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Extracellular vesicle– and particle-mediated
communication shapes innate and adaptive immune
responses
Fanny A. Pelissier Vatter1*, Michele Cioffi1*, Samer J. Hanna1*, Ines Castarede1,2, Simone Caielli3, Virginia Pascual3, Irina Matei1, and
David Lyden1

Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular
vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and
organ physiology in both health and disease. Under normal physiological conditions, immune cell–derived EVPs participate in
immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and
immune activation. On the other hand, immune cell–derived EVPs exert immunosuppressive and regulatory effects.
Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft
rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis
and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for
immunotherapies.

Introduction
Intercellular communication among immune cells is vital for the
coordination of proper immune responses. The ability of im-
mune cells to respond to and integrate signals from other im-
mune and nonimmune cells allows them to perform diverse
tasks that orchestrate complex processes from embryogenesis to
defense against pathogens and cancers in adults. Classically,
soluble factors, such as cytokines and chemokines, have been
considered themainmediators of cell–cell communication in the
immune system (Janeway et al., 1985; Xie et al., 2013). However,
target cell behavior is also modulated through paracrine
receptor–ligand interactions (van Niel et al., 2018) and extra-
cellular vesicle (EV)–mediated transfer of molecules to recipient
cells (reviewed in Cocucci et al., 2009; Ratajczak et al., 2006b).
EVs are classified based on their biogenesis, heterogeneous size,
and function. Microvesicles (MVs; 150–1,000 nm) are generated
by direct budding from the cell membrane and function mainly
in local intercellular communication (Cocucci et al., 2009;
Zijlstra and Di Vizio, 2018). In contrast, exosomes (30–150 nm)
are derived from the perinuclear luminal membrane of late en-
dosomes/multivesicular bodies and released via multivesicular

body fusion with the cell membrane. Due to their small size,
protective lipid bilayer, and surface receptors, exosomes can
mediate long-range, interorgan systemic crosstalk (Hoshino
et al., 2015; van Niel et al., 2018; Mathieu et al., 2019). Recent
technological advances enabled further dissection of exosome
heterogeneity, leading to the identification of three distinct
subclasses of vesicles and particles: exo-large vesicles (90–120
nm), exo-small vesicles (60–80 nm), and membrane-less exo-
mere particles (<50 nm; Zhang et al., 2018; Zhang and Lyden,
2019; Jeppesen et al., 2019). In this review, we collectively refer
to MVs, exosomes, exo-large, exo-small vesicles, and exomere
particles as EVs and particles (EVPs; Hoshino et al., 2020).

A decade after the discovery of reticulocyte exosomes
(Harding et al., 1983; Pan et al., 1985), it was shown that adaptive
immune cells, such as B lymphocytes, also secreted biologically
active EVPs (Raposo et al., 1996) that perform a variety of
extracellular functions (Fig. 1). Although early studies focused
on immune cell–derived EVs and exosomes, critical evidence
regarding the role of EVPs in systemic communication came
from observations in systemic diseases, including cancer. The
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contribution of EVP cargo to cancer progression, including pre-
metastatic niche establishment and organotropic metastasis, is
described elsewhere (Wortzel et al., 2019; Sheehan and D’Souza-
Schorey, 2019; Peinado et al., 2017). The critical breakthrough in
understanding the role of EVPs in disease progression was the
finding that they contain functional proteins, lipids, and me-
tabolites (Kalluri and LeBleu, 2020; Zhang et al., 2019), as well as
DNA (Thakur et al., 2014), mRNA, and various noncoding RNAs
(e.g., microRNA [miRNA]; Jeppesen et al., 2019; Ratajczak et al.,
2006a), which reflect their potential as vehicles for horizontal
transfer of information (Fig. 2) and, as a consequence, to alter
the function of target cells (Sullivan et al., 2017). Recent years
have marked renewed interest in the role of immune cell–
derived EVPs in health and disease (reviewed in Veerman et al.,
2019; Robbins and Morelli, 2014). Understanding how immune
cell–derived EVPs promote or inhibit immune responses is
crucial to unlock their therapeutic potential. This review focuses
on EVP-mediated immune homeostasis in normal physiology
and its dysregulation in disease.

EVP-mediated immune regulation in normal physiology
Adult HSC–derived EVPs
Despite the lack of understanding regarding EVP contributions
to hematopoiesis and immune crosstalk during embryonic de-
velopment, accumulating evidence supports important roles for
EVPs throughout hematopoiesis in the adult bone marrow (BM;
Gu et al., 2016; Kumar et al., 2018). The complex BM microen-
vironment dynamically regulates hematopoiesis to ensure ade-
quate formation of mature blood cells from hematopoietic stem
cells (HSCs), controlling their egress in response to various
stressors and stimuli (Morrison and Scadden, 2014). Interest-
ingly, CD34+ HSC-derived EVPs promote ischemic tissue repair
and angiogenesis (Mathiyalagan et al., 2017). Conversely, EVPs
released by peripheral blood mononuclear cells may be involved
in HSC mobilization through modulation of vascular cell adhe-
sion molecule 1 expression, which is critical for the retention of
HSCs in the BM (Lévesque et al., 2001). Specifically, G-CSF,

commonly used to mobilize BM HSCs into the peripheral blood,
promoted the accumulation of miR126-containing EVPs in the
BM extracellular compartment, which, upon uptake by HSCs
and stromal and endothelial cells, reduced surface vascular cell
adhesion molecule 1 expression, leading to HSC egress (Salvucci
et al., 2012). Due to challenges posed by obtaining large enough
HSC numbers and maintaining their stemness ex vivo, most of
our knowledge regarding HSC EVPs is derived from studies of
leukemia stem/initiating cells (reviewed in Butler et al., 2018).

EVPs in the circulation: Complement activation and coagulation
The complement cascade is a critical innate immune component
that enhances the ability of antibodies and phagocytic cells to
clear microbes and damaged cells. Not only does the cargo of
EVPs isolated from plasma include complement components
(Hoshino et al., 2020), but EVPs also crosstalk with the com-
plement system (Karasu et al., 2018). Complement may be
directly activated by EVP cargo, such as C3 and C4a, in human
primary dendritic cells (DCs; Kowal et al., 2016), or by binding
immunoglobulins (Huang et al., 2018; Huang et al., 2020),
while expression of complement regulators CD55 and CD59 on
APC-derived EVPs allows them to escape from complement-
mediated lysis (Clayton et al., 2003). However, the precise
mechanistic interactions between complement and EVPs and
the specific functions of EVP complement cargo remain to be
determined.

In the circulation, over 50% of EVPs originate from platelets or
their BM precursors, megakaryocytes (MKs; Berckmans et al.,
2019). In response to physiological signals, such as chemokines,
apoptosis, or increased sheer stress (Shai et al., 2012), activated
platelets release EVPs from multivesicular bodies and α-granules.
Platelet- and MK-derived EVPs are distinguished by surface ex-
pression of typical activation markers, such as P-selectin
(CD62P; Heijnen et al., 1999; Guo et al., 2017). Both MK- and
platelet-derived EVPs contain prothrombotic molecules, in-
cluding tissue factor and phosphatidylserine, that trigger co-
agulation and thrombosis, supplementing tissue factor release

Figure 1. Pleiotropic roles of immune cell–derived EVPs
in physiology and pathology. EVPs are secreted by all cells,
including immune cells, circulate in the blood, and are crit-
ical in short- and long-range intercellular communication.
EVPs exert a variety of functions depending on the physi-
ological context and the state of the secreting cells. Under
normal physiological conditions, immune cell–derived EVPs
participate in immune homeostasis by regulating innate and
adaptive immune responses, maintaining stem cell homeo-
stasis, promoting tumor suppression, and controlling coag-
ulation. It is likely that immune cell–derived EVPs maintain
the precise immune equilibrium to maintain healthy preg-
nancy and embryonic development. On the other hand,
immune cell–derived EVPs play important roles in patho-
logical conditions such as thrombosis, autoimmune diseases,
and cancer progression and metastasis. Thus, understanding
the functions of EVPs in physiological and pathological
states could lead to the development of EVP-based bio-
markers and therapies for a variety of diseases. COPD,
chronic obstructive pulmonary disease; MSC, mesenchymal
stem cell.
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from perivascular tissue following endothelial disruption
(Flaumenhaft et al., 2009; Müller et al., 2003). In addition,
platelet-derived EVPs express several membrane glycoproteins
that interact with target cells, such as monocytes, neutrophils,
endothelial cells, and cancer cells, during various pathological
processes (Perez-Pujol et al., 2007; Wu et al., 2020). Indeed, we
found that proteins involved in thrombosis, such as factors II, III,
and IX and thrombospondin 2, are highly packaged in EVPs
isolated from cancer patient tumors (Hoshino et al., 2020).

Thrombus formation and the resolution of thrombosis by
platelets are also modulated by interactions with other compo-
nents of the immune system (Branchford and Carpenter, 2018)
and potentially by EVPs. Platelets can also modulate inflammation
and adaptive immunity through membrane-derived vesicles.
CD154 (CD40 ligand), a costimulatory ligand present on acti-
vated T cells, is also present on platelet-derived EVPs and is
sufficient to stimulate antigen-specific IgG production and
modulate germinal center formation (Sprague et al., 2008). These
studies reveal the critical roles of EVP-mediated platelet interac-
tions with other immune system components, thereby supporting
the development of novel therapeutic strategies to treat coagulo-
pathies by modulating this crosstalk.

EVPs as natural tumor suppressors
In addition to systemic immune responses, the local microen-
vironment also constrains malignant progression (Bissell and
Hines, 2011). While it is well established that tumor-derived
EVPs suppress anticancer immunity and stimulate protumori-
genic processes, there is growing interest in understanding the
mechanisms through which normal EVPs, be they stromal or
immune system derived, may impart protection against tumor

progression. Normal EVPsmay exert a direct tumor-suppressive
role by altering the behavior of tumor cells. Conversely, both
tumor-derived and immune cell–derived EVPs can exert a sys-
temic tumor-suppressive role via activation of the immune
system. For example, Hsp70 in EVPs isolated from Hsp70-
overexpressing melanoma cells activated NK cells, decreasing pri-
mary tumor size and metastatic outcome in a murine melanoma
model (Elsner et al., 2007). Moreover, EVPs isolated from a low
metastatic strain of mouse melanoma stimulated Ly6Clow patrolling
monocytes, inhibiting lung metastasis (Plebanek et al., 2017). Con-
versely, in vivo studies showed that upon exposure to tumor anti-
gens, activated DC-derived EVPs induce T cell–mediated antitumor
immune responses (Zitvogel et al., 1998), while ADAM15-containing
macrophage-derived EVPs successfully suppressed ovarian can-
cer cell growth and migration (Lee et al., 2012). Recent studies
also showed an exercise-induced increase in EVP secretion in
healthy subjects, which may in turn promote beneficial sys-
temic effects through inter-organ communication and im-
mune system activation (Whitham et al., 2018; Frühbeis et al.,
2015), potentiating antitumor responses. Therefore, immune
cell–derived EVPs represent an attractive tool for maintaining
tissue homeostasis and suppressing cancer progression.

Immune cell–derived EVPs and immune responses
Given the numerous types of immune cells releasing EVPs and
the various recipient cell types, the physiological role of the
EVPs within the immune system is complex. EVPs contain
molecules critical for the initiation of immune responses and
antigen presentation, such as HLA molecules, and can mediate
the exchange of both membrane and cytosolic components
without cells actually being in proximity (Lamparski et al., 2002;

Figure 2. Immune cell–derived EVP cargo.
EVPs carry membranar, cytosolic, and even nu-
clear molecules such as DNA, RNA, lipids, and
proteins, present inside and outside the vesicle.
EVPs package proteins characteristic of the cells
of origin, which can be used to identify their
source and represent biomarkers of specific in-
nate and adaptive immune cell subpopulations.
Immune cell–derived EVP cargo mediates the im-
mune response and can vary based on the acti-
vation state of the cells of origin. BCR, B cell
receptor; ILCs, innate lymphoid cells; ESCRT, en-
dosomal sorting complex required for transport.
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Lynch et al., 2009; Kowal and Tkach, 2019; Buschow et al.,
2009). Besides MHC-encoded proteins, other proteins, both
cytosolic and membranar, may be selectively packaged in EVPs,
resulting in targeting to specific recipient cells and immune
activation. The Amigorena group was the first to show, in the
late 1990s, that DC-derived EVPs elicited antitumor effects
in vivo, delaying tumor growth in a T cell–dependent manner,
most likely through EVP heat shock proteins and integrins
(Théry et al., 1999; Zitvogel et al., 1998). Additional studies
published over the last two decades have revealed a plethora of
other physiological and pathological functions of EVPs in both
adaptive and innate immunity (Fig. 1; Denzer et al., 2000a; Pitt
et al., 2016; Kowal and Tkach, 2019; Li et al., 2019; Robbins and
Morelli, 2014).

The immunomodulatory properties of APC-derived EVPs
Professional APCs initiate the multistep adaptive immune re-
sponse. DCs are the most potent APC, efficiently triggering the
proliferation, activation, and differentiation of naive T cells
(Steinman and Witmer, 1978; Banchereau et al., 2000). The
immune synapse, a specialized contact between T cells and
APCs, concentrates the structures and mechanisms for com-
munication between immune cells through contact-dependent
antigen presentation (Dustin et al., 1998; Monks et al., 1998).
Importantly, EVPs carry a combination of ligands and receptors
that simultaneously interact with cell-surface molecules on re-
cipient cells, allowing for typical contact-dependent cellular ac-
tivation (Robbins and Morelli, 2014). DC-derived EVPs were
among the first EVs described by Zitvogel et al. and were sub-
sequently most extensively studied in the context of immune
responses (Zitvogel et al., 1998; Théry et al., 1999; André et al.,
2004). The observation that a DC–EVP exchange enhanced T cell
stimulation efficiency by DCs (Bedford et al., 1999; Knight et al.,
1998; Vallhov et al., 2015) illustrated the critical role of EVPs in
coordinating immune function. Importantly, the mechanisms of
TCR sorting and release into EVPs present at the immune syn-
apse depend upon the process of endosomal sorting and
the complexes required for transport (Choudhuri et al., 2014).
Consequently, the accumulation of TCRs on the surface of EVPs,
along with associated downstream signaling molecules (e.g.,
RAS), mediates antigen-dependent interactions with cognate
MHC complexes on APCs (Choudhuri et al., 2014). Alternative
sorting of MHC, along with CD9, into multivesicular body lu-
minal vesicles that are secreted as EVPs by APCs results in
transfer of these molecules to interacting T cells (Buschow et al.,
2009). DC-derived EVPs can activate T cells through stable in-
teractions with TCR complexes even in the absence of intact
APCs (Théry et al., 2002; Sprent, 2005). APC-derived EVPs
maintain the original topology of the APCs and therefore expose
the extracellular domain of MHC molecules on the surface of the
vesicle. Théry et al. proposed that EVPs derived from peripheral
DCs sensitize immature lymph node–resident DCs with specific
peptide–MHC complexes before their arrival at lymph nodes
(reviewed in Théry et al., 2002). The EVP-mediated spreading of
antigen-specific MHC complexes between DCs ultimately am-
plified T cell activation and induced potent immune responses.
EVPs derived from other APCs, such as macrophages, which also

contain MHC class II heterodimers bound to antigenic peptides,
perform similar functions. This in turn elicits the activation of
primed CD4+ and CD8+ T cells through specific TCR–peptide
interactions (Patel et al., 1999; Arnold and Mannie, 1999;
Lindenbergh and Stoorvogel, 2018). Furthermore, EVP-mediated
antigen presentation includes the transfer of specific peptide–
MHC complexes to follicular DCs and stromal cells in lymph
nodes, priming CD4 T cells and activating B cells (Mallegol et al.,
2007; Denzer et al., 2000b).

On the other hand, several studies have focused on the ability
of DC-derived EVPs and MVs to elicit both cognate T cell acti-
vation and humoral responses through MHC class I and II
molecules (Pitt et al., 2016; Kowal and Tkach, 2019). Importantly,
the extent of EVP-mediated T cell activation depends on DC
developmental stage, with mature DCs activating T cells more
efficiently than immature DCs, both in vitro and in vivo
(Admyre et al., 2006; Segura et al., 2007; Montecalvo et al.,
2008).

Collectively, these studies emphasize that whether their ef-
fects are direct or indirect, APC-derived EVPs play a major role
in antigen presentation and immune activation.

Adaptive immune cell–derived EVPs orchestrate immune responses
T cell–derived EVPs. Crosstalk mediated by T cell–derived

EVPs can also activate various innate immune cells. T cell–
derived EVPs containing LFA-1 molecules stimulated human
mast cells, inducing degranulation and release of IL-8 and on-
costatin M in a MAPK signaling–dependent manner, suggesting
that these EVPs carriedmast cell–activating factors similar to the
cells from which they originated (Shefler et al., 2010). In con-
trast, uptake of T cell–derived EVPs by DCs modulated their
function, leading to down-regulation of peptide–MHC I complex
expression and induction of DCs apoptosis via Fas/Fas ligand
(FasL) pathway (Xie et al., 2010).

Despite several studies investigating the effect of T cell–
derived EVPs on immune responses, little is known about the
underlying molecular mechanisms. Human resting T cell–
derived EVP cargo included proteins related to cytoskeletal
organization, while activated T cell–derived EVPs packaged
proteins involved in immune receptor signaling and meta-
bolism, including Ras-associated proteins, such as ZAP70,
RASGRP1, and AKT. Activated T cell–derived EVPs enriched in
RAS signaling pathway molecules activated MAPK/ERK in re-
cipient nonactivated T cells and mast cells (Azoulay-Alfaguter
and Mor, 2018). The paucity of studies on how T and B cell–
derived EVPs exert their function highlights the importance
of elucidating these mechanisms, allowing their modulation,
which can in turn promote or dampen immune responses for
therapeutic benefit.

B cell–derived EVPs. B cell–derived EVPs have been greatly
understudied. EVPs from activated B cells efficiently stimulated
primed antigen-specific T cells, suggesting a role for B cell–
derived EVPs as modulators of an ongoing immune response
(Muntasell et al., 2007; Raposo et al., 1996). Recently, B cell–
derived EVPs were shown to mediate cytotoxic T cell immunity
in vivo, as MHC class I molecules expressed on B cell–derived
EVPs cooperated with host MHC class I expressed on splenic
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langerin+ CD8α+ DCs in antigen presentation to CD8+ T cells
(Saunderson and McLellan, 2017). B cell receptor stimulation of
follicular B cell lymphomas polarized the CD63+ MHC class II
compartment and EVP release and induced the routing of
antigen-bound IgG to EVPs (Rialland et al., 2006). Interestingly,
the presence of B cell–derived EVPs in plasma of patients with
solid tumors correlated with B cell responses and responsiveness
to immunotherapies (Helmink et al., 2020). We have recently
demonstrated that immunoglobulins are the most abundant
family of proteins packaged in EVPs isolated from the plasma of
cancer patients as well as healthy subjects and that specific
immunoglobulins can distinguish between healthy controls and
cancer patients (Hoshino et al., 2020). Therefore, EVPs derived
from adaptive immune cells can mediate the transport of im-
munomodulatory components among various cell types (Fig. 2),
supporting novel mechanisms to enhance immune responses
and may be used as disease-specific biomarkers.

The diverse cargo of immune cell–derived EVPs
The pleiotropic functions of immune cell–derived EVPs are ex-
erted through their diverse cargo, which includes proteins, cy-
tokines, nucleic acids, and lipids. Cytokines packaged in EVPs,
either surface bound or encapsulated (Fitzgerald et al., 2018),
depending on the context, can represent another mechanism of
EVP-mediated crosstalk and activation of immune cells. EVPs
may protect certain cytokines from degradation, thus increasing
their half-lives, and target specific cells for delivery. For exam-
ple, both the pro-form and mature pro-inflammatory IL-1β and
IL-18 are packaged in EVPs released from DCs and macrophages
through distinct pathways (Pizzirani et al., 2007; Gulinelli et al.,
2012; Yoon et al., 2017). Interestingly, the inflammasome, a
multiprotein intracellular complex that detects pathogenic mi-
croorganisms and sterile stressors, is required for IL-1β and
IL-18 activation. Sequestration of the activated inflammasome
complex together with IL-1β and IL-18 precursors and their
secretion in EVPs may precede inflammasome activation,
thereby proposing an attractive explanation for the detection of
both immature and mature cytokine forms in EVPs (Prada
et al., 2013).

EVP cargo is enriched in noncoding RNAs, of which miRNAs
received the most scrutiny due to their well-described regula-
tory functions. Nevertheless, the mechanisms regulating selec-
tive miRNA packaging into EVPs have only recently begun to be
explored (Clancy et al., 2019). Among immune cells, mast cells
were the first described source of secreted EVP mRNA and
miRNA that could be shuttled between cells, resulting in acti-
vation and degranulation of recipient cells (Valadi et al., 2007;
Vukman et al., 2017). It is now clear that each immune cell type
EVPs package miRNAs with specific targets and functions and
that miRNA content is cell-state dependent and can be modu-
lated by extrinsic cues. For instance, in response to endotoxin
stimulation, macrophages secrete EVPs containing miR-155,
which in turn promotes inflammatory responses to LPS in vivo
(Alexander et al., 2015; Vigorito et al., 2013). Furthermore, EBV-
infected B cell EVPs cause miRNA-mediated repression of the
immunoregulatory CXCL11/ITAC genes once captured by circu-
lating host DCs (Pegtel et al., 2010). These studies provide

evidence that EVPs offer a means of miRNA transfer between
immune cells, facilitating the regulation of gene expression and
the generation of proper inflammatory responses.

Lipids, such as ceramides, sphingolipids, and the lipid raft
component cholesterol, are not only essential components of
EVP membranes but also enriched within EVPs (Wubbolts et al.,
2003; Trajkovic et al., 2008). For example, EVPs from mast cells
and DCs are enriched in sphingomyelin and phosphatidyletha-
nolamines, but not in cholesterol, phosphatidylcholine, or ly-
so(bis)phosphatidic acid, a composition that could be altered
by pH changes (Laulagnier et al., 2004). EVP lipid composition
may affect their function, as their alteration was observed in
asthmatic patients during chronic airway inflammation (Hough
et al., 2018). Recently, in addition to lipidomics, metabolomic
analysis of EVPs revealed a complex set of molecules, including
amides, amino acids, carboxylic acids, sugars, and others (Altadill
et al., 2016; Luo et al., 2018). While knowledge of the physiological
role of various metabolites in EVPs, especially those derived from
immune cells, remains rather limited, it will be important to de-
termine if they can act as secondary messengers and influence
immune and target cell metabolism.

Immunosuppressive functions of immune and tumor cell–derived
EVPs
Immune cell–derived EVPs can also exert immunosuppressive
effects in response to various stimuli, including pathogens or
the presence of a tumor, to prevent or mitigate autoimmunity
(Fig. 3). Immunosuppressive regulatory T (T reg) cells are crit-
ical for maintaining self-tolerance and dampening immune re-
sponses; therefore, it is not surprising that T reg cell–derived
EVPs also possess the capacity to suppress T helper 1 (Th1) cell

Figure 3. Immune cell–derived EVPs orchestrate immune responses.
Immune cell–derived EVPs (depicted as small vesicles) maintain the
balance between immune activation (green arrows) and immune sup-
pression (red arrows). EVPs participate in the crosstalk between innate
and adaptive immune responses and promote cytokine production as
highlighted by mast cells.
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proliferation and IFN-γ cytokine secretion (Okoye et al., 2014)
and induce tolerogenic DCs (Tung et al., 2018). Myeloid-derived
suppressor cells (MDSCs), on the other hand, regulate immune
suppression by preventing T cell activation and polarizing
macrophages toward a tumor-promoting phenotype (Veglia
et al., 2018). MDSCs mediate their suppressive effects not only
directly but also indirectly via EVPs (reviewed in Ostrand-
Rosenberg and Fenselau, 2018). Specifically, expression of
CD47, which protects cells from phagocytosis, on MDSC-derived
EVPs chemoattracts MDSCs (Chauhan et al., 2017).

In response to pathogen-associated molecular patterns, such
as bacterial endotoxins, the exchange of EVP miR-146a between
BM-derived DCs inhibited the immune response to endotoxin
in vivo (Alexander et al., 2015). In response to tumors, immature
DC-derived EVPs expressed immunosuppressive molecules,
such as TGF-β, NKG2D, and death ligand FasL, which can inhibit
natural killer (NK) cells, macrophages, and neutrophils (Batlle
andMassagué, 2019; Kim et al., 2006). A crucial immune evasion
mechanism is the up-regulation of programmed death ligand
1 (PD-L1) and interaction with the corresponding PD-1 receptor
on T cells. Tumors have hijacked this regulatory mechanism,
and anti–PD-1 antibodies are promising immunotherapies
(Sharma and Allison, 2020). Interestingly, the presence of PD-L1
on melanoma, lung, and prostate cancer EVPs suppresses T cell
activation, reducing the release of anti-tumor IL-2 and IFN-γ,
thus enabling immune escape (Xie et al., 2019; Kim et al., 2019;
Chen et al., 2018a). Consequently, in prostate cancer, which is
resistant to anti–PD-L1 therapy, loss of PD-L1 in tumor EVPs
inhibits tumor growth and promotes T cell activation in draining
lymph nodes (Poggio et al., 2019). Understanding and altering
the mechanism of selective PD-L1 packaging into EVPs could
overcome resistance to anti–PD-1/PD-L1 antibody therapy and
greatly impact the success of immunotherapies. To achieve this,
it is critical to first determine the role of EVP PD-L1 in normal
immune responses.

The role of immune cell–derived EVPs in pathology
EVP contributions to inflammatory responses
EVP-mediated communication between immune cells also par-
ticipates in immune dysfunction associated with the develop-
ment and progression of disease, such as neurodegenerative,
infectious, and autoimmune disorders (Fig. 1) in which a com-
mon denominator is inflammation, driven or sustained by
EVPs. For example, autism spectrum disorder is also associ-
ated with microglial activation and brain inflammation. The
protein and mitochondrial DNA content of EVPs isolated from
the serum of children with autism spectrum disorder is in-
creased and induces the production of pro-inflammatory IL-
1β in human microglia in vitro (Tsilioni and Theoharides,
2018; Abal, 2017). During infection, EVPs derived from
pathogen-infected cells, such as macrophages infected with
Mycobacterium avium, a known pathogen in HIV-positive in-
dividuals, can elicit proinflammatory responses measured
by increased levels of TNF-α and RANTES upon fusion with
uninfected macrophages, which in turn contributed to HIV
and CMV pathogenesis (Bhatnagar and Schorey, 2007; Walker
et al., 2009). EVP-mediated inflammasome activation can also

occur in the context of central nervous system (CNS) trauma,
when the secretion of CNS-derived inflammasome-containing
EVPs into the cerebral spinal fluid may activate innate im-
mune responses upon fusion with target cells in peripheral
tissues (de Rivero Vaccari et al., 2016).

EVPs derived from activated neutrophils also contribute to
lung inflammation by expressing αM integrin and surface
neutrophil elastase in a favorable orientation that renders them
resistant to a naturally occurring protease, α1-antitrypsin. When
released, these vesicles degrade collagen within the extracellular
matrix, inducing proteolytic damage in patients with neutrophil-
driven diseases, including chronic obstructive pulmonary dis-
ease and bronchopulmonary dysplasia (Genschmer et al., 2019).
Thus, innate immune EVP-mediated tissue remodeling could
initiate inflammation and drive pathophysiology.

The role of EVPs in transplantation tolerance and rejection
Allograft rejection remains a serious complication after organ
transplantation. EVPs can both directly and indirectly activate
T cells and therefore can participate in graft rejection/tolerance.
This occurs through crosstalk between recipient APCs and donor
MHC antigens, followed by T cell activation. In murine models
of renal allografts, miR-682, highly enriched in immature DC–
derived EVPs, suppressed IL17+CD4+ T cells and promoted
Foxp3+CD4+ regulatory T cell development, in contrast to ma-
ture DC–derived EVPs, which induced T cell immunity (Pang
et al., 2019). Moreover, follicular helper T (Tfh) cell–derived
EVPs regulated B cell proliferation and differentiation, reveal-
ing a novel crosstalk mechanism in renal transplantation pa-
tients with antibody-mediated rejection (Yang et al., 2019).
Given the ability of professional APC EVPs to augment specific
immune responses and facilitate tolerance, they represent an
attractive therapeutic strategy as vaccine adjuvants or anti–
allograft rejection treatments. For instance, injection of im-
mature DC–derived EVPs prolonged survival following cardiac,
intestinal (Pêche et al., 2006;Yang et al., 2011), and renal
transplantation (Pang et al., 2019). Although preclinical studies
have shown promising results, no clinical trials testing the
therapeutic efficacy of immature DC–derived EVPs have been
conducted in autoimmune diseases or transplant settings to date.

EVP contributions to autoimmune diseases
In addition to the pleiotropic functions they play in the immune
system, EVPs have been implicated in immune modulation as-
sociated with autoimmune diseases (Buzas et al., 2014), such as
rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic
lupus erythematosus (SLE). EVPs and their cargo, circulating
systemically, could be targets of autoreactive recognition that
can trigger autoimmunity. In RA, which is characterized by joint
and systemic inflammation, synovial EVPs contain autoantigens
that contribute to the pathogenesis of RA, such as citrullinated
fibrin α-and β-chain fragments, fibrinogen β-chain precursor,
fibrinogen D fragment, and the Spα (CD5 antigen-like protein)
receptor, which may result in increased inflammation and car-
tilage degradation (Skriner et al., 2006). Moreover, both EVPs
derived from immature DCs (Kim et al., 2006) and DCs en-
gineered to produce FasL have anti-inflammatory activity in RA
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(Min et al., 2000). Vaccination with EVPs isolated from IL-4– or
IL-10–stimulated DC also reduced clinical manifestations of RA
in mice (Kim et al., 2007; Kim et al., 2005). Therefore, the cell of
origin producing the EVPs, its activation status, and microen-
vironmental interactions may determine whether they promote
or dampen synovial inflammation.

In MS pathogenesis, a chronic inflammatory demyelinating
disease of the CNS, EVPs can have opposite functions depending
on their cargo and the recipient cells. Specifically, microglia, the
resident immune cells of the CNS, release EVPs involved in
physiological and pathological conditions (reviewed in Dolcetti
et al., 2020). In particular, EVPs from MS patients are able to
inhibit T reg cell differentiation from naive CD4+ T cells (Kimura
et al., 2018). However, DCs can release EVPs that increase re-
myelination, which is lost in MS and significantly contributes to
disease progression (Pusic et al., 2014). These observations re-
inforce the importance of providing a deeper characterization of
EVPs in both physiological and pathological conditions to po-
tentially provide targeted therapeutic interventions.

SLE is a prototypic systemic autoimmune disease character-
ized by the production of an array of pathogenic autoantibodies
that recognize, among others, DNA and chromatin, forming
immune complexes. Immune complexes deposit in the kidneys
and lead to lupus nephritis (LN), a major cause of morbidity and
mortality (Zan et al., 2014). EVP levels were significantly higher
in SLE patients and induced the production of IFN-α, TNF-α, IL-
1β, and IL-6 in peripheral blood mononuclear cells (Lee et al.,
2016). Several EVP miRNAs have been implicated in SLE pa-
thology (Perez-Hernandez et al., 2015). EVP miR-29c, which
exerts antifibrotic effects by regulating collagens, fibronectin,
laminin, and matrix metalloproteinase-2, was down-regulated
in patients with LN compared with healthy controls and corre-
lated with renal fibrosis and kidney damage (Solé et al., 2015). In
contrast, elevated EVP miR-26a in patients with LN correlated
with proteinuria and was predictive of podocyte injury. Given
the importance of miR-26a in regulating podocyte differentia-
tion and cytoskeleton genes, these findings are consistent with
EVP miRNAs contributing to the progression of podocyte injury
in LN (Ichii et al., 2014). A landmark study from the Reizis
laboratory showed that an excess of DNA within EVPs is suffi-
cient to break tolerance and induce the production of anti-DNA
autoantibodies in both mice and humans with inactivating
mutations in a circulating DNase that normally degrades EVP-
associated and extracellular DNA (Sisirak et al., 2016). In addi-
tion to nucleic acids, SLE EVPs also contain autoantigens, such
as the cytosolic E3 ubiquitin–protein ligase Ro(SS-A)/TRIM-21
and La (SS-B) and the nuclear Smith antigens, targets of the
autoimmune process in this disease (Kapsogeorgou et al., 2005).
Thus, one could speculate that EVP cargo might participate in
the breakdown of tolerance to cytosolic and nuclear antigens in
SLE through mechanisms that remain to be elucidated. Moreover,
circulating EVPs might serve as valuable diagnostic markers and
tools for predicting disease severity and response to treatment, all
of which are direly needed in SLE.

EVPs may also play a role in the pathogenesis of inflamma-
tory bowel disease, including Crohn’s disease and ulcerative
colitis (Yang and Merlin, 2019). Clinical and pathological

outcomes differ between these two diseases (Neurath, 2014),
and EVPs may play distinct roles in their respective pathogen-
esis. Indeed, in a colitis mouse model, serum-derived EVPs hy-
peractivated macrophages, exacerbating disease (Wong et al.,
2016). In contrast, EVPs derived from IL-10–treated DCs
suppressed acute trinitrobenzene sulfonic acid–induced coli-
tis, potentially representing a promising therapeutic strategy
for inflammatory bowel disease (Yang et al., 2010). Collec-
tively, these findings indicated that EVPs, including immune
cell–derived EVPs, not only directly contribute to the patho-
genesis of chronic autoimmune and inflammatory diseases
but also have great potential as new biomarkers or thera-
peutic targets of these diseases.

The future of EVP-based immunotherapies
Immune EVPs in vaccine development
EVPs are crucial mediators in cell–cell communication and or-
chestrate a variety of immune responses, making them attrac-
tive candidates for immunotherapies (Fig. 1). Research on
immunotherapeutic applications of EVPs has focused largely on
DC-derived EVPs due to their immunogenicity and ability to
carry MHC class I and II molecules together with costimulatory
molecules (CD40, CD80, and CD86) that induce a potent
antigen-specific T cell response (Théry et al., 1999; Sheng et al.,
2013) and tumor suppression in vivo (Zitvogel et al., 1998). Two
phase 1 clinical trials exploring the efficacy of immature DC–
derived EVPs loaded with tumor-associated antigen peptides in
melanoma and non-small cell lung cancer (NSCLC) patients
(Table 1; Escudier et al., 2005; Morse et al., 2005) revealed that
while nontoxic, DC-derived EVPs provided little therapeutic
benefit due to poor immunostimulation. In phase 2 clinical
trials, patients with NSCLC tolerated IFN-γ–matured DC-
derived EVPs well, but activation of NK cells and T cell stim-
ulation were limited (Besse et al., 2016). Thus, the efficiency of
DC-derived EVPs can be enhanced by cytokine cocktails that
up-regulate costimulatory signals and reduce immunoregulatory
molecules, such as PD-L1. Maturation of DCs with TLR-4 or -9
ligands, LPS and CpG, respectively, or the TLR-3 inducer
poly(I:C) produced EVPs with higher concentrations of MHCs
that potentiated CD8+ T cell responses in a murine melanoma
model (Damo et al., 2015). Moreover, DC-derived EVPs engineered
to activate invariant NK T cells through α-galactosylceramide in-
duced potent antigen-specific antitumor immune responses in
murine melanoma (Gehrmann et al., 2013). More recently, EVPs
derived from α-fetoprotein–expressing DCs showed robust
antigen-specific antitumor immune responses in various hepa-
tocellular carcinoma mouse models (Lu et al., 2017). In human
papillomavirus (HPV)–driven cervical cancer, HPV early antigen
7 peptide (E749–57) loaded into murine DC-derived EVPs induced
an anti-tumor cytotoxic T lymphocyte (CTL) response and acti-
vated potent protective and therapeutic immune responses against
cervical cancer in vivo (Chen et al., 2018b). These approaches could
be used to generate more potent immunostimulatory EVPs for
clinical use.

In addition to DC-derived EVPs, NK cell–derived EVPs also
represent a potential suitable tool for anti-tumor therapy. NK
cell–derived EVPs package FasL and perforin, which mediated
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anti-tumor effects in glioblastoma and melanoma xenograft models
(Zhu et al., 2017). Of note, NK cell–derived EVPs were taken up by
tumor cells, but not immune cells, resulting in selective antitumor
cytotoxicity (Lugini et al., 2012), suggesting NK cell–derived EVPs
could be vehicles for targeted therapy and drug delivery.

In the context of the current ongoing pandemic, immune
cell–derived EVPs are being tested in a phase 1/2 clinical trial for
the treatment of early-stage pneumonia induced by severe acute
respiratory syndrome coronavirus 2. The premise of the study is
that donor T cells activated and expanded in vitro in response to
viral peptide fragments and cytokines secrete EVPs containing
potent immune mediators, including IFN-γ, that could control
disease progression if administered early in the course of the
disease (NCT04389385).

Immune EVPs as delivery vectors for therapeutic agents
The use of immune EVPs for therapeutic purposes offers nu-
merous advantages over cell-based therapies (Yang et al., 2020;
Li et al., 2020). Unlike cells, EVPs do not replicate after injection
reducing the risk of tumor formation. Moreover, the lipid
bilayer-membrane increases their stability and protects their
content from degradation in the extracellular space, a charac-
teristic required for an efficient delivery system. EVPs can be
engineered to carry exogenous proteins, miRNA, mRNA, or
chemotherapies (Delcayre et al., 2005). Initial studies on DC-
derived EVPs as therapeutic vehicles revealed efficient gene
delivery in vivo and their capacity to cross the blood–brain
barrier (Alvarez-Erviti et al., 2011; Ha et al., 2016). In a breast
cancer xenograft model, DC-derived EVPs loaded with doxoru-
bicin were targeted to tumors through expression of a Lamp2b-αv
integrin-specific iRGD peptide fusion protein (Tian et al., 2014).
More recently, macrophage cell line–derived EVPs loaded with
paclitaxel were taken up by cancer cells and inhibited tumor
growth in a lung cancermousemodel (Kim et al., 2016). In addition,
modification of these EVPswith aminoethylanisamide-polyethylene
glycol reduced their immunogenicity, thus increasing their circu-
lation time in mice (Kim et al., 2018).

Due to their capacity for selective cell targeting and immune
stimulation, the potential of EVPs in drug delivery and immune

therapy is immense, but limitations, such as large-scale pro-
duction of good manufacturing practice (GMP)–grade EVPs and
possible tumorigenic effects, need to be overcome (Yeo et al.,
2013). Platelet-derived EVPs represent an alternative, advanta-
geous delivery system, since these cells are anucleated, thus
reducing safety concerns, and can be directly produced from
collected platelet concentrates, bypassing the need for a GMP
cell culture facility. Furthermore, the availability of autologous
platelet-derived EVPs could reduce immunogenicity concerns
(Johnson et al., 2021).

In conclusion, methods for EVP generation and isolation for
therapeutic purposes should be optimized, since ultracentrifu-
gation and precipitation, the most common techniques used to
isolate EVPs, are nonscalable. Rigorous investigations are needed
to identify a cost-effective alternative to engineer EVPs for large-
scale clinical trials and therapeutic applications.

Conclusions
Immune cell–derived EVPs may regulate a myriad of physio-
logical processes, including tolerance induction during preg-
nancy, orchestrating fetal hematopoiesis, and coordinating adult
immune system development and function. Alterations in EVP-
mediated crosstalk among immune cells are associatedwith local
and systemic inflammation, autoimmunity, cancer, and neuro-
degeneration. While the vast majority of research to date has
focused on cancer cell–derived EVPs, it is becoming clear that
understanding the function of immune cell–derived EVPs in
health and disease will pave the way to understanding the sys-
temic nature of these diseases.

How is innate and adaptive immune cell–derived EVP-
mediated communication orchestrated in normal physiology?
It is unclear whether the cargo of circulating immune cell–
derived EVPs is influenced by diet, circadian rhythm, or exer-
cise. In particular, exercise confers multisystemic benefits for
human health, mitigating the effects of metabolic disease and
cancer (Darkwah et al., 2021), and recent studies have indeed
demonstrated that plasma circulating EVP cargo increases in an
intensity-dependent manner in response to endurance exercise
(Frühbeis et al., 2015; Brahmer et al., 2019). Thus, immune cell

Table 1. Ongoing and completed National Institutes of Health–registered clinical trials investigating EVP-based therapeutics

Disease Phase Cellular source Route of
administration

Isolation
method

Modification Status Reference

Melanoma 1 Monocyte-derived DCs SC UF/UC sucrose
cushion

Melanoma antigen
loaded

Completed Escudier et al.,
2005

NSCLC 1 Monocyte-derived DCs SC and intradermal UF/UC sucrose
cushion

Peptide loaded Completed Morse et al., 2005

NSCLC 2 Monocyte-derived DCs Intradermal UF/UC sucrose
cushion

Peptide loaded Completed Besse et al., 2016

Cutaneous wound
healing (ulcer)

1 Autologous plasma-
derived exosomes

Intradermal 0.02-μm filter None Open NCT02565264

SARS-CoV-2 1/2 T cells Aerosol inhalation Not specified COVID-19–specific
T cells

Open NCT04389385

COVID-19; coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SC, subcutaneous; UC, ultracentrifugation; UF,
ultrafiltration.
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EVPs could mediate the systemic benefits of exercise and could
have therapeutic utility in the treatment of cancer andmetabolic
diseases. Another outstanding question is what are the con-
sequences of EVP binding or uptake for target immune cells? Do
these interactions lead to only short-lived functional changes, or
do they result in long-term reprogramming, perhaps via epige-
netic changes? What determines one outcome versus the other?

Understanding the mechanisms involved in EVP-mediated
reprogramming of immune responses would enable the engi-
neering of EVPs that could boost or inhibit particular target
immune cell populations in a disease-specific context, for ex-
ample stimulating/priming antitumor immune responses in
cancer patients or dampening autoimmune responses in sys-
temic autoimmune diseases. In this context, sustained signals
could enhance normal immune function through signal ampli-
fication and faster responses during infection or anticancer
treatments. Moreover, uncovering how immune cells differen-
tiate between canonical and noncanonical EVP antigen presen-
tation could lead to the development of specific inhibitors as
innovative therapeutic strategies in autoimmune diseases.

Our knowledge of immune cell–derived EVP cargo is still
limited, hindering our understanding of their function. More-
over, most of the research to date has focused on EVP protein
and miRNA cargo, but very little is known about the role of EVP
DNA in selecting an immune repertoire, establishing tolerance
during normal immune development, and driving immune-
related pathologies. EVP DNA may represent an important sig-
nal that can modulate immune cell activation and a target for
novel therapies in cancer and autoimmune diseases. Therefore,
the complexity of EVP-mediated communication in the immune
system awaits deconvolution but also holds many opportunities
to be exploited for therapeutic benefits in patients.
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André, F., N. Chaput, N.E. Schartz, C. Flament, N. Aubert, J. Bernard, F. Lem-
onnier, G. Raposo, B. Escudier, D.H. Hsu, et al. 2004. Exosomes as potent
cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer
functional MHC class I/peptide complexes to dendritic cells. J. Immunol.
172:2126–2136. https://doi.org/10.4049/jimmunol.172.4.2126

Arnold, P.Y., andM.D. Mannie. 1999. Vesicles bearingMHC class II molecules
mediate transfer of antigen from antigen-presenting cells to CD4+
T cells. Eur. J. Immunol. 29:1363–1373. https://doi.org/10.1002/(SICI)1521
-4141(199904)29:04<1363::AID-IMMU1363>3.0.CO;2-0

Azoulay-Alfaguter, I., and A. Mor. 2018. Proteomic analysis of human T cell-
derived exosomes reveals differential RAS/MAPK signaling. Eur.
J. Immunol. 48:1915–1917. https://doi.org/10.1002/eji.201847655

Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pu-
lendran, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu.
Rev. Immunol. 18:767–811. https://doi.org/10.1146/annurev.immunol.18.1
.767
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Vukman, K.V., A. Försönits, Á. Oszvald, E.A. Tóth, and E.I. Buzás. 2017. Mast
cell secretome: Soluble and vesicular components. Semin. Cell Dev. Biol.
67:65–73. https://doi.org/10.1016/j.semcdb.2017.02.002

Walker, J.D., C.L. Maier, and J.S. Pober. 2009. Cytomegalovirus-infected
human endothelial cells can stimulate allogeneic CD4+ memory

T cells by releasing antigenic exosomes. J. Immunol. 182:1548–1559.
https://doi.org/10.4049/jimmunol.182.3.1548

Whitham, M., B.L. Parker, M. Friedrichsen, J.R. Hingst, M. Hjorth, W.E.
Hughes, C.L. Egan, L. Cron, K.I. Watt, R.P. Kuchel, et al. 2018. Ex-
tracellular Vesicles Provide a Means for Tissue Crosstalk during
Exercise. Cell Metab. 27:237–251.e4. https://doi.org/10.1016/j.cmet
.2017.12.001

Wong, W.Y., M.M. Lee, B.D. Chan, R.K. Kam, G. Zhang, A.P. Lu, and W.C.
Tai. 2016. Proteomic profiling of dextran sulfate sodium induced
acute ulcerative colitis mice serum exosomes and their immuno-
modulatory impact on macrophages. Proteomics. 16:1131–1145. https://
doi.org/10.1002/pmic.201500174

Wortzel, I., S. Dror, C.M. Kenific, and D. Lyden. 2019. Exosome-Mediated
Metastasis: Communication from a Distance. Dev. Cell. 49:347–360.
https://doi.org/10.1016/j.devcel.2019.04.011

Wu, Y.W., C.C. Huang, C.A. Changou, L.S. Lu, H. Goubran, and T. Burnouf.
2020. Clinical-grade cryopreserved doxorubicin-loaded platelets: role
of cancer cells and platelet extracellular vesicles activation loop.
J. Biomed. Sci. 27:45. https://doi.org/10.1186/s12929-020-00633-2

Wubbolts, R., R.S. Leckie, P.T. Veenhuizen, G. Schwarzmann, W. Möbius,
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