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ABSTRACT Draft whole-genome sequences of a coculture are presented. One component
was a polar cyanobacterium, Leptolyngbya sp. strain Cla-17. The second was a heterotrophic
bacterium, Flavobacterium saccharophilum, found in the phycosphere of the cyanobacterium.

Cyanobacteria and some heterotrophic bacteria interact closely in the phycosphere
microenvironment (1), which is conducive to various molecular exchanges between

species (2). Because of these relationships, many cyanobacteria cannot grow in axenic cultures
(3). Here, we report the draft whole-genome sequences of an Arctic cyanobacterium and its
associated flavobacterium.

The cyanobacterium Cla-17 (strain PCCC_Cla17 from the Polar Cyanobacteria Culture
Collection [PCCC]) was cultured from Char Lake snow (74°429300N, 94°53900W) in 2008 by
Harding and coworkers (4). Briefly, snow was melted and filtered through 0.2-mm polycar-
bonate filters, and then the filters were incubated in liquid BG-11 medium (5). The culture
was first exposed to natural light from Resolute Bay at 16°C; once back in the university
laboratory, it was cultivated at 10°C under continuous light at 50mmol photons m22 s21. The
culture was kindly provided by Professor W. Vincent (Centre d’�Etudes Nordiques [CEN],
Université Laval, Québec, Canada). For sequencing, the culture was grown on liquid BG-11
medium at 14°C with a 12-h/12-h light/dark cycle at 5 to 28 mE m22 s21 irradiation for 5
weeks. As reported here, this cyanobacterium grows in a mixed culture with a heterotro-
phic flavobacterium.

DNA was extracted using the DNeasy UltraClean microbial kit (Qiagen). A short-read
library was prepared using the QIAseq FX DNA library kit (Qiagen) and sequenced on a MiSeq
system (Illumina) using v2 chemistry (2 � 250 bp). A 20-kb SMRTbell library was prepared
and sequenced with one single-molecule real-time (SMRT) Cell on a Sequel system (Pacific
Biosciences [PacBio]) using v3.0 chemistry at the Génome Québec Innovation Center (McGill
University, Montréal, Canada). Genomic analyses were performed with the default settings for
all software unless otherwise noted.

The de novo assembly was carried out using the Hierarchical Genome Assembly
Process (HGAP4) (6) in SMRT Link v6.0.0. The coverage cutoff value was set to 30� and the
estimated genome size to 5 million bp. Raw subreads (1,210,976 subreads) with a read quality
(RQ) value of ,0.7 (pbcoretools v1.5.0) were omitted, and the remaining subreads
(151,243 subreads) were used as input for the FALCON assembler (falcon-kit v1.2.2) (7).
Polishing of the assembly was performed with Arrow v2.2.2 in SMRT Link v6.0.0 to give a total
of 24 contigs, representing 12,039,402 bp. The polished assembly was scaffolded using
SSPACE-LongRead (8) with default parameters and gave 10 scaffolds, totaling 12,173,746 bp.
The presence/absence of circularity of the genomes and the overlapping ends were assessed
and, if necessary, removed in the postprocessing steps of the SSPACE-LongRead. The genomes
were not rotated to a certain base.

To further correct for artifacts, MiSeq sequencing data generated with the same starting
DNA were aligned against scaffolds (BWA v0.7.17) (9). Ten consensus scaffolds were generated
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with bcftools v1.9 (10), more precisely with (i) bcftools mpileup, (ii) bcftools call, and (iii)
bcftools norm. Plasmids were identified with PlasFlow v1.1 (11) and were not circularized.
Final corrected scaffolds were annotated using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (12). The genomes were estimated to be highly complete by CheckM v1.0.4
(13). Finally, the taxonomic assignment was performed with CAT v5.2.3 (14). The results
showed two very different bacterial species that are phylogenetically distant (Flavobacterium
versus Leptolyngbya). The genome statistics for each strain are indicated in Table 1.

It is known that Flavobacterium species are regularly found with cyanobacteria. They can
inhibit or enhance the growth of cyanobacteria and degrade compounds synthesized by
cyanobacteria (15). However, the ecological implications of these close interactions remain
largely unknown.

Data availability. This whole-genome shotgun project has been deposited in GenBank
under the accession number JAEVYN000000000. Raw reads are available under the BioProject
accession number PRJNA612312. The SRA accession numbers for the raw PacBio Sequel and
MiSeq data are SRR11301546 and SRR11301545, respectively.
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