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Abstract

Background: In recent years there has been a global increase in reports of disease affecting marine sponges. While disease
outbreaks have the potential to seriously impact on the survival of sponge populations, the ecology of the marine
environment and the health of associated invertebrates, our understanding of sponge disease is extremely limited.

Methodology/Principal Findings: A collagenolytic enzyme suspected to enhance pathogenicity of bacterial strain NW4327
against the sponge Rhopaloeides odorabile was purified using combinations of size exclusion and anion exchange
chromatography. After achieving a 77-fold increase in specific activity, continued purification decreased the yield to 21-fold
with 7.2% recovery (specific activity 2575 collagen degrading units mg21protein) possibly due to removal of co-factors. SDS-
PAGE of the partially pure enzyme showed two proteins weighing approximately 116 and 45 kDa with the heavier band
being similar to reported molecular weights of collagenases from Clostridium and marine Vibrios. The enzyme degraded
tissue fibres of several sponge genera suggesting that NW4327 could be deleterious to other sponge species. Activity
towards casein and bird feather keratin indicates that the partially purified collagenase is either a non-selective protease
able to digest collagen or is contaminated with non-specific proteases. Enzyme activity was highest at pH 5 (the internal pH
of R. odorabile) and 30uC (the average ambient seawater temperature). Activity under partially anaerobic conditions also
supports the role of this enzyme in the degradation of the spongin tissue. Cultivation of NW4327 in the presence of
collagen increased production of collagenase by 30%. Enhanced enzyme activity when NW4327 was cultivated in media
formulated in sterile natural seawater indicates the presence of other factors that influence enzyme synthesis.

Conclusions/Significance: Several aspects of the sponge disease etiology were revealed, particularly the strong correlation
with the internal tissue chemistry and environmental temperature. This research provides a platform for further
investigations into the virulence mechanisms of sponge pathogens.
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Introduction

Reports of sponge disease are rapidly increasing with Mediter-

ranean [1] and Caribbean [2] sponge populations most heavily

affected. Reports also suggest an increased prevalence of disease in

sponges from Papua New Guinea [3], the Great Barrier Reef [4]

and Mexico [5]. Disease outbreaks have the potential to seriously

impact on the survival of sponge populations, the ecology of the

marine environment and the health of associated invertebrates [6].

Knowledge of sponge disease dynamics (including the causative

agents, modes of transmission and pathogen virulence mecha-

nisms) is extremely limited. To date, only one study has confirmed

Koch’s postulates by verifying that an a -proteobacterium (strain

NW4327) was the primary pathogen of the Great Barrier Reef

sponge Rhopaloeides odorabile [4]. Sponges infected with strain

NW4327 exhibited high levels of tissue necrosis and bacteria were

observed burrowing through the collagenous spongin fibres. As

further evidence of its involvement in spongin fibre necrosis, strain

NW4327 degraded commercial preparations of azo-collagen. To

verify the presence of a collagenolytic enzyme we have partially

purified the enzyme from pathogen NW4327 and characterize its

properties in relation to the disease process,

Materials and Methods

2.1. Culture conditions
A stock culture of the bacterium NW4327 [4] was maintained

on solid Difco Marine Agar 2216 at 0–4uC and sub-cultured every

month. For large scale enzyme preparation, the isolate was grown

in 2 litres of liquid medium (Difco Marine Broth 2216, pH 7.5 to

8.0) formulated in deionised and purified water (,18 MV) using a

MilliQ system (Millipore, Sydney, Australia) and incubated in a

rotary shaker set at 28uC and 100 rpm for 48 hrs. The cell mass

was separated by centrifugation (Beckman Coulter Avanti J26 XPI
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at 10,000 rpm for 15 min using a JLA 16.250 rotor) and the

supernatant preserved for further purification by storing at 0–4uC.

2.2. Assay of collagenase activity
2.2.1. Rapid assay using Azocoll. For rapid determination

of collagenase activity the procedure described by Chavira and

colleagues [7] was followed. Azocoll (Sigma Aldrich, Sydney,

Australia) substrate was prepared in 50 mM Tris HCl with 1 mM

CaCl2, pH 7.8. Unless otherwise stated, 500 ml of the suspension

was incubated with 500 ml of test sample at 37uC for 2 hours with

shaking in a JitterbugTM microtitre plate thermal shaker (Model

130000, Boekel Scientific, PA, USA). The reaction was stopped by

immersing the samples in ice for three minutes and the unreacted

azocollagen was removed by centrifugation (Eppendorf AG Model

5810R centrifuge at 3,000 rpm for 10 min in a A-2 DWP rotor).

Absorbance of the supernatant (200 ml) containing the azo-labelled

peptidic digestion products was measured at 520 nm in a Synergy

HT plate reader (BioTek, Vermont, USA) with increased

absorbance values indicating higher collagenase activity.

2.2.2. Sensitive assay using ninhydrin. For sensitive

determination of ultra-low collagenase activity in the

chromatography fractions and calculation of collagen digestion

units (CDU) the following procedure was employed: collagenase or

test sample (500 ml) was incubated for 5 hours with bovine Achilles

tendon collagen (500 ml) (Sigma-Aldrich) dissolved in 50 mM Tris

HCl with 1 mM CaCl2, pH 7.8. An aliquot (300 ml) of the

reaction mixture was withdrawn, 60 ml of 0.05 M EDTA added

and chilled in ice to stop the reaction. 400 ml of ninhydrin reagent

[8] was added and the mixture heated at 100uC for five min.

Finally, 1.0 ml of a diluent was added and absorbance read at

570 nm. One CDU is defined as the amount of enzyme that

liberates peptide, equivalent to 1 mol leucine,from collagen in

5 hours at pH 7.5 and 37uC.

2.3. Microbial growth measurement
Microbial growth was measured by quantifying either extracel-

lular protein in the media or intracellular protein released after

sonication. Intracellular protein was measured after pelleting a

1.0 ml aliquot of cultures using centrifugation, resuspending cells

in deionised and purified water (1.0 mL) and then sonication at

50 kHz in 5 sec pulses for 5 min using a Cole Parmer Model

130W ultrasonic processor. Protein concentrations were measured

using the Bio-Rad Protein Assay according to the manufacturer’s

protocol (Bio Rad Laboratories, USA) which is based on the

method of Bradford [9].

2.4. Purification of collagenase
2.4.1. Ultrafiltration. The crude culture filtrate was

ultrafiltered through a 50 kDa ultrafiltration membrane at room

temperature (,22–24uC) (Pall Corporation, USA) and the

retentate used for chromatography. Ultrafiltration was

conducted in an Amicon Model 52 (Cell capacity 50.0 mL;

membrane diameter 43 mm) stirred ultrafiltration cell with

pressure applied using high purity nitrogen gas (BOC Australia,

Townsville, Australia).

2.4.2. Semi-preparative molecular size exclusion

chromatography. The ultrafiltration retentate was applied to

a 16100 cm column packed with Superdex G200 (GE

Healthcare, Sydney, Australia) which was eluted with 10 mM

Tris HCl and 4 mM CaCl2, pH 9.0, [10] flowing at 0.3 ml min21

with fractions collected every 13 min.

2.4.3. Cation exchange chromatography. Active fractions

from the semi-preparative size-exclusion chromatography as

determined using the rapid Azocoll assay were pooled and

concentrated by ultrafiltration through a 10 kDa membrane

(Pall Corporation, USA). Portions (500 ml) of the concentrate

were then applied to a Resource Q (GE Healthcare, Sydney,

Australia) column (166 cm) attached to a Shimadzu Class VP

HPLC system. Gradient elution was carried out between buffer A

(10 mM Tris-HCl, 1 mM CaCl2, pH 8.5) and buffer B (10 mM

Tris HCl, 1 mM CaCl2, pH 8.5 with 0.5 M NaCl), at a flow rate

of 1.0 ml min21 with fractions collected every minute. The

gradient profile was: 0–10 mins-100% A; 10–25 mins-100%A to

100%B; 25–30 mins-100%B; 30–35 mins-100%B to 100%A).

The column eluate was monitored with a photodiode array

(PDA) detector set at 280/254 nm. Collagenase activity was

measured using the previously described and more sensitive

ninhydrin method with active fractions pooled and concentrated

by ultrafiltration through a 50 kDa membrane (Pall Corporation,

USA) prior to analytical molecular size exclusion chromatography.

2.4.4. Analytical molecular size exclusion

chromatography (Superdex 200HR). Active fractions from

the Resource Q column were applied to a GE Healthcare pre-

packed gel filtration column (Superdex 200 HR 10/30 column)

attached to the Shimadzu Class VP HPLC system with PDA

detector set at 280/254 nm. The column was eluted with 10 mM

Tris HCl with 4 mM CaCl2, pH 9.0, at a flow rate 1.0 ml min21

[10].

2.5. Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)

SDS-PAGE was performed in BioRad Criterion (Bio Rad

Laboratories, USA) precast gels at a constant 200 V for 55

minutes. Initial staining was performed using LavaPurple [11].

The manufacturer’s (Fluorotechnics, Sydney, Australia) recom-

mended protocol (Total Staining for Gels and Blots) was followed

and the bands were visualized in a Vilber Lourmat Chemi-Smart

3000 imager.

2.6. Substrate specificity
Specificity of the collagenase enzyme from NW4327 for

Rhopaloeides odorabile spongin fibres was assessed by measuring its

ability to degrade tissue fibres from other marine sponges.

Material from Ianthella flabelliformis, Cacospongia sp., Ircinia sp. and

Luffariella sp. was prepared by removing the non-fiber components

by thorough rinsing with running tap water and homogenizing the

remaining air-dried tissue in a Waring blender. Specificity was

further assessed using commercial casein and gelatin (Sigma-

Aldrich) and bird feather keratin obtained by homogenizing the

vanes cut off from the central shaft of the moulted tail feather of

the bush turkey (Alectura lathami). Since large amount of enzyme

was required for these experiments and because of an observed

loss of specific activity as the protein became more pure (see

Results), these substrates were digested with collagenase obtained

after semi-preparative molecular size exclusion chromatography.

Assays were conducted by suspending 5 mg of the above-

mentioned substrates in 5 ml of 50 mM Tris HCl (pH 7.5) buffer

with 1 mM CaCl2, as used for the sensitive ninhydrin assay, see

Section 2.2.2.

2.7. Effect of assay pH and temperature on collagenase
activity

Collagenase activity was measured using the sensitive ninhydrin

protocol in the pH range 4.0 to 9.0. A three component buffer

system (100 mM 2-(N-morpholino)ethanesulfonic acid (MES)/

50 mM Tris/50 mM acetic acid adjusted with tetramethylammo-

nium hydroxide or HCl to the desired pH) was used to maintain a
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constant ionic strength and a constancy of the chemical nature of

the buffers throughout this pH range [12]. Collagenolysis at

pH 7.5 was measured in the range 20 to 60uC at intervals of 10uC
with samples maintained at these temperatures in a thermostat-

ically controlled water bath.

2.8. NW4327 growth and collagenase production in
different media formulations

NW4327 was incubated in Marine Broth 2216 (Difco) prepared in

autoclaved natural seawater collected from Davies Reef (18u 5’S,

147u 4’E). The pH of the media was unadjusted and the composition

was actually 2x seawater (artificial and natural). Cultivation was also

attempted in Marine Broth where the pH was adjusted to 5.0, 7.0 or

9.0 prior to autoclaving. In order to test the effect of sponge tissue on

growth and collagenase production, fibrous R. odorabile tissue (cleaned

of adherent non-sponge material) was added to 50 ml of the pH

adjusted Marine Broth solutions and sterilised in 250 ml Erlenmeyer

flasks. The flasks were incubated in a rotary shaker at 28uC and 100

rpm for 48 h. Control flasks at the three pH values without added

sponge tissue were included in the experiment.

2.9. Effect of partial anaerobic conditions on growth and
collagenase production of NW4327

Partially anaerobic conditions were created by flushing the

250 ml Erlenmeyer flask containing 50.0 ml Marine Broth 2216

prepared in MilliQ water (pH 7.0) with nitrogen gas (BOC

Australia, Townsville, Australia) and adding FeS [13] as a

reducing agent. The flasks were incubated in a rotary shaker at

28uC and 100 rpm for 48 h. Control flasks under normal aerobic

conditions with FeS were used. All determinations in sections 2.6

to 2.9 of growth and collagenase production were performed twice

in duplicate sets and the average of the values reported.

Results

The first two steps of purification increased purity 77-fold

(Specific activity 9414.6 CDU mg21 protein) but specific activity

decreased in subsequent steps down to 21-fold with 7.2% recovery,

the specific activity being 2574.7 CDU mg21 protein. This was

despite an apparent decrease in complexity after cation exchange

chromatography according to SDS-PAGE (Figure 1). The low

enzyme recovery may have occurred due to the third and fourth

steps being carried out at room temperature or loss of cofactors.

The activity 401.7 CDU ml21 obtained in the final step of

purification was the activity found in the peak of the chromato-

gram (Figure 2).

The active fractions (27–30), shown in Figure 1 were dominated

by two bands near the molecular weight marker 116.25 kDa and a

third band near the 45 kDa range. The chromatogram obtained

during the final step of purification using analytical size exclusion

shows only one peak (Figure 2). SDS-PAGE analysis of this final

sample, however, yielded two bands near the 116.25 kDa region

similar to the bands observed in fraction 30 of Figure 1 (data not

shown). Given the small amount of the product obtained (about

200 ml) after the four steps of the isolation process, no further

methods were deemed practical to attempt additional purification

of the enzyme.

Assay pH affected the activity of the NW4327 collagenase with

highest activity observed at pH 5.0 compared to pH 4 or pH 6

and above. Assay temperature also affected the activity of

NW4327 collagenase with higher activity observed at 30uC
compared to that at 20uC or at 40uC or warmer. Partially

anaerobic conditions reduced growth of NW4327 by 25% and

lowered the yield of collagenase from 5227692.7 CDU ml21 to

1935670.6 CDU ml21. Replacing MilliQ water with natural

seawater when formulating the growth media enhanced microbial

growth by 20% and collagenase production by 30% at the end of

the five day cultivation. Growth of the isolate NW4327 was

observed at pH 5.0 and pH 7.0 (in Marine Broth prepared in

natural seawater, ie 26seawater concentration) but not at pH 9.0.

A neutral pH favoured growth while adding sponge collagen

almost doubled collagenase production. The enzyme was equally

able to degrade all of the sponge fibres, gelatin, casein and bird

feather under the described conditions.

Figure 1. SDS PAGE analysis of fractions obtained at 20 to 30 minutes during anion exchange chromatography. Lane numbers (upper
row of top panel) indicate the time in minutes (Min.) and lower row in top panel indicate Abs570 values obtained after assaying 500 mL of the fractions
by the sensitive ninhydrin assay (Abs.). Values on the right panel indicate molecular weights of the standard protein markers.
doi:10.1371/journal.pone.0007177.g001
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Discussion

Collagen is the major fibrous component of vertebrate

extracellular connective tissue such as skin, tendon, blood vessels

and bone and its importance to invertebrates is increasingly

apparent [14,15,16]. Collagen molecules are structural extracel-

lular macromolecules containing at least one domain with a

characteristic triple helical conformation. This study aimed to

characterize and purify an extracellular collagenase which attacks

the collagen fibres of marine sponges. Fourier Transform Infrared

Reflection-Absorption [17] suggests that properties of novel

invertebrate collagenases can be observed using mammalian

collagen as a substrate.

True collagenase may cleave simultaneously across all three

chains or attack a single strand of the collagen macromolecule.

This contrasts with other collagenases which split collagen in its

native triple-helical conformation at a specific site yielding

fragments. Bacterial collagenases, often from pathogenic strains,

differ from mammalian collagenases in that they attack many sites

along the helix. Although the most studied is that from Clostridium

histolyticum, [18,19], other bacterial sources of collagenase include

Streptomyces lavendulae [20], Bacillus subtilis [21], Vibrio alginolyticus

[22], Streptococcus gordonii [23] and Thermoactinomycetes sp. [10]. Less

studied are marine microorganisms, especially pathogens. Previous

studies on collagenases from marine bacteria have adopted a

general screening approach [24]. Marine bacterial collagenases

isolated from other sources include Vibrio B-30 ATCC 21250 [25],

Vibrio vulnificus CYK279H [26] and E. coli JM83 [27]. Our study,

reports the purification of the collagenolytic enzyme from a

marine bacterium isolated from a diseased sponge.

Commercially available Clostridium histolyticum collagenase prep-

arations possess varied degrees of purity [19]. Although C.

histolyticum Strain JCM 1403 produced only a 116-kDa polypeptide

with collagenase activity under the condition used, a 98-kDa

gelatinase and other polypeptides with potent gelatinolytic activity

remained in the preparation. The authors concluded that it was

not possible to obtain C. histolyticum collagenase free of gelatinase

and other nonspecific proteases either from commercial sources or

from C. histolyticum cultures. Similar observations were made by

Merkel and Dreisbach [25]. The collagenase from NW4327 was

also difficult to purify due to the close bands in SDS-PAGE at

116.25 kDa.

Activity towards casein and bird feather keratin indicates that

the partially purified collagenase may be a highly active protease.

Enzyme activity was greater at pH 5.0, the internal tissue pH of R.

odorabile [28], compared to pH 4 or pH 6 and above. Enzymolysis

was greater at 30uC than at 20uC or $40uC. The average sea

water temperature along the Great Barrier Reef is also close to

30uC for much of the year [29]. These observations suggest a role

for this enzyme in the degradation of the spongin tissue of the

infected sponges. The observed pH and temperature optima are

distinct from the known values obtained from another marine

bacterium, Vibrio vulnificus CYK279H [26] and E. coli JM83 [27].

Although the isolated collagenase is able to degrade sponge fibres

from many species, it may have the potential to express a

pathogenic effect in Rhopaloeides odorabile due to the sponge’s tissue

conditions being optimum for the collagenase’s activity. Similar to

the observation of Merkel et al. [25], the presence of collagen

enhances the activity of NW4327 collagenase.

Enhanced enzyme activity when the microorganism was

cultivated in natural seawater suggests the presence of other

factors not available in the Marine Difco 2216 medium influencing

enzyme synthesis although an effect due to increased concentra-

tion of sea water salts in the natural seawater based media is also

possible.

In conclusion, during partial purification of the collagenase

enzyme from the sponge pathogen NW4327, several aspects of the

sponge disease etiology were elucidated; namely the strong

correlation with the internal tissue chemistry and environmental

temperature. This research provides a platform for further

investigations into the virulence mechanisms of sponge pathogens.
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