategy. A pivotal
role for the transcription factor NF-κB in regulation of
inflammation has been well recognized [1,2]. I attempted,
in a recent general article, to summarize the latest devel-
opments in the field and to discuss the feasibility of anti-
NF-κB therapy for chronic inflammation [3]. The present
review focuses on the role of NF-κB in the particular fea-
tures of RA pathology.

The NF-κκB signaling pathway
NF-κB is a collective name for dimeric transcription
factors comprised of the Rel family of proteins that include
RelA (p65), c-Rel, RelB, NF-κB1 (p50), and NF-κB2 (p52)
[4]. The most abundant form found in stimulated cells is
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the RelA/NF-κB1 (p65/p50) heterodimer, often referred to
as a ‘classic’ NF-κB. In unstimulated cells, NF-κB resides in
the cytoplasm in a latent form, and must translocate to the
nucleus to function. The cytoplasmic retention of NF-κB is
provided by its interaction with inhibitory proteins known as
IκB. Stimulation leads to a phosphorylation-targeted protea-
somal degradation of IκB, allowing the ‘active’ NF-κB to
enter the nucleus and initiate transcription.

The signal-induced IκB processing involves the consecu-
tive steps of IκB phosphorylation, ubiquitination, and pro-
teasomal degradation, which are controlled by three large
multiprotein complexes; namely, IκB kinase (IKK), or signal-
some, IκB ubiquitin ligase, and 26S proteasome [5]. The
IκB ubiquitin ligase and 26S proteasome are considered
mostly constitutively active, while IKK activity is rapidly
induced in response to stimulation. The core components
of the signalsome include the catalytic subunits IKKα/IKK-1
and IKKβ/IKK-2, and a scaffold protein IKKκ/NEMO that
links the catalytic kinase subunits with the upstream activa-
tors. Both IKKα and IKKβ can phosphorylate IκB in vitro,
but knockout studies indicate that IKKβ has a pivotal role in
cytokine-inducible activation of NF-κB [5].

In addition to the spatial control of NF-κB function, the
ability of nuclear NF-κB to initiate transcription is regulated
by interactions with numerous transcriptional coactivators
and basal transcriptional machinery. The pathways con-
trolling NF-κB nuclear translocation and its transcription
function are regulated independently, but act in synergy in
the activation of NF-κB-dependent gene expression [6].

NF-κB can be activated by a variety of pathogenic stimuli,
including bacterial products and viral proteins, cytokines,
growth factors, radiation, ischemia/reperfusion, and oxida-
tive stress. The coordinated activation of NF-κB that
occurs in almost every cell type involved in inflammatory
response, including neutrophils, macrophages, lympho-
cytes, and endothelial, epithelial, and mesenchymal cells,
is an integral part of the defensive response to pathogens
and stress. The activation of NF-κB is required to induce
expression of diverse inflammatory and immune response
mediators. More than 150 NF-κB responsive genes have
been identified, among them cytokines, chemokines, cell
adhesion molecules, and growth factors [7]. A few exam-
ples of inducers and targets of NF-κB are presented in
Figure 1. It is worth noting that the list of inducers and
targets of NF-κB almost perfectly matches the list of
pivotal mediators of RA pathology.

NF-κκB is activated in RA
Activated NF-κB has been detected in human synovial
tissue on the early stage of joint inflammation [8], as well
as in specimens obtained at the late stages of the disease.
Analyses of nuclear extracts from synovial explants
revealed the presence of increased NF-κB DNA binding

activity in RA patients, but not in osteoarthritis patients [9].
Immunohistochemical studies detected nuclear RelA
(p65) and NF-κB1 (p50) mostly in RA endothelium and
synovial lining, particularly in CD14-positive cells, and no
staining in the normal synovium [10]. Immunostaining with
antibodies against the ‘active’ (dissociated from IκB)
NF-κB similarly revealed the presence of active NF-κB in
the nuclei of macrophage-like synoviocytes in synovial
lining and in vascular endothelium. The active NF-κB was
found in both RA and osteoarthritis samples, although the
pattern was different: patients with acute RA more com-
monly showed vessel staining and, conversely, showed
less frequent staining of the synovial lining as compared
with osteoarthritis patients [11]. Miyazawa et al used an
alternative approach with a NF-κB reporter gene construct
to analyze NF-κB-dependent transcription in single clones
of primary RA fibroblast-like synovial cells (FLS) in vitro.
Constitutively active NF-κB was detected in some of the
clones and, noteworthy, these clones spontaneously pro-
duced large amounts of IL-6 [12]. These findings combine
to provide compelling evidence that NF-κB activation is a
common feature of human RA synovium. Activation of
NF-κB has also been detected in different animal models
of RA, including adjuvant arthritis in rats [13], pristane-
induced [14] and streptococcal cell wall (SCW)-induced
arthritis in rats [14,15], and collagen-induced arthritis
(CIA) in mice [16].

NF-κκB and synovial inflammation
Initiation of chronic inflammation in RA is associated with
development of an autoimmune response that progresses
to a sustained, self-perpetuated inflammation. Experimen-
tal evidence suggests that NF-κB activation plays a pivotal
role both at the stage of initiation and the stage of perpet-
uation of chronic inflammation in RA.

NF-κκB in the initiation of chronic
inflammation
The interaction of the antigen presenting cell (APC) and T
cell causes NF-κB activation in both cell types. NF-κB
activation is triggered in T cells by the engagement of the
T cell receptor and the CD28 receptor with their ligands,
MHC class II, and the costimulatory molecules CD80 and
CD86 presented by APCs. The T cell receptor and CD28
synergize in induction of the NF-κB-dependent genes
required for T cell activation and proliferation, such as IL-2,
IL-2 receptor (IL-2R), and IFNγ [17,18]. Activated T cells,
in turn, elicit NF-κB activation in APCs. The molecules of
the tumor necrosis factor (TNF) superfamily, CD40 ligand
and TRANCE (TNF-related activation-induced cytokine)
(also known as RANKL [receptor activator of NF-κB
ligand]) or ODF (osteoclast differentiation factor), are
expressed by activated T cells. Their interaction with APC
receptors CD40 and RANK induces NF-κB activation that
promotes survival and augments the ability of the APC to
stimulate T cell proliferation and activation, conceivably by
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upregulating the expression of NF-κB-dependent mole-
cules MHC class II, CD80, and CD86 [19–22]. The
importance of NF-κB activation in immune response was
supported by the observations in knockout mice. Inactiva-
tion of RelB and NF-κB2 in relb–/– and nfkb2–/– caused an
impairment of APC function. The loss of NF-κB1 and c-Rel
in nfkb1–/– and rel–/– mice resulted in multiple defects in
the activation of T and B cells, and weakened responses
to pathogens [23].

NF-κκB facilitates T helper 1 subset development
After activation, CD4+ T helper (Th) cells can differentiate
into Th1 or Th2 effector subsets. These two types of cells
produce distinct profiles of cytokines and regulate differ-

ent immune responses: Th1 (IFNγ and IL-12 dominant)
cells mediate cellular immunity and activate macrophages,
and they are considered proinflammatory; Th2 (IL-4 and
IL-5 dominant) cells, which potentiate antiparasite and
humoral immunity, and inhibit macrophage activation, are
considered anti-inflammatory. As NF-κB controls the
expression of Th1 cytokines IL-2, IFNγ, and IL-12, activa-
tion of NF-κB should facilitate Th1 subset development.
Indeed, transgenic mice expressing, in the T lineage, an
inhibitor of NF-κB (a nondegradable mutant of IκBα, also
called ‘super-repressor’ IκBα [srIκBα]), had weakened
Th1 and enhanced Th2 responses [24,25]. T cells from
transgenic mice expressing Rac2, an upstream NF-κB
activator, accordingly developed Th1 type responses [26].

Figure 1

Inducers and targets of NF-κB. bFGF, Basic fibroblast growth factor; CD40L, CD40 ligand; COX-2, cyclooxygenase-2; GM-CSF, granulocyte-
macrophage colony-stimulating factor; iNOS, inducible nitric oxide synthetase; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant
protein-1; RANKL, receptor activator of NF-κB ligand; TRANCE, TNF-related activation-induced cytokine; VEGF, vascular endothelial growth factor.
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NF-κκB and the perpetuation of chronic
inflammation
Secreted products of activated T cells and direct cell–cell
contacts induce activation of macrophages, the major pro-
ducers of inflammatory cytokines in RA synovium. NF-κB
controls the expression of cytokines IL-1β and TNFα, the
essential mediators of inflammation in RA. TNFα and IL-1
are potent inducers of NF-κB activation, suggesting an
interdependence of persistent NF-κB activation and sus-
tained levels of IL-1 and TNFα. Indeed, expression of
srIκBα abrogated the induction of IL-1β and TNFα in
human macrophages and primary FLS [14,27]. A recent
study by Aupperle et al indicates that, in RA FLS,
IKKβ/IKK-2 is the principal kinase in activation of NF-κB in
response to IL-1 and TNFα. Expression of a DN mutant
form of IKK-2 inhibited cytokine-inducible activation of
NF-κB and abrogated synthesis of IL-6 and IL-8, as well
as expression of ICAM-1 and collagenase-1. In contrast,
the DN IKKα/IKK-1 had no effect [28]. The notion that
IKKβ/IKK-2 is the key convergence pathway for cytokine-
induced NF-κB activation is consistent with results of
genetic studies in IKK knockout mice [5].

It is worthy of note that suppression of NF-κB inhibited
expression of many proinflammatory molecules, including
IL-1, TNFα, IL-6, IL-8, ICAM-1 and VCAM-1, but had little,
if any, effect on the expression of anti-inflammatory
cytokines IL-10 and IL-1 receptor antagonist [14,29–31].
This suggests that NF-κB activation facilitates the
impaired balance of proinflammatory and anti-inflammatory
molecules in the arthritic joint.

NF-κκB and hyperplasia
Normal synovium is a delicate tissue lining the joint
capsule but, in RA, the synovium transforms into an
aggressive, tumor-like structure called pannus, which
invades and erodes the joint. Experimental evidence sug-
gests that NF-κB activation may facilitate synovial hyper-
plasia by promoting proliferation and inhibiting apoptosis
of RA FLS.

Proliferation
NF-κB serves as a positive regulator of cell growth in
myoblasts and fibroblasts by inducing the expression of
c-Myc and cyclin D1, proteins required for cell cycle pro-
gression [32–34]. Our studies in primary rat FLS have
shown that stimulation with platelet-derived growth factor
(PDGF) and basic fibroblast growth factor induced NF-κB
activation, which was required for induction of c-Myc and
DNA synthesis [32] (J Romashkova, S Makarov, unpub-
lished observations). In contrast, the mitogenic activity of
insulin-like growth factor-1, which did not activate NF-κB,
was not influenced by NF-κB inhibitors (J Romashkova, S
Makarov, unpublished observations). Another function of
NF-κB in mitogenic signaling in FLS is to protect cells
against cytotoxicity of c-Myc. Although c-Myc is required

for proliferation, it causes cell death unless certain survival
factors are provided. PDGF is one such factor that over-
comes the pro-apoptotic proclivity of c-Myc. We found
that blocking NF-κB activation abrogated the protective
effect of PDGF, indicating that, in PDGF signaling, NF-κB
transmits two signals: one is required for the induction of
c-Myc; and the second is an anti-apoptotic signal that neu-
tralizes c-Myc cytotoxicity, conceivably by inducing the
expression of a protective gene (or multiple genes) [32].
As c-Myc is heavily overexpressed in RA synovium, NF-κB
activation may contribute to synovial hyperplasia by inhibit-
ing c-Myc-induced apoptosis and promoting proliferation.
A point of interest is that the pathway via which PDGF
induced NF-κB activation involved phosphatidylinositol 3-
kinase (PI(3)K) and protein kinase B/Akt (see later). As the
PI(3)K/Akt pathway has been implicated in the pathogene-
sis of numerous human malignancies, this suggests that
similar mechanisms may operate in the promotion of
hyperplasia in RA and cancer.

Apoptosis
Many pro-apoptotic stimuli, including TNFα, radiation, and
chemotherapy, induce NF-κB activation. NF-κB activation
delivers, in most cell types, an anti-apoptotic signal that
counteracts cell death. NF-κB suppression of apoptosis
appears to be a transcriptional event since it activates
expression of anti-apoptotic genes TRAF1 and TRAF2,
c-IAP1 and c-IAP2, the Bcl-2 homologs A1/Bfl-1 and Bcl-
xL, IEX-1, and XIAP (reviewed in [35]). In our studies,
blocking NF-κB activation in primary rat SCW FLS
strongly potentiated the cytotoxicity of TNFα and FasL.
Consistent with this, administration of distinct inhibitors of
NF-κB (proteasomal inhibitors and adenoviral gene trans-
fer of srIκBα) in vivo resulted in accelerated apoptosis in
joints of rats with pristane-induced and SCW-induced
arthritis [14]. These studies are in agreement with that
published by Zhang et al, who observed that NF-κB acti-
vation was required to protect RA FLS against the cytotox-
icity of TNFα in a human RA/SCID mouse model,
presumably through induction of anti-apoptotic protein
XIAP [36]. These findings indicate an important role for
NF-κB in protecting FLS against apoptosis in RA syn-
ovium, conceivably by inhibiting the cytotoxicity of TNFα
and FasL. Because TNFα is a potent mitogen in RA FLS,
NF-κB appears as a master switch determining whether
TNFα exerts mitogenic or pro-apoptotic effects.

Recent work from our laboratory and by other workers has,
as already mentioned, established NF-κB as a target of the
PI(3)/Akt pathway that has a prominent role in cell survival
and proliferation in cancer. The PI(3)K/Akt pathway has
been shown to mediate activation of NF-κB in response to
a wide variety of stimuli, including PDGF [32], TNFα [37],
IL-1 [38], bradykinin [39], and oncogenic H-Ras [40] and
Her-2/neu [41]. Akt-dependent NF-κB activation has been
shown to mediate anti-apoptotic functions of PDGF [32]



and Her-2/neu [41], and to inhibit cell death induced by
deregulated c-myc [32], H-Ras [40], and TNFα [41]. Pre-
cisely how Akt activates NF-κB-dependent transcription is
a matter of debate. Several groups, including that of the
present author, demonstrated an involvement of IKK, thus
implicating IκB-dependent mechanisms [32,37,39,41,42],
while results by other workers demonstrate IκB-indepen-
dent mechanisms, in which Akt potentiates the transcrip-
tional function of NF-κB [38,40]. It is possible that the
mechanisms connecting Akt with NF-κB, as well as the
contribution of NF-κB pathway in the anti-apoptotic func-
tion of Akt, are cell type and stimulus specific. A role for
Akt in the pathogenesis of RA and the contribution of Akt
to NF-κB activation in RA synovium are not known, but
there is circumstantial evidence that this link may exist.
The activity of the PI(3)K/Akt pathway is negatively regu-
lated by the phosphatase PTEN, a tumor suppressor fre-
quently inactivated in human malignancies [43] and in
some autoimmune diseases, such as Cowden disease
and Sjögren’s syndrome [44]. The importance of the
PTEN-PI(3)K/Akt connection in autoimmune disease was
demonstrated by observations in PTEN+/– heterozygous
mice that exhibited defects in Fas-induced apoptosis and
developed autoimmune disease [45], and in PI(3)K trans-
genic mice that developed strikingly similar pathology
[46]. Although PTEN mutations were not found in RA, the
expression of PTEN is strikingly reduced in RA synovial
lining [47], suggesting that deregulated PTEN may result
in activation of the PI(3)K/Akt pathway and contribute to
activation of NF-κB. The role of Akt and the Akt–NF-κB
connection in RA clearly merits further investigation.

NF-κκB and tissue remodeling
FLS are considered the major effectors of RA joint
destruction. Inflammatory milieu in the RA joint results in a
highly invasive phenotype of RA FLS. Several lines of evi-
dence suggest that NF-κB activation contributes to the
destructive potential of RA FLS. First, NF-κB mediates
transcriptional activation of several matrix metallopro-
teinases (MMP). The promoter of MMP-1 has a NF-κB
binding site that is required for the induction of MMP-1 by
IL-1β [48]. Furthermore, NF-κB activation was found nec-
essary for the induction of MMP-3, MMP-9, and MMP-13
expression [49–51]. Second, NF-κB activation is neces-
sary for the induction of cyclooxygenase-2 and inducible
nitric oxide synthetase, the enzymes that catalyze synthe-
sis of proinflammatory prostaglandins and nitric oxide
metabolites [7]. Finally, NF-κB activation is required for the
induction of vascular endothelial growth factor, an
endothelial cell-specific mitogen and a pivotal regulator of
angiogenesis in RA [52].

Osteoclast is another cell type in which NF-κB activation
may have a prominent role in RA joint destruction. Bone
marrow-derived osteoclast precursors are recruited to RA
synovium by elevated levels of NF-κB-dependent

cytokines IL-1α and IL-1β, TNFα, IL-6, and IL-17 [53,54].
The contacts with activated T cells and osteoblast/stromal
cells expressing high levels of TRANCE/RANKL/ODF
promote osteoclast maturation and induce bone resorbing
activity, while administration of osteoprotegrin, a soluble
decoy receptor for RANKL, prevents osteoclast differenti-
ation and precludes bone loss in animal arthritis [20,55].
The critical importance of NF-κB in bone turnover was
underscored by the observations in double-knockout
nfkb1–/–nfkb2–/– mice that develop osteopetrosis owing to
accumulation of immature osteoclasts [56].

The NF-κκB pathway as a therapeutic target
Many conventional anti-inflammatory and anti-rheumatic
drugs, including glucocorticoids, aspirin, sodium salicy-
late, sulfosalazine, and gold compounds, are inhibitors of
NF-κB activation. The list of therapeutics that inhibit
NF-κB also includes numerous natural and synthetic
antioxidants, immunosuppressants, and natural plant com-
pounds, suggesting that the ability to suppress NF-κB
activation at least partially accounts for their therapeutic
effects [57]. This interpretation, however, is complicated
by the fact that most of the conventional drugs are not
very potent inhibitors of NF-κB, and that they can also
affect other signaling pathways. More clear answers were
obtained using animals with genetically inactivated NF-κB
signaling. Inactivation of c-Rel and NF-κB1 in rel–/– and
nfkb1–/– knockout mice rendered the animals refractory to
development of CIA [58]. Transgenic mice expressing
srIκBα in the T lineage were similarly refractory to CIA
[25]. These genetic studies are in a good agreement with
the experiments that utilized highly specific inhibitors of
NF-κB. In our studies, liposomal delivery of NF-κB decoys
(double-stranded oligonucleotides containing NF-κB
binding sites) effectively prevented the recurrence of
SCW arthritis in rats. Intriguingly, the suppression of
arthritis was evident not only in the ipsilateral, treated
joints, but also in the contralateral, untreated joints, indi-
cating systemic effects of local anti-NF-κB therapy [14].
Administration of NF-κB decoys in a similar study signifi-
cantly reduced the severity of CIA in rats, and inhibited the
production of IL-1 and TNFα within the joints [59]. In a
study by Palombella et al, a proteasomal inhibitor of IκB
degradation afforded protection against SCW-induced
arthritis in rat [15]. Together, these animal studies strongly
support the feasibility of using NF-κB inhibitors in RA.

The prospects of anti-NF-κκB therapy for RA
The efficacy of anti-NF-κB therapy in animal models of RA
allows for optimism, but many questions remain to be
answered. First, future therapeutic applications will require
development of specific and potent inhibitors of the NF-κB
pathway. Second, the safety of a long-term use of specific
NF-κB inhibitors remains to be elucidated. The lessons
from genetic studies revealed that basal NF-κB activity is
required for normal development, particularly for protection
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of liver against apoptosis, and that inactivation of the NF-
κB pathway may be associated with detrimental side
effects (reviewed in [23]). One way to circumvent this
problem is to target the components of NF-κB signaling
that are required for cytokine-inducible activation of
NF-κB, without interfering with basal NF-κB activity. One
such approach has been recently described by May et al
[60]. The authors designed a peptide derived from
IKKγ/NEMO to block the assembly of IKK signalsome. The
peptide strongly suppressed cytokine-inducible NF-κB
activation, but spared basal NF-κB activity. Using the cell-
permeable inhibitory peptide in vivo afforded the suppres-
sion of inflammatory responses in animal models of
peritonitis and ear edema.

Another concern is that systemic suppression of NF-κB
may impair defensive responses to pathogens. The
unwanted effects of anti-NF-κB therapy can be diminished
by targeting NF-κB inhibitors to certain tissues or cell
types. In this regard, gene delivery of NF-κB inhibitors may
have distinct advantages (reviewed in [61]). Local delivery
should alleviate the possible side effects associated with
systemic exposure and minimize the risk of general
immunosuppression.
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