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Abstract: Autonomous exploration of environmental fields is one of the most promising tasks to
be performed by fleets of mobile underwater robots. The goal is to maximize the information gain
during the exploration process by integrating an information-metric into the path-planning and
control step. Therefore, the system maintains an internal belief representation of the environmental
field which incorporates previously collected measurements from the real field. In contrast to surface
robots, mobile underwater systems are forced to run all computations on-board due to the limited
communication bandwidth in underwater domains. Thus, reducing the computational cost of field
exploration algorithms constitutes a key challenge for in-field implementations on micro underwater
robot teams. In this work, we present a computationally efficient exploration algorithm which utilizes
field belief models based on Gaussian Processes, such as Gaussian Markov random fields or Kalman
regression, to enable field estimation with constant computational cost over time. We extend the
belief models by the use of weighted shape functions to directly incorporate spatially continuous
field observations. The developed belief models function as information-theoretic value functions to
enable path planning through stochastic optimal control with path integrals. We demonstrate the
efficiency of our exploration algorithm in a series of simulations including the case of a stationary
spatio-temporal field.

Keywords: autonomous exploration; environmental field monitoring; gaussian processes; gaussian
markov random fields; kalman filtering; stochastic optimal control

1. Introduction

Autonomous underwater field exploration has been a fast-growing research area in the last
decade. With continuous advances in small-scale computing technology, smart micro-robots are
expected to play a prominent role in increasingly autonomous and interconnected exploration
and monitoring systems [1]; examples of micro underwater robots include the Avexis [2] and the
HippoCampus [3] micro autonomous underwater vehicle, see Figure 1. Autonomous multi-agent
swarms can be deployed for maritime exploration tasks such as the monitoring of algae growth,
oil spill, or underwater currents.

Hereby, the development of maritime exploration and monitoring systems profits from many
synergies with research on similar onshore tasks such as the monitoring of urban environmental fields.
As a result, micro-robots can monitor environmental processes such as particulate matter, acoustic
pollution, or electromagnetic fields. Particularly in hazardous environments, autonomous micro-robots
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inherit great potential to drastically increase safety and reduce costs compared to concepts involving
the deployment of stationary sensors or humans taking measurements. Thereby, depending on the
dynamics of the specific robotic platform sophisticated control algorithms such as [4,5] are required
in order to allow a safe and robust deployment in the underwater domain. However, missions with
mobile underwater robots inherit the challenge of limited communication bandwidth and range.
This naturally enforces a high level of autonomy as all key components of the exploration algorithm
have to run onboard.

Figure 1. Micro underwater robot HippoCampus for environmental field exploration.

Systems for maritime exploration tasks consist of multiple building blocks as depicted in Figure 2.
The state of the environment is represented in a so-called belief model which is updated through
measurements of the environment. The observations are collected using mobile robots. Thus,
a path-planning algorithm is required in order to maximize the expected information gain through
future observations along the robots’ paths. Since the robots cannot simply take measurements at
arbitrary locations, a trade-off arises between the potential information gained and the effort to drive
the robots to regions where information-rich observations can be collected.

1.1. Related Work

Methods for modeling a robot’s environmental belief can be distinguished in physics-based
models and non-physics based models. Physics-based models allow the extrapolation of the model
to the vicinity of the known belief. Nonetheless, they require solving a partial differential equation
(e.g., Navier–Stokes equation), which is computationally demanding. Moreover, such systems require
information regarding the boundary conditions which is often not directly available to the system [6].
In recent years, probabilistic belief models have been developed as a promising alternative for efficient
field estimation. These data-driven models may be more suitable for computationally constrained
robot swarms since they avoid computational-costly solving the partial differential equation and
additionally allow to model the uncertainty of the estimated physical process directly. Moreover,
data-driven models inherit the potential to infer the process characteristics during operation.

A prominent inference method for learning environmental field beliefs is Gaussian process (GP)
regression. Gaussian process regression, or in geo-statistics terminology ’Kriging’, originated as
a method for statistical inference of ore concentration fields [7]. Modeling environmental fields with
GPs is attractive as their mean and covariance functions allow a spatial continuous field representation
while additionally providing statistical uncertainty measures. Example applications include the
estimation of a temperature field in lakes [8] and the reconstruction of spatio-temporal fields with
mobile sensor nodes [9]. Moreover, Xu et al. [10] present a broad variety of different GP models for
spatial field estimation.
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Figure 2. Components of a closed-loop, information-based sensing algorithm for field exploration with
autonomous underwater robots.

While the continuous specification of a GP provides an intuitive interpretation of the underlying
physical process, real-world applications of GPs are often hindered by the big n problem. The big n
problem of GPs is particularly problematic when dealing with multidimensional dynamical processes.
Although several methods have been proposed to overcome this constraint, e.g., by reducing the
dimensions, simplifying the structure of the covariance matrix [11], or truncating the observations [9],
these methods inevitably inherit the trade-off between approximation quality and computational
cost. The computational burden of GPs becomes especially challenging and often intractable when
resource-constraint underwater robots are involved. In contrast to surface scenarios, high-bandwidth
communication links are often not available in the submerged domain. The low-bandwidth
communication requires the mobile robots to maintain a decentralized field belief representation
on-board. Recently, it has been shown that GPs can be sufficiently approximated through Gaussian
Markov random fields (GMRFs). A GMRF approximates a GP on a predefined lattice of random
variables (RV) by utilizing the Markov property [12]. Xu et al. discussed in a series of publications the
suitability of GMRFs for mobile sensor networks [10,13]. In their recent work, Jadaliha et al. [14] present
an extended GMRF framework for mobile robots which incorporates uncertainties in the observation
location. In an alternative approach for circumventing the big n problem, Todescato et al. [15] combine
Kalman filtering techniques with GPs to update a spatio-temporal field representation.

Regarding the task of efficient information gathering, planning algorithms can be grouped into
four categories. Myopic planning algorithms are computationally efficient as they compute the next
best action without a planning horizon. However, they suffer from the risk of getting stuck in local
optima. Sampling-based strategies have gained increasing interest in recent years, but do not provide
guarantees on global optimality; examples include the popular rapidly exploring random tree methods.
Dynamic programming is the method of choice for informative path planning tasks which can be
formulated as a (partially observable) Markov decision problem. However, they are often intractable
if the exploration task shall be solved without a state and domain discretization. In their work [16]
Hollinger and Sukhatme examine sampling-based information-gathering algorithms for continuous
space. They include information quality metrics and motions constraints in their planning algorithms.
Marchant and Ramos [17] present a double layered informative path planning concept using GPs and
Bayesian optimization, whereby they use one GP to model the physical phenomenon and a second GP
to model the quality of the selected paths. The resulting paths are described through cubic splines.
In [18], the exploration problem is formulated as a POMDP. The authors use Monte-Carlo tree search
and an upper confidence bound for trees together with sequential Bayesian optimization techniques.
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They evaluate their method in a series of experiments to analyze the performance. Recently, Cui et al.
proposed the combination of mutual information and rapidly-exploring random trees for underwater
path planning in a scalar field sampling scenario [19].

In this context, many publications consider the scenario of exploring large-scale environments
such as oceans. However, when reducing the scale to confined environments such as industrial tanks,
the robot dynamics cannot be neglected anymore. This problem can be tackled using receding horizon
schemes that optimize the full planning horizon while not providing guarantees beyond the horizon.
However, such a planning algorithm require a continuous representation of the field belief. Kreuzer
and Solowjow use linear functions to interpolate the field belief representation between the grid-points
while Xu et al. [20] propose sinusoidal weighting functions which are an attractive nonlinear alternative
for smooth field interpolation. The computational costs of these belief algorithms increase with
the number of collected observations, rendering their application on real robots impractical. With
a continuous belief representation, an exploratory path can be computed using the policy improvement
with path integrals (PI2) algorithm proposed by [21]. The PI2 algorithm origins from the work on
solving a nonlinear stochastic optimal control via the use of path integrals [22]. In reinforcement
learning terminology, our resulting exploration method could be seen as performing policy iteration.
In which, first, the exploration policy is evaluated at each new location through an update of the field
belief model. Subsequently, the belief is used as an information-theoretic value function for policy
improvement as proposed by [23]. This approach enables rapid evaluation of the belief space for
finding an optimal informative path.

1.2. Contributions

The contribution of this work is two-fold. First, we combine and extend approaches from
previous works [13,23] on field exploration with GMRFs to meet the requirements of an application on
a micro-robot platform and on the PI2 stochastic path planning algorithm. These requirements are

• a constant computational complexity over time,
• a continuous spatial belief representation which allows efficient path planning.

Therefore, we first extend the PI-GMRF approach proposed in [23] with the concept of sequential
Bayesian spatial prediction in [13] to guarantee a constant computational load while maintaining the
ability to incorporate off-grid measurements. Second, we extend the recently presented spacetime
Kalman filter (STKF) [15] by incorporating the concept of weighted shape functions to render the belief
model compatible with PI2. The combination of these two different belief models with PI2 results
in two novel algorithms for stochastic field exploration—namely, an improved PI-GMRF and the
new PI-STKF.

We conduct two numerical experiments to compare these models regarding their ability to
efficiently explore environmental fields and computational complexity. We assume that sufficient
prior knowledge on the physical process is available and thus no hyperparameter estimation of the belief
model is required. For the sake of brevity, we present the field estimation schemes for a single robot.
Albeit, we derive the algorithms in a form that allows a direct extension to multiple agents sharing
a centralized belief model.

1.3. Paper Structure

The paper is structured as follows. In Section 2, we briefly outline the problem of autonomous
field exploration. In Section 3, the belief models, namely the fully Bayesian GMRF and STKF, are
introduced and extended to incorporate off-grid measurements. In Section 4, we elaborate on the
usage of PI2 for path planning using information-theoretic value functions. In Section 5, the two belief
models are compared with respect to their computational time and estimation results. In Section 6,
we analyze the exploration performance of the final algorithm on an unknown spatio-temporal field.
Finally, Section 7 concludes this work and highlights potential future research directions.
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2. Problem Statement

We consider an autonomous underwater vehicle which explores an environmental field through
point-wise observations in a confined environment. The goal is to minimize the error between the
estimated and the true field within a minimal amount of time. Regarding the exploration algorithm,
this task can be restated as maximizing the ratio of collected information per time step. To make this
task tractable for mobile robot teams, the computational cost of the exploration algorithm has to be
bounded over time.

2.1. Robot Model and Problem Formulation

A dynamical robot model allows sampling feasible exploratory trajectories which can be evaluated
regarding their potential information gain on the environmental field belief. The motion of each robot
is described by

ẋt = f robot(xt) + G(xt)ut, (1)

where xt ∈ Rn is the state of the robot. The passive dynamics f robot define the state transition, which
for path planning algorithms is commonly described through a simple particle model. The scaled
control input ut ∈ Rp is the computed state correction through the robot’s actuators and G(xt) ∈ Rn×p

the control matrix.
At each discrete time step, the robot collects measurements y(xt) to gather information about the

environmental field f (xt) of interest. The sensor model of a single robot is described by

y(xt) ∼ h( f (xt), v), with v ∼ N (0, Σz), (2)

where zreal depicts the real environmental field values, h(·) is the observation function, and Σy is the
diagonal covariance matrix representing the measurement noise.

2.2. Field Belief Representation

In order to efficiently learn an environmental field estimate the robots have to gather information
by taking measurements and infer knowledge from the collected data. The collected data is
mapped to a belief of the underlying environmental process that enables the agents to plan actions.
In the information-theoretic exploration algorithms, the second order moments of the field belief
representation are used to evaluate the quality of the planned exploration paths. In this context,
the concept of probabilistic kernel models is a natural choice for spatially correlated field values.
The correlation of the field values is assumed to be known a priori. Thus, no hyperparameter estimation
has to be performed during exploration.

The limited computational capacities of embedded systems such as mobile robots require the
belief model to have a comparably small and constant computational cost. Therefore, we extend
algorithms based on GMRFs and Kalman Filtering to limit their computational complexity and to
enable their combination with a stochastic path planning controller for exploration tasks.

A GMRF defines a (finite-dimensional) random field that follows a multivariate Gaussian
distribution while satisfying the Markov property. Due to the Markov assumption, the inverse
of the covariance matrix Λ can be defined on a predefined lattice, while also being (desirably)
sparsely populated. The GMRF is fully defined by a mean vector µ and a precision matrix Λ−1

as N (µ, Λ−1). GMRFs are well suited for the approximation of conditional auto-regressive processes,
but require the initialization of a fixed lattice of random variables (RVs). The initialization hinders
the application of GMRFs to model temporal process correlations. Therefore, a Kalman regression
algorithm, also referred to as spacetime Kalman Filtering (STKF), is utilized to express a belief of the
spatio-temporal environmental field. However, both stochastic field belief models provide a measure
of belief uncertainty in the form of the conditional variance.
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2.3. Stochastic Optimal Control Problem

The stochastic optimal controller allows computing an optimal path with respect to the given
value function. In this work, we use a field uncertainty based value function, whereby the field
uncertainty is computed from the previously developed belief model. We use a stochastic optimal
controller to plan a maximal informative path with respect to the belief model’s predicted variance.
As thoroughly discussed in [24], the predicted variance results in the conditional entropy, which is an
indirect informative criterion. Hereby, the term indirect informative means that only the uncertainty
of the next potential state is considered, while the information of surrounding field values is not
considered. A critical insight for information theoretic path planning is that the posterior variance
does not depend on the process values of the obtained measurements if the kernel function is known.

In order to sample potentially feasible paths, the following robot dynamics are considered

ẋt = f robot(xt) + G(xt)(ut + εt), (3)

where xt ∈ Rn×1 denotes the system state, f robot(xt) ∈ Rn×1 the passive dynamics and εt ∈ Rp×1 the
additive Gaussian noise with variance Σε. Moreover, let the index t denote any arbitrary time step,
while we use the index ti to emphasize a particular time. The final goal of a stochastic optimal controller
is to compute the optimal controls ut with respect to the performance functional

V(xti ) = Vti = min
ui:(H−1)

Eτi:H (R(τi:H)) . (4)

The expectation Eτi:H is taken over all trajectories starting at xti . Also t0 = 0 s denotes the time at
the current agent position, and tH the last time step of the control horizon. We define the finite horizon
cost function Rτi:H for a trajectory piece τi:H with start at time ti and end at tH as

Rτi:H = φtH +
∫ tH

ti

rt dt. (5)

The term φtH denotes a terminal reward at time tH . The immediate cost rt at time t is chosen as

rt = r(xt, ut, t) = qt +
1
2

u>t Rut, (6)

with qt = q(xt, t) being a state-dependent cost function, and R being a positive semi-definite weight
matrix. Note that the control action ut is linear in (3) and quadratic in (6).

3. Probabilistic Belief Modeling for Field Exploration

In this section, we present extensions to two existing field belief concepts, namely the GMRF and
the STKF approach, to allow information-based exploration control with constant computational cost
over time. Both belief algorithm can be used to estimate a stochastic process on a predefined lattice of
Gaussian random variables.

In order to enable the incorporation of the belief models into a stochastic optimal control
exploration framework, we extend the belief algorithms analog to [23]. Therefore, we incorporate
off-grid observations through an affine transformation of field measurements onto the belief grid
using spatial shape functions. However, the original concept presented in [23] does not fulfill the
requirement of constant computational cost over time.

The GMRF-based belief algorithm was originally proposed in [13] and enables efficient estimation
of stationary spatial processes on a discrete grid of Gaussian random variables. The second belief
algorithm, proposed in [15], combines GP regression of spatial process components with Kalman
filtering of conditional-auto-regressive temporal process components.
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Defining the field representation on a lattice raises the question on how to choose the grid
discretization based on the fundamental trade-off between the accuracy of the field representation
versus the available computational power. The latter aspect is of particular importance in the field of
underwater robotics, as off-board computation of the field representation is not feasible due to the very
limited communication bandwidth. Thus, the discretization step size has to be selected depending on
the actual application scenario. Thereby, prior knowledge on the spatial scale of the physical process
is a helpful and valid assumption. For instance, if the user aims to explore small scale processes in
a local environment, e.g., an industrial tank, a dense grid is likely to be a better choice than a coarse
grid which captures global physical phenomena with acceptable computational burden. Moreover,
shape function approximation can be used to interpolate the field belief between the grid points.
This allows to efficiently monitor large scale fields where the main interest lies in the exploration of
global phenomena rather than local small scale processes.

3.1. Shape Functions

The introduced belief algorithms estimate the field on a discrete lattice {V , E} with
vertices V = {1, ..., n} and edges E . The set of continuous field locations is discretized
into a finite subset of n spatial input locations S = {s1, ..., sn}, such that the vector
f (t) = [ f (s1, t), ..., f (sn, t)]> , [ f1,t, ..., fn,t]

> is a discretization of f (x, t). The lattice S consists of
a finite number of sub-domains Se,i, where each is enclosed by four vertices s̄i, with i = 1, ..., 4. For the
ease of illustration, S is chosen as regular lattice with edges each of length a and b respectively,
as depicted in Figure 3. As proposed by [23], the field value at position q can be approximated through
a sum of weighted shape functions φe

i (q) and field values on the vertices f (s̄i), such that

F e =
4

∑
i=1

φe
i (q) f (s̄i) (7)

Figure 3 illustrates shape function φe
i=4 on an element domain Fe. Each shape function is zero

outside its corresponding element and equal to one at the associated vertex

φe
i (s̄k) =

{
1, if i = k

0, otherwise
. (8)

shape function

a

bxe

ye

Se,i

s̄1 s̄2

s̄3s̄4

vertex

Figure 3. Shape function on a selected grid element.

A local coordinate system Ke(xe, ye) is defined on Fe. The origin of Ke(xe, ye) lies in the center
of the element. The corresponding coordinate axis are orthogonal to each other and parallel to the
respective element edges. The shape functions are defined as

φe
1 =

1
ab

(
xe −

a
2

)(
ye −

b
2

)
, φe

2 = − 1
ab

(
xe +

a
2

)(
ye −

b
2

)
,

φe
3 =

1
ab

(
xe +

a
2

)(
ye +

b
2

)
, φe

4 = − 1
ab

(
xe −

a
2

)(
ye +

b
2

)
.

(9)
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Using the shape functions above, φj defines a mapping between the continuous field and
four-element vertices through

φj =
[
0 ... φe

1 φe
2 φe

3 φe
4 ... 0

]
, φj ∈ [0, 1]1×n . (10)

In this manner, a measurement yj(tk) can be expressed in terms of the element grid
approximation, writing

yj(qj) = φj(qj) f + v, v∼N (0, σ2
y ). (11)

Moreover, the mapping of N measurements at time tk is obtained as Φk =
[
φ1(tk)

>, ..., φN(tk)
>]>.

Further we define the mapping Φ1:k =
[
Φ>1 , ..., Φ>k

]>
.

3.2. Gaussian Markov Random Field Regression

Gaussian Markov random fields define a conditional auto-regressive (CAR) process. A process
is a CAR(j) process, if the expectation of a process value is fully defined through the next j adjacent
graph vertices. The Markov assumption enables the direct construction of a sparse precision matrix.
Given a labeled graph G = (V , E) with vertices V = {1, ..., n} and edges E , a probabilistic graphical
model η defines a GMRF, if the edges E are chosen such that there is no edge between node i and j,
if ηi ⊥ ηj | η−ij, in which −ij denotes the nodes adjacent to i and j, respectively [25]. The pairwise
conditional independence properties of x on G are inherent in the subdiagonal entries of the precision
matrix Λ. We refer the reader to [25] for an in-depth discussion of GMRFs.

In order to construct the GMRF, the continuously indexed spatial field F∗ ⊂ Rd is discretized into
a labeled undirected spatial graph with n∗ vertex positions S∗ = x1, ..., xn∗ , where xi denotes the i-th
field vertex position (Note that in this work the scalars x or y denote the spatial position coordinates
of a two-dimensional spatial position vector x, while a bold y represents an environmental field
observation vector.). The set of field locations S∗ is extended to S with vertex positions S = x1, ..., xn,
as depicted in Figure 4, to compensate boundary effects occurring due to the GMRF approximation.
Then on S, a GMRF η is constructed using the SPDE approach proposed by [12].

F∗

S∗

S

qk,i ∈ F

F

x

y

Figure 4. The agent’s position qk,i at the discrete time step k lies in a spatial field F∗ with coordinate
values x and y. The field F∗ can be extended to F and is then discretized into a regular grid S to enable
the construction of a GMRF and to compensate for boundary effects.

Let η ∼ N (0, Σ) be a GP on R2 defined by the Matérn covariance function defined as

kMatérn(x, x′) = σ2
f

21−ν

Γ(ν)

(
κ ‖x− x′‖

)ν

Kν

(
κ ‖x− x′‖

)
, (12)
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in which ‖ · ‖ denotes the Euclidean distance in Rd and Kν the modified Bessel function of the
second kind. The GMRF η ∼ N (0, Λ−1) defined on a regular two-dimensional lattice approximates
a Matérn GP for ν = 0 if the Gaussian full conditionals read

E
(
η|η−ij, θ

)
=

1
a
(
ηi−1,j + ηi+1,j + ηi,j−1 + ηi,j+1

)
=

1
a

◦ • ◦• ◦ •
◦ • ◦

 , Pre
(
η|η−ij, θ

)
= a τ. (13)

For the case of ν = 1, the Gaussian full conditionals read

E
(

η|η−ij, θ
)
=

1
4 + a2

2a

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

 , Pre
(

η|η−ij, θ
)
=
(

4 + a2
)

τ, (14)

with a = κ2 + 4 and θ = [τ, κ]> ∈ R2
>0 being hyperparameters of the model. The additional

hyperparameter τ adjusts the GMRF’s signal variance independent of κ. The proof of Equations (13)
and (14) for the general case of irregular grids is stated in [12]. Figure 5 illustrates the correspondence
between the spatial lattice locations and the values in each column of Λ using the previously presented
construction scheme.

4+a2

ν = 0 ν = 1

−2a1−1 a

−2a

−2a

−2a−1

−1

−1

1

1

1

2 2

22

Figure 5. Non-zero elements of a column of the precision matrix Λ associated with one random variable
and its neighbor vertices on a regular two-dimensional GMRF lattice.

When designing the GMRF precision matrix, the full conditionals for the border vertices of the
GMRF grid affect the estimation result considerably. Three commonly used boundary conditions are
the Dirichlet, Neumann, and torus boundary condition [25].

3.2.1. Sequential GMRF Regression

In this Subsection, the GMRF regression algorithm proposed in [13] is extended to enable spatial
process estimation with continuous observations. The values of the field are represented by the latent
variable zi = z(si) ∈ R. The latent variables are expressed using a global linear model, such that

zi = µ(si, β) + ηi ∀ 1 ≤ i ≤ n, (15)

µ (si, β) = m> β. (16)

Hereby, m =
[
m1(si), ..., mp(si)

]> ∈ Rp denotes the regression function vector and the

vector β =
[
β1, ..., βp

]> contains the unknown regression coefficients. The field belief on the lattice is
denoted as z = [z1, ..., zn]>. The small-scale correlations of the field are modeled through the zero-mean
GMRF η ∼ N (0, Λη|θ). We initialize the GMRF precision matrix Λ−1

η|θ with the full conditionals as
defined in (13) and (14). A zero-mean Gaussian prior is assumed on the regression coefficients
β ∼ N (0, T−1) to estimate the regression coefficients as a function of z and θ, where T−1 is initialized
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as a diagonal matrix with large diagonal elements. The probability distribution of the full latent field

z̄ =
[
z>, β>

]> ∈ Rn+p reads

p(z̄, θ) = p(z|β, θ) p(β),

∝ exp
(
− 1

2
(z−mβ)>Λη|θ(z−mβ)− 1

2
β>Tβ

)
,

= exp
(
− 1

2
z̄>Λz̄|θz̄

)
, (17)

with precision matrix Λz̄|θ ∈ R(n+p)×(n+p) being defined as

Λz̄|θ =

[
Λη|θ −Λη|θm

−m>Λη|θ m>Λη|θm + T

]
. (18)

By exploiting the GMRF’s canonical form, only the current available measurements yk are
required to sequentially update the conditional precision matrix Λz̄|θ,y1:k

, Λk|θ and the canonical
mean bk = Λk|θµk|θ. A sequential updating algorithm is obtained by inserting the canonical mean
definition into the formula for conditioning of a multivariate Gaussian distribution, such that

p(z̄|θ, y1:k) = N (Λ−1
k|θbk, Λ−1

k|θ), (19)

Λk|θ = Λz̄|θ +
1
σ2

y
Φ>1:kΦ1:k = Λk−1|θ +

1
σ2

y
Φ>k Φk, (20)

bk =
1
σ2

y
Λk|θΛ−1

k|θΦ>1:ky1:k = bk−1 +
1
σ2

y
Φ>k yk, (21)

with initial conditions Λ0|θ = Λz̄|θ and b0 = 0. Note that the shape function vectors are extended
by a zero vector of length p such that Φk ∈ Rn+p. The final sequential GMRF regression algorithm
is summarized in Algorithm 1. In order to obtain the variance vector diag(Λ−1

k|θ) of the full latent
field, without calculating the inverse of the precision matrix, the Sherman–Morrison formula is used,
Line 13. The complete derivation is outlined in Appendix A. For the sake of clarity, the notation for the
conditioning of the GMRF matrices on the hyperparameters θ is omitted. It is worth mentioning that
adding the product Φ>k Φk to Λ0|θ does not significantly increase the density of the initial precision
matrix. Thus, the algorithm has a computational complexity of O(1) over time.
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Algorithm 1 Sequential GMRF Regression

Require: Hyperparameter vector θ, Extended field grid S, Regression function vector m

Measurement variance σ2
y , b0,0 = 0, Λ0,0 , Λz̄

1: compute diag(Σ0) = diag(Λ−1
z̄
)

2: for k ∈ Z>0 do
3: for 1 ≤ j ≤ N do
4: get j-th agent location xk,j and measurement yk,j
5: compute Φk,j(xk,j,S)
6: bk−1,j = bk−1,j−1 +

1
σ2

y
Φ>k,jyk

7: Λk−1,j = Λk−1 + ∑N
l=1

1
σ2

y
Φ>k,lΦk,l

8: hk,j = Λ−1
k−1,jΦ

>
k,j

9: end for
10: bk,0 = bk−1,N
11: Λk,0 = Λk−1,N
12: µk = Λ−1

k,0 bk,0
13: diag(Σk) = diag(Σk−1)−∑N

l=1
hk,l◦hk,l

σ2
y+Φk,l hk,l

14: end for

3.2.2. Hyperparameter Estimation for Sequential GMRF Regression

A possible straightforward extension of the proposed model, is described in Xu et al. [13]. In this
work, hyperparameter estimation is incorporated by defining the maximum a posteriori distribution
p(θ|y) ∼ p(y|θ)p(θ) with p(θ) being a uniform prior distribution over a discrete set of hyperparameter
combinations. Approximating the integral by a discrete sum decreases the computational load
compared to a numerical integration over p(θ|y). Furthermore, such an approach scales linearly
with the number of hyperparameter combinations and can be extended to incorporation of continuous
measurements. However, the method requires that the set of hyperparameters are chosen a priori.

3.3. Kalman Regression for Field Estimation

The Kalman regression model by [15], also referred to as spacetime Kalman filtering (STKF),
incorporates off-grid measurements by adding new grid vertices to the belief lattice. In the following,
we propose the concept of weighted shape functions to fuse new observations from continuous space
into the already existing neighboring vertices of the discrete grid, see Figure 6. This allows us to keep
the number of vertices and their spatial density constant. In order to make this article self-sufficient,
we briefly summarize the derivation of the STKF.

F

S

xy xy xy

F F

qk−2

S S

tk−2 tk−1 tk

t

qk−1

qk

Figure 6. An agent takes measurements at the position q while maneuvering through a field F . The
environmental field is discretized into a regular lattice with the set of locations S. The STKF random
variables f̂ (t) estimate the spatio-temporal process f (t) on S.
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3.3.1. Process Model

Given the spatio-temporal physical process f (x, t), its covariance function K(·) is assumed
to be separable in time and space, as well as stationary in time K(x, x′, t, t′) = Ks(x, x′)Kt(t, t′).
Therefore, the power spectral density (PSD) Sr(ω) = W(iω)W(−iω) of the temporal covariance Kt

can be approximated by a rational function of order 2r. As rational functions are universal function
approximators, arbitrary (non-stationary) temporal spectra can be approximated by increasing r.

The individual temporal process component zi(t) defined by Kt is represented by a continuous
state space model Si in companion form using the Wiener–Khinchin theorem and realization theory,
such that

Si :

{
ṡi(t) = Fsi(t) + Gwi(t),

zi(t) = Hsi(t),
i ∈ {1, ..., n}. (22)

where w(t) ∼ N (0, I) and the matrices F, G, and H are in companion form

F =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1

 , G =


0
0
...
0
1

 , H =
[
b0 b1 b2 . . . br−1

]
. (23)

The initial state yields s(0) ∼ N (0, Σ0). The covariance matrix Σ0 is obtained as the solution to
the Lyapunov equation FΣ0 + Σ0F> + GG> = 0. Note that s(t) does not provide a directly intuitive
physical interpretation. The temporal process component is obtained as z(t) = [z1(t), ..., zn(t)]

> ∈ Rn.
The spatial covariance matrix K̄S is computed on S through the spatial covariance function Ks. Finally,
the process on S is obtained by spatially correlating all zi(t) through the Cholesky factorization K̄1/2

S
of K̄S , reading

f (t) = K̄1/2
S z(t). (24)

The spatio-temporal process model is depicted in Figure 7. With
s(t) = [s>1 (t), ..., s>n (t)]>(t) ∈ Rn×r and process noise w(t) = [w1(t), ..., wn(t)] ∈ Rn, Equation (22)
is condensed to

S :

{
ṡ(t) = (I ⊗ F)s(t) + (I ⊗G)w(t),

f (t) = K̄1/2
S (I ⊗ H)s(t),

(25)

Process Model

Φ

F∫
dtG H

S2

S3

S1

K̄1/2
S

qk

yk

w1

w2

w3

f (t)

Cont. SSM of temp. GP

Chol. decomp. of spat. GP

Interpolat. matrix

vk

s1ṡ1

z1

z2

z3

Figure 7. Block diagram of the process model on a field lattice with three vertices.

in which the Kronecker product is denoted by ⊗. The previous equations are discretized to enable
numerical implementation. Thereby, the discrete time step tk is abbreviated as k with a single time step
being Tk = tk − tk−1. The discrete process model of (25) reads{

sk+1 = Ask + wk,

yk = Cksk + vk.
(26)
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The discrete state transition matrix is obtained as

A = exp (I ⊗ F)Tk ∈ Rrn×rn. (27)

The zero mean Gaussian noise wk ∈ Rrn is defined by the covariance matrix Qk = I ⊗ Q̄k with

Q̄k =
∫ Tk

0

(
exp(Fτ)GG>(exp(Fτ)>

)
dτ. (28)

The measurement noise vector vk = [vk,1, ..., vk,N ]
> is defined as vk ∼ N (0, Σy) with

Σy = σ2
y I ∈ RN×N .

The discrete observation matrix is obtained as

CS ,k = K̄1/2
S (I ⊗ H) ∈ RN×rn. (29)

In contrast to [15], where new vertices are initialized to include off-grid information, we map the
observation yk collected at timestep k at position qk to neighboring belief vertices through (11). Using
the measurement interpolation matrix Φk, we obtain a transformation from the discrete belief lattice to
a continuous field measurement as

Ck = ΦkK̄1/2
S (I ⊗ H) = ΦkCS ,k ∈ RN×rn, with Φ = (Φ>1 , ..., Φ>N)

>. (30)

3.3.2. Kalman Regression

As the temporal process model in (26) is known and linear, a Kalman filter scheme can be used to
estimate the evolution of the temporal process component sk by incorporating observation yk+1 [26].
Furthermore, if the noise is assumed to be zero mean and Gaussian distributed, the Kalman filter
estimates are optimal in a mean-square sense. The STKF belief model is summarized in Algorithm 2.

Given the state space model in (26), the temporal state component at time step k + 1 evolves
in time according to sk+1 ∼ N (Aksk, Qk), where Qk is the corresponding process noise matrix.
The measurement obtained from the real process is assumed to result from an affine transformation of
the temporal state component, reading yk+1 ∼ N (Ck+1sk+1, Σy).

In a first step, the Kalman filter predicts the temporal process component at the next time step ŝk+1|k
based on the previous estimated temporal state component ŝk|k, such that sk+1|k ∼ N (ŝk+1|k, Σk+1|k).
The state mean prediction ŝk+1|k and predicted state covariance matrix Σk+1|k are depicted in lines 9
and 10 of Algorithm 2 respectively.

In the second step, the Kalman filter updates the temporal state component ŝk+1|k+1 by conditioning
the RV on yk+1, such that sk+1|k+1 ∼ N (ŝk+1|k+1, Σk+1|k+1). The equations for the updated state and
covariance matrix are stated in lines 11 to 13 of Algorithm 2.

Figure 8 illustrates the STKF model. The process model consists of the state space models
of the temporal process components zi(t), which are correlated using the product of the Cholesky
decomposition of the spatial covariance matrix CS = K̄1/2

S (I ⊗ H). The Kalman filter predicts the next
temporal process component, which is then updated using new measurements yk.
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Algorithm 2 Kalman regression

Require: (F, G, H) state-space model of Sr(ω), measurement noise variance σ2
y , input location set S,

spatial, time kernels Ks(·, ·), and h(·)

1: ŝ(0|0) = 0 and Σ(0|0) = I ⊗ Σ0.
2: Compute Σ0 as solution of FΣ0 + Σ0F + GG> = 0
3: Compute Ak, Qk, Σy,k and CS = K̄1/2

S (I ⊗ H)

4: for t ∈ R>0 do
5: if t ∈ ]tk, tk+1[ then {open-loop prediction}
6: ŝ(t) = (exp(I⊗F)τ)Σk|k(exp(I⊗F)τ)>

7: else if t = tk+1 then {Kalman estimation}
8: Compute Φ(qk+1) and Ck+1 = Φ(qk+1)CS

- Prediction step:
9: ŝk+1|k = Ak ŝk|k

10: Σk+1|k = AkΣk|k A>k + Qk
- Update step:

11: Lk+1 = Σk+1|kC>k+1
(
Ck+1Σk+1|kC>k+1 + Σy,k+1

)−1

12: ŝk+1|k+1 = ŝk+1|k + Lk+1
(
yk+1 − Ck+1ŝk+1|k

)
13: Σk+1|k+1 =

(
I − Lk+1Ck+1

)
Σk+1|k

14: ŝ(t) = ŝk+1|k+1
15: Σs(t) = Σk+1|k+1
16: end if

- Process estimate:
17: f̂ (t) = CS ŝ(t)
18: Σ f (t) = CSΣs(t)C>S
19: end for

Spacetime Kalman filter

Prediction

Update

C

CS

CSΣs
t C>S

yk

f̂ (t)

Σ f (t)

KF

Spatial GP
ŝk+1|k+1

Σk+1|k+1

Σk+1|k

ŝk+1|k

Figure 8. Block diagram of the spacetime Kalman filter.

The computational complexity of Algorithm 2 is dominated by the inverse computation of the
Kalman gain in line 12. The computational complexity of the STKF algorithm is bounded by

O(r · n · N + N3 + n · P), (31)

in which r is the order of a single state space model in (23), n is the number of vertices of S , while P is the
number of open-loop predictions performed, and N is the number of agents collecting measurements
at each discrete time step [15]. In this work, we do not perform any open-loop predictions, thus P is
zero. Note that all variables in (31) are assumed to be constant over time. If spatial hyperparameter
estimation is performed, the Cholesky transformation of the new spatial covariance matrix needs to
be computed. In this case, the computational load is dominated by the computation of the spatial
Cholesky decomposition being O(n3).
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3.3.3. Hyperparameter Estimation in Kalman Regression

In the STKF, the spatial Kernel hyperparameters can be estimated using a standard estimation
method for GPs, such as maximum a posteriori estimation. However, GP hyperparameter estimation
methods have the disadvantage of suffering from the big-n problem. In this sense, finding an
optimization method that enables spatial hyperparameter estimation represents a challenge yet to be
solved. As a state space model approximates the temporal process component, the temporal process
hyperparameters can be estimated using methods developed for parameter estimation in finite state
space models, as pointed out in [27]. Such methods inherit the advantage of having linear time
computational complexity.

4. Path Integral Control for Exploratory Path Planning

The final path planning algorithm is summarized in Algorithm 3. In a discrete receding horizon
formulation, the optimal control vector is recomputed at each sampling instance, while only the first
control input is applied to the path planning model to generate the next way-point.

In the first initialization of the algorithm the initial control sequence u0:(H−1)(k = 0) is assumed
to be the null vector. Afterwards, at each subsequent planning step, the initial control sequence is set
to u0:(H−1)(k) = [u1:(H−2)(k− 1)>, 0]>. With u0:(H−1)(k) and the sampled exploration noise ε0:(H−1),`
the `-th path roll-out is computed in line 6 of Algorithm 3.

Exploration of underwater environmental fields is often conducted by underwater robots whose
propulsion system produces mainly forward-directed thrust, which allows higher cruising speeds
and, thus, faster exploration. These robots typically come with non-holonomic dynamics, e.g.,
the HipppoCampus micro underwater robot [3]. Hence, analog to [23], we use an unicycle model to
make use of the dynamic constraints and efficiently generate path roll-outs. The model reads

xk+1 =

xk+1
yk+1
αk+1

 =

v cos(αk)

v sin(αk)

f (c)

∆t +

 0
0

g(c)>

 (uk∆t + εk
√

∆t), (32)

with the directly controllable system dynamics f c
robot = 0, as well as the control transition matrix

g(c)> = 1 being deterministic. Since g(c)> is scalar, the weighted control projection matrix also reduces
to a scalar Mtj = 1.

The cost for the `-th path segment τi:H,` is computed in line 7 of Algorithm 3. Note that if we
average over Mti u0:(H−1) the algorithm could become unstable. As [21] points out, the matrix Mti is
a projection of u0:(H−1) onto the column space of gtj weighted by the metric R−1. A multiplication
with Mti results in a decreasing u0:(H−1). The state cost qi,` is set to be the predictive variance of the
belief model at the associated state.

Afterwards, the probability of each path segment P(τi:H,`) is obtained by normalizing each
probability measure of S̃(τi:H,`) through the sum of path segment probabilities of all roll-outs in
line 10. In this line, λ is a sensitivity parameter that is eliminated by subtracting a constant term from
S̃(τi:H,`), writing

exp
(
− 1

λ
S̃(τi:H,`)

)
= exp

(
− c

S̃(τi:H,`)−min S̃(τi:H,`)

max S̃(τi:H,`)−min S̃(τi:H,`)

)
, (33)

with c = 10, as proposed by [21]. Figure 9 illustrates the computation of the path segment dependent
control correction through line 13 and subsequently the computation of the averaged control vector
through line 16. For all path segments of equal length, the exploration noise at each step of the path
segment of equal length are weighted by P(τi:H,`) and summed up. This results in the weighted path
segment dependent control correction, line 13 of Algorithm 3. In this equation, the lower index defines
the relative position in the path segment, while the higher index defines to which path segment the
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vector entry belongs. Per definition, the index number of the last sample path location is equal to
H = tH/∆t. It follows that ∆u0:(H−1) is of size H× 1 and ∆ui:(H−1) is of size (H− i)× 1. Hence, line 13
computes an optimal control correction vector ∆ui:(H−1) for each path segment over all K roll-outs.

Algorithm 3
Line 16

Compute average

Algorithm 3
Line 13

ε(H−1),1

ε(H−1),2

ε(H−1),`
ε(H−1),K

Sum weighted
proj. controls

probabilities
Path segment

Algorithm 3
Line 10

∆u0:(H−1) =
[
∆u0:(H−1)

0 , ∆u0:(H−1)
1 , ..., ∆u0:(H−1)

(H−1)

]
∆u1:(H−1) =

[
∆u1:(H−1)

1 , ..., ∆u1:(H−1)
(H−1)

]
∆u(H−1):(H−1) =

[
∆u(H−1)

(H−1)

]

Path segment dependent control correction

x0,`

ε0,`

x1,`

ε1,` ε2,` ε(H−1),`

x2,` x(H−1),`
xH,`

x1,`

ε1,` ε2,` ε(H−1),`

x2,` x(H−1),`
xH,`

ε(H−1),`

x(H−1),`
xH,`

τ(H−1):H,`

τ1:H,`

τ0:H,`

ε(H−1),`

ε1:(H−1),`

ε0:(H−1),`

Path segments of the k-th roll-out

Averaged control correction

∆u =
[
∆u0, ∆u1, ..., ∆u(H−1)

]

Figure 9. Schematic visualization of the computational steps involved in computing the averaged
control correction from K sampled path roll-outs of length H using the PI2.

Algorithm 3 PI2 for path planning

Require: Cost function rk = qk + u>Ru, unicycle exploration policy xk+1(uk, xk, ∆t), exploration
noise variance Σε, sampling time ∆t, initial optimal control sequence u0:(H−1)(k = 0),
number of sampled paths K, control horizon steps H, control computation iterations nupdated

1: u(start)
0:(H−1)(k) = [u1:(H−2)(k− 1)>, 0]>

2: M = R−1gg>

g>R−1g (Weighted control projection matrix)

3: for 1 ≤ (...) ≤ nupdated do
4: for 1 ≤ ` ≤ K do
5: - Sample exploration noise: ε0:(H−1),` ∼ N (0, Σε)
6: - Compute path roll-outs: τ0:H,`(xtj , u0:(H−1), ε0:(H−1),`, ∆t)
7: - Compute cost of paths segments:

S̃(τi:H,`) = ∑H
h=i qh,` +

1
2 ∑H−1

h=i−1
1
2 (uh+Mh,`εh,`)

>R(uh+Mh,`εh,`)
8: end for
9: for 1 ≤ ` ≤ K do

10: - Path segment probabilities: P(τi:H,`) =
exp(− 1

λ S̃(τi:H,`))

∑K
k=1 exp(− 1

λ S̃(τi:H,`))
11: end for
12: for 0 ≤ i ≤ (H − 1) do
13: - Path segment dependent control correction: ∆ui:(H−1) = ∑K

`=1 P(τi:H,`)Mεi:(H−1),`
14: end for
15: for 0 ≤ i ≤ (H − 1) do
16: - Averaged control correction: [∆u]i =

∑H−1
h=0

(
(H−h)[∆uh:(H−1) ]i

)
∑H−1

h=0 (H−h)
17: end for
18: u(new)

0:(H−1) = u0:(H−1) + ∆u
19: end for
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Subsequently, the path segment dependent control vectors ∆ui:(H−1) are weighted by the trajectory
length and averaged in line 16. In this manner, for the time step (H− 1), K potential control corrections
are computed and averaged to obtain a single control correction. The obtained control correction ∆u is
added to the previous control sequence resulting in the new control vector, line 18. The algorithm is
repeated until the number of iterations reaches nupdates.

5. Field Belief Comparison

In this Section, the sequential GMRF regression model stated in Algorithm 1 and the STKF
regression model stated in Algorithm 2 are compared for their computational performance time and
prediction capabilities. Throughout the analysis, we use the empirical GMRF algorithm proposed
by [23] as performance baseline.

5.1. Computational Complexity

In the following we analyze the computational complexity of our proposed field belief algorithms.
The upper bounds of the belief algorithm’s computational complexity are summarized in Table 1.
Thereby, the original empirical GMRF algorithm as proposed in [23] already shows a drastic
improvement with regard to processor and memory requirements compared to vanilla GP regression.
Nonetheless, the empirical GMRF algorithm still suffers from a linearly increasing computational cost
over the number of time steps k. The sequential GMRF regression algorithm utilizes the canonical
form of the GP, which in combination with a predefined GMRF precision matrix enables a sequential
update of the belief. Therefore, the sequential Bayesian GMRF algorithm has a constant computational
time with upper bound O(Nn3/2) for the two dimensional scenario. In general, the computational
time of the GMRF increases with the number of dimensions as the bandwidth of the precision matrix
increases [25]. The STKF’s upper bound on the computational complexity is O(rnN + N3). For the
case of spatial hyperparameter estimation, the STKF’s computational complexity is limited by the
computation burden of the spatial Cholesky factorization being O(n3) for dense matrices.

Table 1. Computational complexity of the developed belief algorithms for two and three dimensions of
the field belief with number of agents N, number of discrete time steps k, number of field grid values n,
and dimension of the state space model r.

Belief Algorithm 2d 3d

GP Regression O((Nk)3) O((Nk)3)
Empirical GMRF Regression O(n3/2) + O(Nk) O(n2) + O(Nk)
Bayesian GMRF Regression O(Nn3/2) O(Nn2)

STKF O(rnN + N3) O(rnN + N3)

5.2. Environmental Field Estimation

The hyperparameter configurations of the individual algorithms and the corresponding acronyms
are listed in Table 2. The hyperparameters of the belief model in Table 2 are tuned by hand in order
to optimize the approximation result. Hereby, the size of the field lattices are tailored such that the
computation time has the same value for all algorithms. Note that GMRF-2 and GMRF-3 use the
same regression algorithm, but the used CAR process type, boundary condition, and lattice size differ.
During the simulation, measurements are collected from the spatial field depicted in Figure 10. On each
belief update step, the next measurement location is chosen to be the point with the highest predictive
variance plus a Gaussian noise term with a variance of 0.5 m2.

In order to provide meaningful results the simulation setup is run over 50 individual cycles
for each belief algorithm. Figure 11a shows the root mean square (RMS) of the predictive variance
sum. We choose the predictive variance sum as belief convergence criteria as it—unlike the empirical
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mean—is more sensitive to outliers. The convergence behavior of the predictive variance sum’s RMS
is utilized as a measure for the exploration performance.

Table 2. Hyperparameter configurations of the individual algorithms and corresponding acronyms.
The size of the belief field grid S is defined by the total number of vertices in x-direction being nx. The
second value inside the brackets depicts the total number of padding vertices in one dimension.

Acronym Belief Algorithm Process Type Boundary Cond.

GMRF-1 Empirical GMRF Matérn CAR(1) Neumann
GMRF-2 Bayesian GMRF Matérn CAR(1) Neumann
GMRF-3 Bayesian GMRF Matérn CAR(2) Torus

STKF-1 STKF
Spat.: Matérn Cov.

(ν = 1)
Temp.: Exp. Cov.

-

Acronym nx × ny κ2 τ σf l

GMRF-1 (80 + 10) × (40 + 10) 10−5 1 - -
GMRF-2 (80 + 10) × (40 + 10) 10−4 0.5 - -
GMRF-3 (40 + 20) × (20 + 20) 0.01 1 - -

STKF-1 (40 + 0) × (20 + 0) - -
Spat.: 1.8
Temp.: 1

Spat.: 3.2
Temp.: 107

Figure A1 in Appendix B illustrates the mean and variance prediction results for the different
regression models. Due to the steep correlation structure between known and unknown field values
induced by a CAR(1) model, comparatively many measurements are taken in the vicinity of the field
boundary. If the padding around the true field GMRF grid is chosen relatively small, distortion
effects of the boundary conditions affect the estimation result. The predictive variance of GMRF-1
and GMRF-2 after one measurement shows a non-circular shape, which is induced by the Neumann
boundary condition, while the predictive variance of the GMRF-3 after one measurement increases on
the edges of the field due to the Torus boundary condition. While designing a GMRF, the dependencies
between the field approximation, the used GMRF model, and the chosen boundary condition must be
taken into account.
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Figure 10. The concentration field used for generating measurements.
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Figure 11. Belief model comparison. (a) Median and inter-quarter ranges of the root mean square
of the belief algorithms’ predictive variance sum. (b) Medians and inter-quarter ranges of the belief
algorithms’ computational time over fifty simulation runs.

Figure 11b illustrates the median and inter-quarter range (IQR) of the computational time of the
different belief models after fifty simulation runs. As expected, the computational time of GMRF-1
increases practically linearly over time due to the increasing number of observations. GMRF-3 has
approximately 4500 lattice vertices, while GMRF-2 has approximately 2400 lattice vertices. While
GMRF-2 and GMRF-3 both utilize the same regression algorithm with different lattice sizes the
computational time almost equals. The same computation time can be attributed to the CAR(2) model
used for GMRF-3, which results in a less sparse precision matrix than compared to the CAR(1) model
of GMRF-2.

6. Analysis of the Exploration Algorithm

In this Section, the STKF belief model is combined with the stochastic controller and the
performance of the resulting exploration algorithm, abbreviated as PI-STKF, is analyzed. First,
the PI-STKF algorithm is simulated for the scenario of a spatially stationary field as introduced in
Section 5.2. Afterwards, the PI-STKF algorithm is simulated in a spatio-temporal exploration scenario,
demonstrating the suitability of the developed exploration algorithm for long-term field monitoring
tasks. The PI-STKF simulation parameters are listed in Table 3. In order to analyze the effect of different
control horizons we consider three robot agents which we abbreviate as ‘Agent-4’, ‘Agent-9’, and
‘Agent-14’, corresponding to their control horizons of tH = 4 s, tH = 9 s, and tH = 14 s respectively.

In order to analyze the performance of the algorithms completely isolated from external
non-reproducible influences, simulations are conducted on a 2.4 GHz Dualcore-CPU ’i5-2430M’ and
8 GB RAM computer where the algorithms are implemented in Python. The computer executes the
exploration algorithm at a frequency of approximately 1.5–3 Hz and, thus, sufficiently fast to provide
underlying low-level control schemes with the required data. Moreover, it is worth mentioning that
the current Python-implementation is not yet speed-optimized such that a sufficiently fast execution
time is expected on the micro robot’s onboard hardware.

Table 3. PI-STKF simulation parameters.

PI-Control Parameters Symbol Value

Control Horizon tH 4 s | 9 s | 14 s
Agent velocity v 0.5 m

s
Simulation time - 150 s

Time step ∆t 1 s
Trajectory roll-outs K 15

Control loop updates nupdates 10
Measurement variance σ2

y 0.3
Exploration noise ε π/10

Control cost R 1
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6.1. Analytical Field Exploration

At every discrete time step, the agent receives a new measurement at its current location from
the underlying simulated real field which is depicted in Figure 10. The measurement is perturbed
by Gaussian measurement noise with variance σ2

y . The measurement is fed to the STKF belief model.
The temporal length scale of the STKF belief model is set to 107, such that the conditional variance
of the belief model does not noticeably increase over time. The PI2 algorithm utilizes the belief’s
conditional (predicted) variance as state cost. Figure 12 illustrates the roll-out sampling step for
a control horizon length of tH = 4 s (left) as well as tH = 14 s (right). At t = 40 s the Agent-4 plans
a optimal trajectory towards a local variance maximum. In contrast, Agent-14 takes a path towards the
global variance maximum.
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Figure 12. Illustration of the PI-STKF algorithm using different time horizon lengths tH . The optimal
path (|) starting at the current agent position (•) is computed by an iterative sampling of several
potential paths (|) which are then weighted according to their probabilities which depend on the
predicted variance.

Figure 13a,b illustrates the exploration result of the PI-STKF algorithm for a short a control horizon
of 4 s and a longer horizon of 14 s. As depicted in Figure 12, Agent-4 samples trajectories which are
not long enough to reach to the global maximum of the predicted variance field. As a result, Agent-4
follows a rather sub-optimal trajectory from tH = 9 s until t = 30 s. Furthermore, between t = 60 s and
90 s Agent-4 moves again into the upper left corner, as the rather short sample roll-outs do not provide
sufficient information regarding the location of the unknown field values. In contrast, Agent-14 shows
a more exploratory behavior. On an intuitive level, one might wonder why Agent-14 first navigates
to the upper field boundary, instead of directly maneuvering to the upper right corner of the field.
However, even though the prediction horizon is longer than Agent-4’s horizon, it is still possible that
the relatively small number of sampled control roll-outs pushes the optimal path towards a temporary
less informative path. When Agent-14 almost reaches the upper field boundary, symmetry breaking
occurs. Symmetry breaking is a common phenomenon in stochastic optimal control that describes the
sudden fixation of the controller towards one sample direction [22]. As the controller’s state cost is the
predicted field variance, the agents prioritize a path along the boundary of the field. After t = 90 s
both agents obtained a good belief of the original field process. The effective computational time at
each time instance sums up to 0.2 s when using a control horizon of tH = 4 s and 0.3 s and 0.4 s for
the control horizons of tH = 9 s and tH = 14 s respectively. Hereby, it is worth mentioning that the
controller is implemented in Python using mainly a non-optimized for-loop structure.
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Figure 13. STKF algorithm exploration results for two time horizon lengths tH = 4 s and tH = 14 s
and temporal length scale of 107 which results in a belief remaining almost constant with respect to
time. The agent (•) moves along its trajectory (|) following an optimal path (|) by applying the first
optimal control step. The optimal path is computed by PI2 using the conditional variance of the STKF.
(a) Predicted STKF field variance estimates. (b) Predicted STKF field mean estimates.

In order to measure the expected average exploration performance of the PI-STKF algorithm, the
simulation with the stochastic field in Figure 10 is repeated 50 times for three different control horizons
(tH = 4 s, 9 s, 14 s) where each simulation episode has a length of 150 s. The agent initial position is
picked uniformly random within the range of x = 0.5 m to x = 9.5 m for the x-coordinate while the
y-coordinate is set to y = 0.5 m, and the robot’s initial orientation is α = π/2. The obtained results
are compared to a random walk exploration strategy as a baseline. Figure 14a illustrates the median
and inter-quarter range of the sum of the agent’s conditional variance using STKF-1 as a belief model.
Hereby, the stochastic controller consistently outperforms the random walk baseline strategy. In the
first 15 s of each simulation the controllers with horizon tH = 4 s and tH = 9 s drive the agent towards
the upper field boundary which results in a similar exploration performance. At approximately
t = 15 s the exploration performance of Agent-4 decreases in comparison to the agents with longer
control horizons. The information gain per time step in an unexplored field is almost independent
from the control horizon when pursuing the the first time steps. However, agents with longer control
horizons begin to profit from their far-sight controller as the field exploration mission continues. As a
result, when compared to agents with longer horizon Agent-4 tends to maneuver itself on a less
informative trajectory. In Figure 14a, the difference in exploration performance between the controller
with tH = 9 s and tH = 14 s is small. Nonetheless, exploration missions in larger fields are likely to
profit from longer control horizons.
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Figure 14. (a) Median and IQR of the conditional variance sum of the PI-STKF and a random walk
exploration strategy after 50 simulation runs. (b) Box plot of the crossing times of a particular
conditional variance sum for different control horizons tH over 50 simulation runs.

In order to analyze the agent’s exploration efficiency we compare the time spans the agents require
reach predefined exploration levels which we represent by the summed predictive variance. Hereby,
a crossing time is defined as the time it takes for the agent to drive its field belief predictive variance
sum beneath a predefined value. The corresponding crossing times are illustrated in Figure 14b. It can
be seen that Agent-9 (tH = 9 s) and Agent-14 (tH = 14 s) outperform the controller of Agent-4 with
a horizon of tH = 4 s. Thereby, Agent-9 and Agent-4 show a similar exploration performance down
to a predictive variance sum of 600. For lower predictive variances, the controller with tH = 14 s
provides a better and more predictable exploration performance. Note that although the difference
of the crossing times lies within a range of 20 to 30 s and, thus, comparatively small the effect on the
exploration performance will scale with the size of the field and the number of agents.

6.2. Spatio-temporal Field Exploration

In this section we examine the scenario of a spatio-temporal process. The field values are
defined on the GMRF grid and interpolated between each other in order to obtain a continuous
field. The temporal process at time instance t = 10 s, 30 s, 60 s, and 90 s is depicted in Figure 15(left
column). We use the same parameters as in the PI-STKF simulation, see Table 3, except for the temporal
length scale which we set to 155. The reduction of temporal length scale let the agent’s belief variance
increase over time if no measurement is obtained. Thus, the STKF is able to capture the evolution of
the temporal process through the increase in uncertainty of the temporal process component. This is
beneficial for coping with unknown stochastic components of the environmental process and hence
potentially enables long-term autonomous monitoring scenarios.
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Figure 15 illustrates the predicted field mean and variance of the STKF belief model, while the
PI-STKF explores the spatio-temporal field. The spatio-temporal process at the agent’s initial position
starts with a concentration value of approximately −1.5. After t = 60 s the agent has finished its
initial clockwise exploration maneuver and passes the vicinity of its initial position again which
concentration value has now changed to ca. 1.5. As depicted in Figure 9, the optimal control is
computed by sampling potential path roll-outs and weighting them through a path probability that
results from the conditioned variance as well as the control effort. As the variance of the field belief
has noticeably increased during this maneuver, the obtained measurements lead to a process estimate
which fairly represents the underlying original concentration field. Thereby, the increasing conditional
field variance describes the loss of information in field regions which have not been visited by the agent
recently. The time instance t = 90 s is a illustrative example on the controller exploration strategy: the
planned trajectory first heads towards a local variance maximum and then points to the agent’s starting
position at the beginning of the simulation. During the numerical experiment the computational time
of the PI-STKF algorithm was on average 0.7 s and remained constant.

Figure 15. Agent-14 using the PI-STKF scheme with a control horizon of tH = 14 s and temporal length
scale of 155 resulting in a noticeable belief change over time, as represented by the increasing predicted
field variance (left column). The agent collects measurements from an spatio-temporal concentration
field to compute an optimal path (|) based on the predicted STKF field variance. The next position
of the agent’s trajectory (|) is obtained by applying the first value of the computed optimal control
sequence. Left: Spatio-temporal concentration field Center: Predicted field mean Right: Predicted
field variance.

7. Conclusions

In this work, we outline the combination of Kernel-based belief models with stochastic
optimal control while ensuring an upper bound on the computational load of the algorithm. First,
a sequential fully Bayesian GMRF algorithm was extended to incorporate off-grid observations through
shape-functions. Second, we showed that a spacetime Kalman filter belief model combined with the
PI2 algorithm enables the exploration of spatio-temporal environmental fields. We demonstrated that
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the STKF algorithm can be extended by using shape functions to handle off-grid observations while
remaining constant computational complexity. Extensive simulations were carried out to systematically
identify bottlenecks in the exploration algorithm’s performance.

Future work will address the robustness of the PI-STKF algorithm while taking into
account non-Gaussian measurement noise, uncertain localization, and uncertain hyperparameters.
Furthermore, it is interesting to analyze the algorithms’ performance in an underwater experimental
setup by using micro underwater robots as mobile sensor nodes. However, the design of meaningful
experimental studies is a challenging task itself, as it requires reproducible environmental fields to
provide the same scenario setup to all algorithms. Such a benchmark field can be realized by using,
for instance, look-up tables of the field onboard the robots or spatial depending illumination of the
fluid volumes which is then measured by the robots. Moreover, future studies will examine the
influence of different field geometries (e.g., irregular grid shapes) on the exploration performance.
These will also include varying control horizons and exploration noise. Another aspect is the analysis
of different information theoretic criteria to redefine the state cost of the optimal control problem.
Such future studies could evolve around the approximation of common information theoretic criteria
for path planning such as mutual information [24] to increase exploration performance. In this context,
further analysis of the belief models’ computational properties should be conducted. A combination of
a GMRF which approximates the spatial process component while e.g., a Kalman Filter captures the
temporal process component could result in a computationally efficient spatio-temporal GP model.
Furthermore, the presented algorithms could extended to a multi-agent fleet which uses a decentralized
belief representation rather than sharing one central belief model in order to reduce the dependence
on restrictive underwater communication systems.

Finally, the proposed approach for synthesizing an autonomous field exploration algorithm shares
similarities to the problem of safely learning dynamic models, such as in [28,29]. In the aforementioned
works, the authors leverage GP models to safely explore the state-space of an unknown dynamic
system, while the state can only changed continuously. We believe that the findings in one of those
fields could be very fruitful for the other.
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STKF Spacetime Kalman filter
SSM State Space Model
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PI2 Policy improvement with path integrals
PI-GMRF Combination of the GMRF belief model with the PI2 path planning algorithm
PI-STKF Combination of the STKF belief model with the PI2 path planning algorithm
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IQR Inter-quarter range
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Appendix A. Sequential Update Rule for Continuous GMRF Algorithm

First, (20) is rewritten into a sum of vector products with Φk,j denoting the interpolation matrix of
the j-th agent at discrete time step k, such that

Λk|θ = Λk−1|θ +
1
σ2

y
Φ>k Φk = Λk−1|θ +

N

∑
j=1

1
σ2

y
Φ>k,jΦk,j,

= Λk−1|θ +
1
σ2

y
Φ>k,1Φk,1︸ ︷︷ ︸

Λk−1,1|θ

+
1
σ2

y
Φ>k,2Φk,2 + ... +

1
σ2

y
Φ>k,NΦk,N

︸ ︷︷ ︸
Λk−1,N|θ = Λk|θ

. (A1)

By analyzes of the structure of (A1) an update rule is obtained that allows the sequential
incorporation of new measurements as

Σk−1,j|θ = Λ−1
k−1,j|θ =

(
Λk−1,j−1|θ +

1
σ2

y
Φ>k,jΦk,j

)−1. (A2)

Applying the Sherman-Morrison formula on (A2) results in

Σk−1,j|θ = Σk−1,j−1|θ−
Σk−1,j−1|θΦ>k,jΦk,jΣk−1,j−1|θ

σ2
y + Φk,jΣk−1,j−1|θΦ>k,j

. (A3)

With (A1) and (A3), the conditional covariance matrix is obtained as

Σk|θ =Σk−1|θ−
N

∑
j=1

Σk−1,j−1|θΦ>k,jΦk,jΣk−1,j−1|θ

σ2
y + Φk,jΣk−1,j−1|θΦ>k,j

= Σk−1|θ−
N

∑
j=1

hk,jh>k,j

σ2
y + Φk,jhk,j

. (A4)

Thus, the sequential update rule for the conditional variance can be written as

diag(Σk|θ) = diag(Σk−1|θ)−
N

∑
j=1

hk,j ◦ hk,j

σ2
y + Φk,jhk,j

, with (A5)

hk,j = Σk−1,j|θΦ>k,j = Λ−1
k−1,j|θΦ>k,j, (A6)

Λk−1,j|θ = Λk−1|θ +
N

∑
j=1

1
σ2

y
Φ>k,jΦk,j. (A7)
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Appendix B. Estimation Examples of the Different Belief Models
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Figure A1. Estimation results of the Gaussian belief models. The parameters of the regression
algorithms are denoted in Table 2. Left: Predicted field mean of different regression models after fifty
observations. In each prediction step the next observation was chosen to be close to the maximum
predicted variance. Right: Predicted field variance of different belief models after one observation.
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