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Abstract: To adjust the thermal safety of hydrophobic silica aerogel, layered double hydroxide
(LDH)/silica aerogel (SA) composites were prepared by an in-situ sol-gel process at ambient pressure.
This study found the physical combination of SA and MgAl-LDH based on the FTIR spectra and
phase composition of LDH/SA. The N2 sorption analysis confirms that the introduction of MgAl-
LDH does not change the mesoporous attribution of LDH/SA significantly. With the increase in
MgAl-LDH addictive content, the low density (0.12–0.13 g/cm3), low thermal conductivity (24.28–
26.38 mW/m/K), and large specific surface area (730.7–903.7 m2g) of LDH/SA are still maintained,
which can satisfy the requirements of thermal insulation. The TG-DSC analysis demonstrates that the
endothermic effects and metal oxides formed during the MgAl-LDH decomposition are beneficial
to the improvement of the thermal stability of LDH/SA composites. In addition, it was found
that the gross calorific values of LDH/SA composites decrease with an increase in MgAl-LDH
addictive content, all of which are lower than that of the pure SA. The research outcomes indicate
that the thermal safety of LDH/SA composites is enhanced significantly by doping MgAl-LDH
without impairing too many of the excellent properties, which benefits their expansion in the thermal
insulation field.

Keywords: silica aerogel; layered double hydroxide; thermal properties; structure

1. Introduction

Silica aerogels (SAs) are a three-dimensional nanoporous material [1–3]. They have
extremely low density (~3 kg/m3), low thermal conductivity (0.012~0.016 W·(m·K)−1), and
high specific surface area (800~1200 m2/g) [2,4]. The excellent thermal insulation property
of SAs allows for broad application prospects in the field of thermal insulation. However,
the thermal insulation performance of SAs is significantly weakened in medium and high
temperatures, especially when the temperature exceeds 300 ◦C [5]. The reason is that the
hydrophobicity of SAs that are currently used as thermal insulation materials is lost at
higher temperatures (200~400 ◦C), resulting in a decrease in the effect of thermal insulation
and the service life of SiO2 aerogels [6]. At the same time, pure SAs have a weak ability to
inhibit infrared radiation in the range of 100~1000 ◦C, and the radiative heat transfer of the
aerogels will be significantly enhanced, which will lead to a definite increase in the thermal
conductivity of SAs at high temperatures [7]. The three-dimensional porous framework of
SAs will collapse as a result of the sintering behavior at high temperatures. This increases
the amount of heat that is conducted in the solid phase, which will further weaken the
thermal insulation properties of the aerogels. These greatly limit the application of SAs
in the field of high-temperature thermal insulation. Therefore, there is an urgent need
to develop a SiO2 aerogel composite material with excellent high-temperature thermal
insulation properties to overcome the current shortcomings of SAs in the field of high-
temperature thermal insulation.
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Layered double hydroxides (LDHs) are a class of anionic lamellar compounds. They
have drawn widespread attention due to their large specific surface area, anion exchange,
and excellent thermal and mechanical properties and have been widely used in various
fields such as catalysis [8], ion exchange [9], adsorption [10] and supercapacitor [11], etc.
In particular, LDHs can act as flame-retardant nanofillers because of the characteristics of
flame-retardant, halogen-free, non-volatile, and high-efficiency. Most commercial flame
retardants release toxic gases during combustion, and some of these flame retardants
incorporated into the polymer matrix may deteriorate the mechanical properties of the
polymer. LDHs are a promising green flame-retardant material. They have a special layered
structure and the advantages of inorganic flame retardants, such as magnesium hydroxide
and aluminum hydroxide, which means LDHs play an important role in the field of flame
retardants and have become a new generation of flame retardants and smoke suppressants
in the application of polymers. Therefore, in recent years, polymer/LDH nanocomposites
have received extensive attention due to their excellent and environmentally friendly
flame-retardant properties. LDHs have been shown to effectively improve the thermal
stability and flame retardant properties of many polymers, such as ethylene-vinyl acetate
(EVA) [10], polyethylene (PE) [12], polypropylene (PP) [13,14], acrylonitrile-butadiene-
styrene (ABS) [15], et cetera (see, for example [16–18]). Zhang et al. [19] fabricated a new
LDH-based flame retardant (LDH-PCD) by a co-precipitation method, which enhanced the
fire resistance and smoke-suppression properties of polypropylene (PP). Wang et al. [20]
assembled layered double hydroxide nanosheet-silica (LDH-SiO2) nanocomposites in situ
and used them to improve hydrogenated nitrile butadiene rubber (HNBR). The results show
that the thermal stability and thermo-oxidative aging performance of LDH-SiO2/HNBR
are better than those of SiO2/HNBR. Lu et al. [21] used a one-step hydrothermal method
to directly grow MgAl-LDH on the inner surface of a wooden container, which greatly
enhanced the flame retardant and smoke suppression properties. Few people add LDHs
into silica aerogels to improve their thermal safety. Furthermore, the effects of LDHs on the
properties of SA and the compatibility of LDH/SA composites have rarely been reported.

In this study, magnesium-aluminum layered double metal hydroxide (MgAl-LDH)
was successfully prepared by a co-precipitation method, and MgAl-LDH was introduced
into silica sol to prepare LDH/SA composites. We investigated the effects of MgAl-LDH
doping with hydrophobic SAs on the microstructure, basic physicochemical properties,
thermal stability, etc., of LDH/SA composites in detail. In addition, the effect of LDH
doping content on the structure of LDH/SA composites was also investigated. Finally, this
work confirms the feasibility of MgAl-LDH as a flame retardant to improve the thermal
stability of hydrophobic SA. In the future, we will continue to study the flame-retardant
properties and smoke suppression properties of composites with different contents of
MgAl-LDH and reveal the corresponding flame-retardant mechanism.

2. Results and Discussion
2.1. Phase Composition of MgAl-LDH and LDH/SA Composites

The schematic diagram of MgAl-LDH is shown in Figure 1a. The layered nanostructure
MgAl-LDH consists of the positively charged metal hydroxide layers with intercalated
anions (NO3

−) and water molecules in the interlayer region, and the hydrogen bonds
among these components help to stabilize the crystal structure of MgAl-LDH. Figure 1b
shows XRD patterns of MgAl-LDH prepared at a pH of 10, 11, and 12. The characteristic
diffraction peaks of MgAl-LDH are found at 2θ of 11.34◦, 22.75◦, 34.40◦, and 38.50◦, which
corresponds to the reflections of (003), (006), (012), and (015) planes, respectively [22]. All
these characteristic diffraction peaks are consistent with those of standard layered double
hydroxide [23], indicating the prepared MgAl-LDH shares a typical layered nanostructure.
A substrate spacing exists between the substrates of MgAl-LDH due to the intercalation
of water molecules and anions in the interlayer region. For MgAl-LDH, the crystal plane
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(003) has a 2θ angle of 11.34◦, and the substrate spacing d(003) of the prepared MgAl-LDH
is confirmed as 0.78 nm, according to the Bragg formula [24].

d(003) =
nλ

2 sin θ
=

1 × 0.15418
2 sin(11.34/2)

= 0.78 (1)
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Figure 1. The schematic diagram (a) and XRD patterns (b) of MgAl-LDH prepared with various pH.

We also find that the as-prepared MgAl-LDH has high purity as there is no other
peak observed in the XRD pattern except for the characteristic diffraction peaks derived
from MgAl-LDH. In addition, it finds that the intensity of the diffraction peak of MgAl-
LDH enhances with the increasing pH, which indicates a higher crystallization degree. In
general, highly crystalline samples generally have better stability. It is necessary to add
silica aerogels to MgAl-LDH with high crystallinity. In the following content, all the MgA-
LDH were prepared at a pH of 12 and used as a dopant to synthesize LDH/SA composites.

Figure 2 compares the XRD curves of the pure SA, MgAl-LDH and LDH/SA. From
the XRD pattern of the pure SA, a wide peak at a low diffraction angle of 2θ = 23◦ is
observed as an indication of the amorphous structure of the SA. The diffraction peaks of
(003), (006) and (012) belonging to the layered structure of MgAl-LDH appear in the XRD
pattern of the LDH/SA composite, which indicates that the sol-gel preparation process
does not influence the formation and structure of the MgAl-LDH. For the LDH/SA, the
XRD pattern can be regarded as the combination of the patterns of SA and MgAl-LDH, i.e.,
the superposition of the two. Furthermore, with the MgAl-LDH additive content increasing,
the amorphous peak of SA is gradually impaired, while the intensity of the crystalline
peak of MgAl-LDH obviously increases in the LDH/SA composites. Therefore, the XRD
patterns of the LDH/SA seriously depend on the relative content of the SA and MgAl-LDH,
in which the two components exist independently in the LDH/SA composites.

2.2. Microstructures of MgAl-LDH and LDH/SA

Figure 3 shows the microstructures of pure LDH, SA and LDH/SA composites con-
taining 5%, 10% and 20% of MgAl-LDH, respectively. In Figure 3a, MgAl-LDH is made
up of aggregated irregular nanosheets, which is a typical hydrotalcite morphology, as
reported in Ref. [25]. However, the high charge density of the LDHs layers and the high
content of anionic species and water molecules result in strong interlayer electrostatic
interactions between the sheets, which lead to a tight stacking of the lamellae, resulting in
the agglomeration of LDH nanosheets. The pure SA and LDH/SA composites all present a
classical 3D nanoporous network in Figure 3b–f. It can be seen in Figure 4 that both pure
SA and LDH/SA composites are porous materials. SEM images can qualitatively judge the
morphology and pore size of pure SA and LDH/SA composites. The pore size of pure SA
is mostly mesoporous, and it is obvious that the pore size is less than 100nm in Figure 3b.
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Furthermore, the pore size of all the LDH/SA (>100 nm) is obviously larger than that of
the pure SA, and the pore size of the LDH/SA seems to increase with the LDH additive
content in Figure 3c–f. We believe that the introduction of LDH leads to the collapse of the
porous network of the aerogel, which increases the pore size. In regard to the combination
between the LDH and SA, we speculate that the LDH nanosheets are wrapped by silica
particles and aggregation, which means that they cannot be seen clearly. The detailed study
on the pore structure and the combination between the two will be clarified further in the
following context.
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Figure 4. EDS spectra of the LDH/SA-5% (a) and LDH/SA-20% (b).

To further determine whether MgAl-LDH is doped into LDH/SA composites, the ele-
ment distributions of the LDH/SA composites have been analyzed by the energy spectrum
test (EDS), as shown in Figure 4. The silicon (Si) element comes from the silica skeleton
network of SA. The magnesium (Mg) and aluminum (Al) elements derive from the metal
hydroxide layers of MgAl-LDH. Both the SA and MgAl-LDH contribute to the oxygen
(O) element. As seen from the EDS spectra, the Si, Mg, Al and O elements all distribute
uniformly, and the distribution region of these four elements overlap each other. It indicates
that the silica network is accompanied by the nanosheets derived from MgAl-LDH, though
they are hard to find. Comparing the proportions of Mg and Al elements, we also find the
atomic ratio of Mg and Al is close to 3:1, which is consistent with the initial preset atomic
ratio in the synthesis.

2.3. Pore Structure

The N2 adsorption–desorption isotherms are used to investigate the pore structure
further. It can be seen that SA and LDH/SA composites have similar N2 adsorption–
desorption isotherms in Figure 5. According to the IUPAC classification [26], all these
N2 adsorption–desorption isotherms conform to the type IV isotherm, corresponding to
the characteristic of mesoporous materials. The hysteresis loops of type H3 indicate the
presence of slit-like interparticle pores [27]. Hence, the introduction of MgAl-LDH does
not change the mesoporous attribution of the LDH/SA composites significantly.

The Barrett–Joyner–Halenda (BJH) method used to measure the pore size distribution
has some limitations [28,29]. The BJH method is characterized in the range of 1.7–300 nm
and is suitable for mesoporous materials of 2–50 nm. We believe that the introduction of
LDH leads to the collapse of the porous network of the aerogel, which increases the pore
size. The macropores of LDH/SA composites are difficult to detect by the BJH method. To
determine the presence of macropores, we further calculated the total pore volume and the
average pore size. The average pore diameter (Dpore) was calculated from the pore volume
(Vpore) and SBET according to, Dpore = 4Vpore/SBET where is derived from the bulk and
skeletal density according to Vpore = 1/ρb − 1/ρs. Compared with Dpore of LDH/SA-20%
and SA, LDH/SA-20% increased significantly. This indicates that the introduction of LDH
does lead to the collapse of the skeleton of LDH/SA, which decreases the specific surface
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area and increases the pore size. Moreover, Dpore is greater than the average pore size*,
indicating that many macropores exits.
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Figure 5. N2 adsorption–desorption isotherms of SA and LDH/SA composites.

The pore parameters, including specific surface area, total pore volume and average
pore size are calculated and listed in Table 1. The BET-specific surface areas of all the
three LDH/SA composites are smaller than that of the pure SA. With the MgAl-LDH
additive content increasing, the BET-specific surface areas of the LDH/SA composites
show an obvious downward trend, from 864.3 to 730.7 m2/g. The reduction in the specific
surface area of the LDH/SA composites should be ascribed to the formation of larger
clusters, which are derived from the aggregation of MgAl-LDH nanosheets and SA particles.
Simultaneously, it is also accompanied by the collapse of the silica skeleton network during
the ambient drying. As a consequence, the large pores (>100 nm), as shown in Figure 3c–e,
are formed, and the average pore sizes of the LDH/SA composites increase significantly
with the MgAl-LDH additive content.

Table 1. Physical properties of SA and LDH/SA composites.

Samples BET Surface Area
(m2/g) Pore Volume (cm3/g) Average Pore Size * (nm) Total Pore Volume

(Vpore) (cm3/g)

Average Pore
Diameter (Dpore)

(nm)

SA 903.7 2.8 12.2 8.5 37.6
LDH/SA-5% 864.3 2.7 12.4 8.1 37.7
LDH/SA-10% 814.5 2.7 13.1 7.5 36.7
LDH/SA-20% 730.7 2.9 15.6 7.3 39.9

*: The average pore size calculated by the BJH method includes micropores and mesopores.

2.4. Density, Porosity and Thermal Conductivity

Figure 6 presents the variations of density, porosity, and thermal conductivity of
the LDH/SA composites with the various MgAl-LDH additive contents. In Figure 6a,
the density of the LDH/SA composites increases monotonously, which is caused by the
increasing MgAl-LDH additive content. The corresponding porosity presents an opposite
trend to the density, but the minimum porosity of the LDH/SA-20% is still higher than
94%. The increase in the density is attributed to the introduction of the MgAl-LDH since it
has an obvious greater density than the pure SA.
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Thermal conductivity is an important parameter to characterize the thermal insulation
performance of materials. It can be observed that with the MgAl-LDH additive content
increasing, the thermal conductivity of the LDH/SA composites also rises significantly
from 24.28 to 26.38 mW/m/K. Because more heat transfer passageways are provided due
to the addition of MgAl-LDH, more heat flows through the layered structure of MgAl-LDH
rather than the nanoporous silica skeletons of SA. Consequently, the thermal conductivity
of the MgAl-LDH rises. Note that even with the largest addition of 20% MgAl-LDH,
the thermal conductivity of the LDH/SA composites only increases to 26.38 mW/m/K,
which is still close to that of the still air (~26 mW/m/K at room temperature). Namely,
with the MgAl-LDH additive content not exceeding 20%, the thermal conductivity of the
prepared LDH/SA composites can still maintain an excellent level, indicating the nice
thermal insulation performance.

2.5. Surface Properties and Hydrophobicity

The FTIR spectrum further confirms the formation of MgAl-LDH by providing the
characteristic peaks, corresponding to an interlayer anion, interlayer water molecules,
an O-H of metal hydroxide layer and a Metal-O lattice in Figure 7a. In the infrared
spectrum of the MgAl-LDH, the characteristic absorption band centered at 3466 cm−1

is attributed to the O-H stretching of the metal-hydroxide layer and interlayer water
molecules [30]. The stretching vibration of N-O bonds from the interlayer anion, NO3

−,
appears at 1367 cm−1 [31]. The bending vibration of the water interlayer is presented at
1638 cm−1 [32]. The absorption bands observed at 410 and 780 cm−1 belong to the Al-O and
Mg-O stretching vibrations, respectively [33]. For the IR spectrum of the SA, the symmetric
and asymmetric stretching vibrations and the shear bending vibration of C-H bonds are
observed around 2980–2880 cm−1 [34]. The peaks at 1260, 847 and 785 cm−1 belong to
the Si-C bonds [35], indicating the presence of Si-(CH3)3 groups introduced by surface
modification. These Si-(CH3)3 groups on the silica skeletons are the chemical basis for the
hydrophobicity of SA.

Furthermore, it finds that the IR spectrum of the LDH/SA is the superposition of
the IR spectra of the SA and MgAl-LDH, and the slight difference mainly lies in the peak
intensity. For example, the peak of the N-O stretching vibration becomes more obvious
with the MgAl-LDH additive content. Note that the peaks of Al-O and Mg-O from the
MgAl-LDH are hard to observe, which may overlap with the Si-O from the pure SA. That
is to say, there is no new chemical bond formed on the prepared LDH/SA composites.
Therefore, the formation of the LDH/SA is considered the physical combination between
SA and MgAl-LDH, which should be induced by electrostatic adsorption [36]. Figure 7b,
also shows that the addition of LDH to pure SA leads to a noticeable increase in the peak
intensity of the -OH groups, indicating a significant increase in the concentration of -OH
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groups. That inevitably influences the surface chemistry of the LDH/SA composites, e.g.,
hydrophobicity, which will be discussed in the following context.
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Figure 7. The FTIR spectra for the MgAl-LDH, SA, and LDH/SA composites (a) and the locally
amplified IR spectra within the range of 2760–3860 cm−1 (b).

The contact angles of LDH/SA composites prepared with different MgAl-LDH ad-
ditive contents are shown in Figure 8. The contact angle of the pure SA is around 143◦,
presenting good hydrophobicity. With the MgAl-LDH additive content rising to 20%, the
contact angle gradually decreases to 138◦, which suggests that the hydrophobicity of the
LDH/SA composites is relatively impaired. As it is known to all, the hydrophobicity
depends on the surface chemical composition [37] and roughness [38,39]. Considering that
the contact angles were measured on the powdery sample, it can be assumed that all the
tested samples have similar surface roughness. With a large number of -OH groups derived
from the MgAl-LDH being introduced into the LDH/SA composites, more hydrophilic
groups are distributed on the sample surface. As a consequence, the hydrophobicity of
LDH/SA composites decreases with an increase in the MgAl-LDH additive content, which
is consistent with the results drawn in Figure 8.
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2.6. Thermal Safety Characteristics
2.6.1. Composition Analysis of LDH/SA under Heat Treatment

Figure 9 shows the FTIR spectra of LDH/SA-10% under heat treatment at different
temperatures. The primary absorption peaks of Si-O-Si (~1100 cm−1), Si-C (1260 cm−1,
847 cm−1 and 785 cm−1) and C-H (~2950 cm−1) have been analyzed in detail in the previous
section. With the heat treatment temperature rising, a slight shift to the lower wavenumber
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of Si-O-Si bonds is observed, which should be ascribed to the effects of the dehydration
reaction among Si-OH groups. When the heat treatment temperature exceeds 400 ◦C, the
Si-C bonds at 1260 cm−1 slightly shift to the left larger wavenumber, 1277 cm−1, which
indicates that the Si-(CH3)3 groups have transformed into Si-(CH3)2 groups under 450 ◦C,
as reported in the Ref. [40]. In addition, it finds that the intensity of the Si-C bonds at 847
and 785 cm−1 become weaker and the same trend also occurs in the C-H bonds. All these
changes in the Si-C and C-H bonds are related to the thermal decomposition of Si-(CH3)3
groups during the heat treatment.
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It can be seen in Figure 10 that the three curves all have the typical wide peaks
(2θ = 22◦), which correspond to the amorphous diffraction peaks of silica aerogels. As the
heat treatment temperature increases to 350 ◦C, the diffraction peaks at (003), (006), and
(012) disappear, which suggests that the layered structure of the LDH/SA-10% has been
destroyed in this condition. With the heat treatment temperature further rising to 500 ◦C,
the MgO crystal diffraction peaks (2θ = 43.26◦, 62.81◦) appear in Figure 10c, implying that
the LDH has decomposed to produce the MgO phase. Based on the obtained XRD patterns,
it is speculated that the reason for no formation of the Al2O3 crystalline phase is related to
the high dispersity of the Al3+ in the MgAl-LDH.
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2.6.2. Thermal Analysis

Figure 11a shows the typical TG-DSC curve of the MgAl-LDH, which primarily
undergoes three stages of decomposition. At Stage I (<220 ◦C), the weight loss is about 15%,
which mainly corresponds to the removal of physically adsorbed surface water molecules
and interlayer water [41]. In addition, this is an endothermic process, and the endothermic
peak appears at 208.9 ◦C on the corresponding DSC curve. At Stage II (220~450 ◦C), the
dehydroxylation occurs among the metal hydroxide layers on the laminate accompanied
by the removal of anions [42], forming much water and leading to a 24% weight loss.
Meanwhile, the dehydration reaction among the hydroxyls absorbs heat, resulting in the
endothermic peak appearing at 368.2 ◦C on the DSC curve. At Stage III (450~600 ◦C), the
weight loss is mainly caused by the removal of NO3

− anions between the interlayers [43],
leading to a weight loss of 9.4%. The removal of NO3

− anions is considered related to their
evaporation or decomposition, and the unobvious endothermic peak appears at 499.2 ◦C
on the DSC curve. After the decomposition, the layered structure collapses completely, and
the metal oxide, i.e., MgO, is formed finally.
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heating rate of 10 ◦C/min in air.

Figure 11b presents the typical TG-DSC curves of hydrophobic SA, and the whole
decomposition can be divided into two stages. The first stage is ascribed to the evaporation
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of residual solvent and water in the pores of the SA [40]. The second decomposition stage
with the 13.3% weight loss begins at 273.6 ◦C, and the corresponding exothermic peak
appears at 333.6 ◦C on the DSC curve. This process is mainly attributed to the thermal
oxidative of Si-CH3 [44,45]. After this stage, the hydrophobicity of SA is transferred to the
hydrophilicity, which implies the failure of SA while losing the ability to resist the water
vapor in the air [45].

For the LDH/SA composites, the whole decomposition can be separated into four
stages, as shown in Figure 11c–f. In Stage I (<280 ◦C), the weight loss is caused by the
evaporation of the residual organic solvent/water from the SA and the surface-adsorbed
water and interlayer water from the MgAl-LDH. Stage II, III and IV are regarded as
the combination of the thermal oxidation of Si-CH3 and the thermal decomposition of
MgAl-LDH (including the dehydroxylation on the laminate and the removal of NO3

−

anions between the interlayers). As discussed above, the thermal oxidation of Si-CH3 is an
exothermic reaction, while the thermal decomposition of MgAl-LDH is an endothermic
reaction. Obviously, the complementation occurs between the energy produced by the
thermal oxidation of Si-CH3 and the one consumed by the thermal decomposition of MgAl-
LDH. Considering the relative component content in the composition materials and the
quantity of releasing or adsorbing energy, it is inferred that the energy released by the
thermal oxidation of Si-CH3 covers the consumption by the thermal decomposition of
MgAl-LDH. As a consequence, the broad exothermic peak of the Si-CH3 is cut into three
relatively narrow exothermic peaks due to the complicated energy offset between the two.
Simultaneously, each stage (II, III and IV) has a weight loss, which is also accompanied by
a distinct exothermic peak.

From the above analysis, it can be seen that the thermal oxidative of Si-CH3 groups
proceeds from Stage II to Stage IV; however, the decomposition of the MgAl-LDH just
occurs in the midway. The important parameters, including the onset temperature (Tonset)
and peak temperature (Tpeak), can reflect the thermal stability and are listed in Figure 11 and
Table 2. It finds the Tonset of pure SA is 273.6 ◦C, while that of the LDH/SA increases from
327.2 to 367.7 ◦C, with the MgAl-LDH additive content increasing. The same increasing
tendency also appears on the Tpeak of Stage II III and IV. All of these indicate that the thermal
stability of the LDH/SA composite has been enhanced significantly. Based on the previous
discussion, the endothermic reaction and the evaporation of the produced water adsorb
much energy during the thermal decomposition of the MgAl-LDH. In addition, the finally
formed metal oxides, e.g., MgO, can act as a high-temperature barrier material to resist heat
transfer. All these are beneficial to delaying the thermal decomposition of the LDH/SA
composites and finally lead to the improvement of their thermal stability.

Table 2. The detailed DSC data of pure SA and LDH/SA composites.

Tonset (◦C) Tpeak1 (◦C) Tpeak2 (◦C) Tpeak3 (◦C)

SA 273.6 333.6
LDH/SA-5% 327.2 332.0 377.8 415.6

LDH/SA-10% 344.7 360.4 417.2 469.4
LDH/SA-15% 350.2 372.9 458.2 488.3
LDH/SA-20% 367.7 393.5 494.4 549.8

2.6.3. Gross Calorific Value

Gross Calorific Value (GCV) reflects the total heat released by a material after it is
completely burned [46]. As shown in Figure 12, the GCV of the LDH/SA composite
decreases significantly with the increasing MgAl-LDH additive content. To be specific, the
GCV of pure SA is 11.91 MJ/kg, while those of the LDH/SA composite drop from 11.3
to 9.493 MJ/kg. In the meantime, the descent rate of GCV increases from 5.2% to 20.3%,
respectively. These data indicate that the introduction of MgAl-LDH reduces the GCV of
SA, and higher thermal safety of the LDH/SA composites is achieved by this strategy.
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3. Conclusions

In this work, the layered double hydroxide/silica aerogel (LDH/SA) composites were
obtained by an in-situ synthesis. The microstructure, physicochemical properties and
thermal safety characteristics of the LDH/SA were investigated in detail.

The study found that the microstructure of LDH/SA is similar to that of the pure
SA without obvious change, and the formation of LDH/SA is deemed to be the physical
combination of SA and MgAl-LDH. With the MgAl-LDH additive content increasing, the
BET surface area and porosity both decrease, while the average pore size and thermal
conductivity increase slightly. In spite of these, the lower thermal conductivity is still
maintained (λ ≤ 26 mW/m/K), which indicates an excellent thermal insulation perfor-
mance. Due to the endothermic effects and the formed metal oxides (e.g., MgO) during the
thermal decomposition of MgAl-LDH, the thermal stability of the LDH/SA is improved
significantly. The gross calorific value decreases obviously with the increasing MgAl-LDH
additive content. Both of the two clearly imply that the as-prepared LDH/SA has an
obvious enhanced thermal safety. In a word, this work demonstrates in detail that the
in-situ synthesis of LDH/SA is feasible to enhance thermal safety without impairing too
much of the thermal insulation performance, which provides an engineering example to
further expand the application scenarios of pure hydrophobic SA.

4. Materials and Methods
4.1. Raw Materials

Al(NO3)3·9H2O (99.0%), Mg(NO3)2·6H2O (99.0%), Tetraethyl orthosilicate (TEOS),
ethanol (EtOH, 99.7%), n-hexane (97.0%) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Nitric acid (HNO3, 36–38%) and ammonia wa-
ter (NH3·H2O, 25–28%) were used as the acid and basic catalyst, respectively. NaOH
(96.0%) and Hexamethyl disilylamine (HMDZ, 99.0%) used in the experiments were pur-
chased from Aladdin (Shanghai, China). Deionized water was made by an ultra-pure water
machine (Direct-Q 3UV, Merck Millipore, Burlington, MA, USA).

4.2. Preparation of MgAl-LDH

First, 500 mL of deionized water was boiled, and N2 was passed into the three-necked
flask for protection. Then, a certain amount of Mg(NO3)2·6H2O and Al(NO3)3·9H2O were
weight and dissolved in 200 mL of deionized water. Next, the solution was transferred into
a three-necked flask and heated to 72 ◦C under a water bath. A 0.8 mol/L NaOH solution
was continuously dropped into a three-necked flask with constant temperature, and the
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pH in the three-necked flask was obviously to pH = 10~12. After that, the solution needs
to stir vigorously for an hour to make Mg(NO3)2·6H2O and Al(NO3)3·9H2O fully react
with NaOH to form the precipitation of magnesium-aluminum mixed metal hydroxide
(MgAl-LDH). Finally, it was placed in a drying oven at 75 ◦C for crystallization for 24 h to
obtain a milky white turbid liquid. The supernatant was removed, and the milky white
turbid liquid was filtered and washed with distilled water several times until the pH of
the supernatant was close to neutral. Finally, it was washed several times with ethanol to
prepare LDH/EtOH emulsion (LDH/EtOH).

4.3. Preparation of LDH/SA Composites

We choose TEOS as a silica precursor, EtOH as a solvent, water for hydrolyzing TEOS,
and ammonia as a catalyst for gelation. The synthesis of LDH/SA composites involves
four major steps: (1) the preparation of the silica sol; (2) dispersing LDH/EtOH in the
silica sol; (3) preparing and modifying the alcogel; (4) drying the wet gels by ambient
pressure drying. In step one, TEOS, EtOH, DI·H2O, and HNO3 were mixed with stirring
for 5 min in a beaker and fully hydrolyzed in a 45

◦
C water bath for 12 h. The reaction

process includes a hydrolysis reaction and condensation reaction, as shown in Figure 13. In
step two, NH3·H2O was added into hydrolysate and stirred for 5 min. The molar ratio of
TEOS:EtOH:H2O:HNO3:NH3·H2O was fixed at 1:9.6:2.16:1.6 × 10−3:9.7 × 10−3.
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Figure 13. The reaction process of SA.

Then, immediately different contents of LDH/EtOH were dispersed in silica sol by
mechanical stirring and ultrasonic treating (accounting for 0, 5, 10, 15, and 20% of total silica
aerogel quality, and the samples denoted as SA, LDH/SA-5%, LDH/SA-10%, LDH/SA-
15%, LDH/SA-20% respectively). The gelation generally occurred in 30 min. In step three,
the generated LDH/alcogels were aged with EtOH for 12 h, exchanged with n-hexane for
12 h, and surface modified with HMDZ/n-hexane solution for 48 h, respectively. In step
four, the wet LDH/alcogels were dried under ambient pressure at 120 ◦C for 4 h to obtain
LDH/SA composites. The preparation process is shown in Figure 14.

4.4. Methods of Characterization

The success of the synthesis of MgAl-LDH and LDH/SA composites can be evaluated by
characterization techniques such as SEM, EDS, XRD, FTIR, and thermogravimetric analysis.
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The thermal conductivities of the composites were measured by a constant thermal
analyzer (TC3000E, XIATECH, Xian, China) at room temperature. The amount of the
sample for the thermal conductivity measurements is about 8–10 g, which was placed
in two sample boxes. The pH was measured via a waterproof pen tester (7011, EZDO).
The hydrophobicity was characterized by testing water contact angle. First, a 5 µL water
droplet was dropped on the powdery sample surface, and the images were collected by
the camera from a contact angle instrument (JC2000D1, Zhongchen Instrument, Shanghai,
China). Whereafter, the contact angles were obtained through an image analysis by the
ImageJ software. The tap density (ρt) was measured by a tap density meter (ZS-202,
Liaoning Instrument Research Institute, Liaoning, China) using a measuring cylinder of 10
mL with 300 r/min for continuous vibration within 10 min. The porosity was determined
by Equation (2),

Porosity =

(
1 − ρt

ρs

)
× 100% (2)

where ρs is the skeletal density of SA (about 2.2 g/cm3).
The microstructure of pure SA and LDH/SA composites was observed by a field

emission scanning electron microscope (SEM, Sigma 300, ZEISS, Oberkochen, Germany)
accompanied by an energy dispersive spectroscopy (EDS, EDX-720, Shimadzu Corporation,
Kyoto, Japan) to analyze the composition and content of elements of the MgAl-LDH and
LDH/SA composites. The nitrogen adsorption-desorption isotherms were tested at 77 K
using a QuadraSorb Station 2 analyzer (ASAP2020, Micromeritics, Atlanta, GA, USA). The
Brunauer–Emmett–Teller (BET) method [47] was used to calculate the specific surface area,
and the Barrett–Joyner–Halenda (BJH) method [48] was used to determine the pore size
distribution, pore volume, average pore size, and other parameters. The pore composition
of the samples was statistically analyzed, and the effect of the dopant characteristics on the
porous structure of the hydrophobic SA was studied.

X-ray diffraction (XRD, D8 Advance, Bruker, Billerica, MA, USA) was used to deter-
mine the crystal phase of the specimens. The chemical bonds and chemical groups of pure
SA, MgAl-LDH and LDH/SA composites were determined by a Fourier transform infrared
spectroscopy (FTIR, Nicolet 8700, Nicolet, Madison, WI, USA) and the ATR method. The
thermal stability analysis was tested using TG-DSC (SDT Q650, TA Instrument, New Castle,
NH, USA), with a heating rate of 10 ◦C/min from room temperature to 1000 ◦C in air. The
amount of SA and LDH/SA composites required for the TG-DSC test was about 5–10 mg.

The GCV of SA and LDH/SA composites were measured by using an oxygen bomb
calorimeter. The amount was controlled at 0.3–0.4 g each time. Each sample was tested
three times, and the combustion calorific value was obtained by calculating the mean value.
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