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the diverse antiviral and cellular functions 
of interferon‑induced transmembrane proteins
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Abstract 

The first responders of human antiviral immunity are components of the intrinsic immune response that reside within 
each and every one of our cells. This cell-autonomous arsenal  consists of nucleic acid sensors and antiviral effectors 
strategically placed by evolution to detect and restrict invading viruses. While some factors are present at baseline to 
allow for constant surveillance of the cell interior, others are upregulated by cytokines (such as interferons) that signal 
a viral infection underway in neighboring cells. In this review, we highlight the multiple roles played by the interferon-
induced transmembrane (IFITM) proteins during viral infection, with focuses on IFITM3 and HIV-1. Moreover, we dis-
cuss the cellular pathways in which IFITM proteins are intertwined and the various functions they have been ascribed 
outside the context of infection. While appreciated as broadly-acting, potent restriction factors that prevent virus 
infection and pathogenesis in cell culture and in vivo, questions remain regarding their precise mode of action and 
importance in certain viral contexts. Continued efforts to study IFITM protein function will further cement their status 
as critical host determinants of virus susceptibility and prioritize them in the development of new antiviral therapies.
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The earliest‑acting restriction factors 
against multiple pathogenic viruses
The IFITM protein family is encoded by five genes in 
humans, including the immune-related IFITM1, IFITM2, 
and IFITM3, as well as IFITM5 and IFITM10 which have 
no characterized roles in immunity [1]. Today, IFITM 
genes are present in many vertebrate animal species 
yet they likely emerged in early unicellular eukaryotes 
via horizontal gene transmission from a bacterium [2]. 
Since then, species-specific gene expansions have given 
rise to unique IFITM gene repertoires that vary at the 
level of sequence and copy number [3–5]. In addition 
to the canonical IFITM gene locus on chromosome 11 
in humans, there are a number of IFITM-like genes dis-
persed throughout our genome for which a functional 
understanding is lacking [2]. Despite what their name 

implies, only the immune-related IFITM genes are inter-
feron-inducible, and furthermore, moderate to high lev-
els of expression may be seen in several tissue types even 
in the absence of interferon.

The immunological and clinical importance of IFITM 
proteins to innate immunity is tied to their unique abil-
ity to inhibit the earliest step of the virus life cycle: entry 
into cells. As a result, they prevent not only viral repli-
cation but also the sequelae of virus-associated disease, 
such as cytopathicity (cell death) and inflammation. Ini-
tially revealed to be endogenous inhibitors of Influenza A 
virus (IAV), West Nile virus (WNV), and Dengue virus, 
today it is recognized that a growing list of viruses are 
sensitive to IFITM-mediated restriction [6, 7]. The use of 
retroviral “pseudotypes,” in which different viral envelope 
glycoproteins are swapped into the same retrovirus cap-
sid core, demonstrated that the route of cellular entry is 
a major determinant of restriction and identified strains 
exhibiting resistance. In general, those that require a 
pH-dependent triggering of viral fusion machinery in 
endosomes are the most affected when IFITM proteins, 
in particular IFITM3, are overexpressed or silenced in 
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cells [8–10]. These findings suggested that IFITM-medi-
ated antiviral activity manifests at the entry stage.

The subcellular localization of IFITM proteins is impor-
tant to our understanding of how virus entry is inhibited. 
They are regularly detected in endosomes, lysosomes, 
autophagosomes, and the plasma membrane, and the 
extent of which can vary by cell type and by IFITM family 
member. Their presence at various cellular compartments 
is the result of dynamic protein trafficking that begins 
with de novo synthesis in the endoplasmic reticulum and 
ends with degradation in lysosomes [11]. Multiple pieces 
of evidence suggest that IFITM3 takes on a type II trans-
membrane protein topology, with a cytosolic amino-
terminus, a luminal/extracellular carboxy-terminus, and 
two hydrophobic domains: one intramembrane domain 
(HD1) and one transmembrane domain (HD2) [12–14]. 
Interestingly, there is also support for alternative mem-
brane topologies in which the termini orientations are 
reversed [13]. The hydrophobic domains of IFITM mem-
bers ensure movement between membrane-enclosed 
vesicles in the biosynthetic-secretory pathway, and post-
translational lipidification with an S-palmitoyl group 
promotes durable membrane associations [15, 16]. After 
passage through the endoplasmic reticulum, golgi com-
plex, and plasma membrane, endocytic sorting motifs 
in the amino-terminus of IFITM2 and IFITM3 allow 

internalization into endosomes, and this positioning is 
crucial for antiviral activity [5, 17, 18]. Late endosomes, 
multivesicular bodies, and lysosomes form hybrid orga-
nelles in cells and are nearly indistinguishable by conven-
tional methods, and hence the subcellular localization of 
IFITM3 is often described as endolysosomal. However, 
some of the overlap with lysosomes must be attributed 
to the degradative pathway controlling IFITM3 protein 
turnover, which is mediated by the E3 ubiquitin ligase 
NEDD4 [19]. Furthermore, recent reports highlight-
ing roles for IFITM3 in autophagy, a catabolic process 
involving the degradation of cellular cargo in lysosomes, 
may explain the apparent association with autophago-
somes [20]. In summary, while endolysosomes appear to 
be the key compartment whereby IFITM3 restricts virus 
entry, its detection in other organelles may be indicative 
of uncharacterized cellular functions that are only now 
being investigated.

Preventing virus entry at the level of cytoplasmic 
access
As residents of cellular membranes, an attractive expla-
nation for the effects of IFITM proteins on virus entry 
involves direct modification of membrane rigidity and 
curvature, but other indirect mechanisms have also 
been proposed (Fig. 1). It is well recognized that integral 
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Fig. 1  The various mechanisms by which IFITM proteins may inhibit virus-cell fusion. a A simplified membrane topology model of IFITM3 is repre-
sented, with emphasis made on the amphipathic helix of hydrophobic domain 1, neighboring palmitoylated cysteine residues, and the transmem-
brane helix of hydrophobic domain 2. In this illustration, the amino-terminus faces the cytosol while the carboxy-terminus faces the ER/endosomal 
lumen or extracellular space, but other conformations may exist. b IFITM3 multimerization is important for antiviral activity and cell-based experi-
ments indicate that IFITM3 augments membrane rigidity and instills positive curvature, as defined from the vantage of the cytosol. c IFITM3 may 
indirectly inhibit virus entry via an association with other membrane proteins, such as ZMPSTE24. Only three of seven transmembrane domains of 
ZMPSTE24 are indicated. d An effect of IFITM3 on the trafficking and/or function of the vacuolar ATPase (v-ATPase) has been reported, raising the 
possibility that IFITM3 indirectly inhibits virus entry by increasing endosomal acidity. e IFITM3 may influence the cholesterol content of endosomes, 
which has been shown to affect virus-cell fusion events. The actions of IFITM3 on virus entry and on cholesterol levels have been dissociated in 
several studies, but further impacts on membrane lipid content still await testing
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membrane proteins can alter the shape and fluidity of 
lipid bilayers, and furthermore, that virus-cell fusion is 
affected by these factors [21]. Most of what we know 
about the antiviral activities of IFITM proteins results 
from work using IAV and vesicular stomatitis virus 
(VSV), which perform pH-dependent fusion reactions in 
endosomes to gain access to the cell interior [22]. Early 
findings using fluorescent microscopy and flow cytom-
etry of single cells implicated IFITM3 as an obstacle to 
virus-cell fusion. When cells overexpressing IFITM3 are 
challenged with IAV, productive infection is inhibited [8]. 
Upon close examination, virions undergo attachment 
and internalization into cells before becoming cleared 
from the cell interior [9]. Parallel experiments further 
showed that IFITM3 may expand the size and acidity of 
the endolysomal compartment itself. In effect, IFITM3 
appears to trap endocytosed virions inside vesicles slated 
for destruction in a degradative pathway [6]. It remains 
to be determined whether IFITM3-containing structures 
represent a distinct, hostile subset of endolysosomes that 
are not conducive to virus-cell fusion. Indeed, an article 
reported that IAV sensitivity to IFITM3 is determined 
by the acidic threshold at which viral hemagglutinin 
(HA) triggers virus-cell fusion in endosomes. That is, HA 
variants which drive fusion at higher pH (less acidic) are 
more resistant to the block by IFITM3, suggesting that 
evasion of more acidic, late endosomes (where IFITM3 
resides in most cell types) enables infection [23]. This 
assertion is supported further by the observation that 
VSV infection, which requires virus-cell fusion in early 
endosomes, is less affected by the presence of IFITM3 
[8, 22, 24]. The effects of IFITM proteins on the makeup 
of the cell interior may present important clues about its 
principal mechanism of action [9].

Simple experiments examining cell–cell fusion, in 
which IFITM proteins and viral envelope proteins are 
co-expressed, have been instrumental in testing differ-
ent mechanistic possibilities. Initial reports showed that 
IFITM members inhibit cell–cell fusion mediated by 
three classes of viral fusion proteins (some more than 
others) in a way that did not affect envelope expres-
sion itself [25]. This finding suggests that IFITM pro-
teins may affect the physical aspects of membranes in a 
way that prevents fusion by diverse viral fusion proteins. 
While informative, an important caveat is that cell–cell 
fusion experiments in tissue culture do not accurately 
reproduce the true nature of virus-cell encounters, since 
IFITM and viral fusion proteins may not be expressed 
at physiologically relevant levels or at correct subcellu-
lar sites. Attempts at identifying the precise step of the 
fusion sequence inhibited by IFITM suggested a block 
prior to hemifusion, the point at which lipid mixing 
begins between leaflets of two juxtaposed membranes 

[25]. However, other techniques including virus parti-
cle tracking detected lipid mixing between cell and virus 
in the presence of IFITM but no viral escape into the 
cytoplasm, suggesting that dilation of the fusion pore is 
restricted [26]. The basis for these observations may lie 
with increased lipid density or increased positive curva-
ture of IFITM-containing membranes [25]. Another piece 
of evidence in support of IFITM proteins as membrane 
remodelers is the finding that amphotericin B, an anti-
fungal compound known to enhance membrane fluidity, 
counteracts the activity of IFITM3 to render cells permis-
sive to infection [27]. Furthermore,  the  discovery of an 
amphipathic helix within the first hydrophobic domain 
of IFITM3 was found to be crucial to the inhibition of 
virus entry [14]. This previously unappreciated structure 
is positioned adjacent to palmitoylated cysteine residues 
involved in membrane targeting and is also important 
for the inhibition of cell–cell fusion. Based on previously 
recognized functions of other proteins endowed with an 
amphipathic helix, IFITM proteins may sense membrane 
changes occurring during virus-driven hemifusion and 
prevent fusion pore dilation. These latest findings impli-
cate the first hydrophobic domain (HD1) of IFITM3 as 
the functional “arm” responsible for its antiviral activ-
ity. However, this contrasts with a previous finding that 
proposed a role for HD2 in cholesterol augmentation in 
endosomes [28]. Residues within HD2 of IFITM3 were 
reported to interact with the vesicle-associated mem-
brane protein-associated A (VAPA), previously linked to 
cholesterol trafficking. While the effects of cholesterol on 
membrane fluidity and virus-cell fusion are well-charac-
terized, a number of studies have failed to draw a mecha-
nistic link between IFITM3 activity and cholesterol levels 
[26, 27, 29, 30]. Therefore, effects of IFITM3 on lipid 
trafficking may not underlie virus inhibition, yet may be 
indicative of presently uncharacterized activities in the 
cell. Interestingly, VAPA and the related protein VAPB 
can enhance the replication of some viruses, most likely 
through the manipulation of the lipid composition of cell 
membranes used for virus replication [31, 32].

Overall, the study of pathogenic RNA viruses demon-
strating a high degree of sensitivity to IFITM-mediated 
restriction has provided some mechanistic insight behind 
the block they impose to virus entry. Nevertheless, the 
demonstration that certain viruses are resistant to, or 
even benefit from, the IFITM proteins indicates that 
antiviral activity may be achieved through the coordina-
tion of other cellular proteins. IFITM proteins, especially 
IFITM1, are known to reside in the plasma membrane 
and to  interact with transmembrane proteins, such as 
tetraspanins. Hepatitis C Virus (HCV) utilizes CD81 
and occludin as co-receptors, which are components of 
cellular tight junctions and also happen to interact with 
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IFITM1 [33]. Overexpression of IFITM1 leads to inhibi-
tion of HCV entry into cells as well as disruption of tight 
junction complexes, suggesting that these two effects are 
functionally linked [34]. Since CD81 and other tetraspa-
nin proteins can modulate fusion events in multiple virus 
infections [35–38], the ability for IFITM proteins to alter 
the location or clustering of membrane protein com-
plexes may be central to their antiviral activity. An ‘indi-
rect’ mode of action is in agreement with the observation 
that cellular entry of the coronavirus HCoV-OC43 is pro-
moted by IFITM proteins [39]. This exceptional case may 
be explained by the fact that different viruses take advan-
tage of distinct cellular receptors and thus distinct entry 
routes that are differentially impacted by the presence of 
IFITM proteins.

A transmembrane metalloprotease known as ZMP-
STE24 (also known as FACE1) has recently emerged as 
a downstream effector of IFITM3 [40]. The authors posit 
that IFITM3 traffics ZMPSTE24 to the sites of virus 
fusion at endosomes via a direct protein–protein interac-
tion. Importantly, in ZMPSTE24 knockout cells, IFITM3 
overexpression no longer provides protection from virus 
challenge. No mechanistic information is available for the 
antiviral activities of ZMPSTE24 and thus future studies 
must address the specific determinants of how it binds to 
IFITM3. It is possible that domains of IFITM3 previously 
shown to be essential for antiviral function play roles in 
modulating the location or function of this and other 
cellular factors, resulting in an organized block to virus 
entry.

Early‑stage lentivirus inhibition: IFITM in target 
cells
The path to identifying the roles played by IFITM pro-
teins during HIV-1 infection was less straightforward for 
multiple reasons. First, while the impact of IFITM pro-
teins on viruses that require endocytosis and pH-depend-
ent fusion is clearly appreciated, the role for endocytosis 
in HIV-1 cellular entry has been widely debated [41]. 
Second, HIV-1 exhibits the capacity to spread between 
cells in a process known as cell-to-cell transmission, 
which likely allows escape from immune barriers [42]. 
Despite these challenges, the study of IFITM and HIV-1 
was mutually instructive: a new antiviral function was 
described for the former and the ports of cellular entry 
were defined for the latter.

In the first formal description of the antiviral properties 
of IFITM family members, IFITM3 silencing had little 
to no effect on HIV-1 infection in HeLa-CD4 cells, thus 
grouping it with another retrovirus (amphotropic Murine 
Leukemia Virus) deemed to be resistant [8]. Also, in the 
paper that identified tetherin/BST-2 as the target of viral 
accessory protein Vpu, which promotes HIV-1 release 

from cells, it was shown that IFITM proteins exhibited 
no impact on HIV-1 egress [43]. However, two high-
throughput screens studying the activities of interferon 
stimulated genes (ISGs) provided evidence that IFITM 
proteins impact HIV-1 replication when silenced or over-
expressed [44, 45]. Lu et  al. provided the first in-depth 
functional demonstration of IFITM-mediated HIV-1 
restriction at the level of entry in T cells, and this work 
was later extended to other lentiviruses of non-human 
primates [46]. In addition, experiments allowing ongo-
ing replication in tissue culture revealed that the antiviral 
properties of IFITM proteins may not be limited to the 
inhibition of virus entry (see next section).

As the primary determinant for virus-cell attachment 
and the subsequent fusion reaction, the viral envelope 
glycoprotein (Env) was suspected to play an important 
role in whether or not HIV-1 and related lentiviruses are 
subject to inhibition by IFITM proteins. A report taking 
advantage of retroviral Env pseudotyping provided key 
insight into viral factors that govern susceptibility and 
resistance. The authors showed that one can decrease 
sensitivity to IFITM proteins by increasing amounts of 
lentiviral Env incorporated into virions [47]. However, 
they pointed out that the capsid core (vector) is also a 
determinant, indicating that the structure of the virus-
like particle and/or its coordination with Env also affects 
the degree of restriction. Another study corroborated the 
importance of Env with regards to inhibition by IFITM 
proteins, this time via examination of patient-derived 
HIV-1 clones known as transmitted/founder (TF) strains 
[48]. These viral variants represent a close approxima-
tion of the viral sequence that seeds infection in a newly-
infected individual, and they tend to utilize a specific 
co-receptor on the cell surface known as CCR5. Here, it 
was revealed that the sensitivity of HIV-1 entry to IFITM-
mediated restriction depends on coreceptor usage and 
the subcellular localization of IFITM in the host cell. 
CXCR4-tropic HIV-1 strains were shown to exhibit sen-
sitivity to IFITM2 and IFITM3, which are mostly local-
ized to endolysosomes, while CCR5-tropic strains were 
sensitive to IFITM1 at the plasma membrane. This dif-
ferential outcome suggests that HIV-1 fusion may occur 
in endosomes or at the plasma membrane depending on 
which virus coreceptor is engaged at the cell surface. TF 
strains are relatively resistant to IFITM-mediated restric-
tion, yet matched viral clones derived 6 months following 
initial infection exhibited a gain of sensitivity to IFITM2 
and IFITM3 [49]. This finding suggests that founder 
viruses enter cells at the plasma membrane, while viruses 
isolated at later stages of infection might increasingly 
rely on endosomal entry. However, IFITM2 and IFITM3 
also transit to the plasma membrane before endocy-
tosis, and thus the varying sensitivity of HIV-1 strains 
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may result from fusion at different plasma membrane 
microdomains. Furthermore, the authors show that the 
site of HIV-1 entry, as inferred by sensitivity to IFITM 
proteins, may also depend on cell surface levels of CD4. 
Another report reinforced the link between IFITM and 
HIV-1 entry by demonstrating that CXCR4-tropic, but 
not CCR5-tropic HIV-1, is hypersensitive to a splice vari-
ant of IFITM2 lacking the amino terminus. Notably, this 
IFITM variant is especially abundant in primary human 
cells (CD4+ T cells and monocytes) that serve as targets 
for HIV-1 infection in  vivo [50]. Together, these recent 
data suggest that IFITM2 and IFITM3 may be major 
selective pressures responsible for the use of CCR5 dur-
ing primary HIV-1 infection.

Late‑stage lentivirus inhibition: IFITM 
in virus‑producing cells
In addition to restricting virus entry, recent findings 
indicate that IFITM proteins perform antiviral functions 
impacting late stages of the HIV-1 life cycle. In contrast 
to previous strategies in which infections were launched 
using only cell-free virus preparations, the use of cell co-
culture experiments using infected cells (donors) and 
uninfected cells (targets) revealed new antiviral func-
tions [51]. We found that IFITM overexpression in tar-
gets had little to no consequence for HIV-1 transmission 
and spread in this context, while, surprisingly, overex-
pression in donor cells led to potent decreases [51]. Fur-
ther experiments showed that the block to virus spread 
is attributed to an inhibition of virion infectivity, with 
IFITM3 exhibiting the most potent restriction. Virus-cell 
fusions assays showed that HIV-1 virions produced in the 
presence of IFITM3 are less fusogenic when incubated 
with fresh target cells, and assessment of virion content 
indicated that IFITM3 incorporates into the viral lipid 
bilayer. This antiviral activity is enhanced upon expres-
sion of an IFITM3 mutant that is defective for endocyto-
sis, indicating that restriction of HIV-1 virion infectivity 
is performed at the plasma membrane [5]. Two other 
teams reported similar findings on this phenomenon in 
HIV-1 producing cells, with one adding a layer of mecha-
nistic insight involving HIV-1 Env glycoprotein [52–54]. 
Here, the production of HIV-1 particles in the presence 
of IFITM3 via co-transfection of 293T cells resulted in 
defects in Env maturation and decreases in virion-asso-
ciated gp120, the infectious form of Env [53]. The authors 
posited that IFITM3 interferes with Env via a protein–
protein interaction in virus-producing cells. Of note, this 
relationship between antiviral protein and Env appears 
to hold true upon examination of non-human primate 
IFITM3 and their lentiviral counterparts [54]. None-
theless, there exist certain discrepancies that cloud the 
potential importance of this observation. First, IFITM 

members inhibit HIV-1 infectivity to varying degrees 
(IFITM3  >  IFITM2  >  IFITM1) [51] yet all three pro-
teins inhibit certain Env proteins to a similar extent [55]. 
Second, IFITM3 overexpression in T cells reduces virus 
infectivity but has no detectable impact on HIV-1 Env 
levels in infected cells or purified virions [51], and a lack 
of effect has been reported by others using diverse exper-
imental systems [5, 48, 56]. Third, we now know that the 
negative “imprinting” of virions by IFITM3 occurs with 
various DNA and RNA viruses, apparently in the absence 
of envelope glycoprotein perturbation [56]. Therefore, 
follow-up experiments will require the study of endog-
enous IFITM3 in various cell types as well as the effects 
of type-I interferon on HIV-1 Env maturation and virion 
incorporation. Overall, it is unclear whether modification 
of Env is directly responsible for the inhibition of HIV-1 
virion infectivity, nor is it known whether the virion 
incorporation of IFITM3 is critical for this effect. It is 
possible that both play mechanistic roles which are not 
mutually exclusive. Of note, enriched plasma membrane 
localization of IFITM3 enhances both anti-HIV-1 activity 
as well as IFITM3 incorporation into virions, suggesting a 
functional link [5]. Nonetheless, the recent identification 
of Env variants that are resistant to the IFITM3-mediated 
restriction of virion infectivity confirms this viral protein 
as an important determinant. It was shown that a par-
ticular CCR5-tropic strain (AD8) of Env is unaffected by 
IFITM3 overexpression in virus-producing cells, exhibit-
ing no defects in virion infectivity. This resistance pheno-
type maps to the V3 loop of gp120 and is transferrable to 
other Env isolates [57]. Another feature of HIV-1 strains 
that are most sensitive to the IFITM3-imposed block to 
virus fusogenicity is the use of  Env proteins with high 
sensitivity to both soluble CD4 and the neutralizing 
antibody 17b, which recognizes a CD4-induced epitope. 
Therefore, virus susceptibility to the infectivity defect 
caused by IFITM3 is linked to conformational changes 
in the CD4-binding site of Env, although the stability or 
clustering of virion-incorporated Env trimers may also 
be involved. Based on what we know about the changes 
to cellular membrane fluidity caused by IFITM proteins, 
it is possible that similar disturbances in the viral lipid 
bilayer containing Env are involved in the restriction of 
virion infectivity.

Another important observation made in these stud-
ies is that resistance to one antiviral function of IFITM3 
is associated with resistance to another, since the AD8 
strain exhibits relatively less sensitivity to the effects of 
IFITM3 in both target cells and producer cells, and  TF 
strains are completely resistant to both modes of restric-
tion [48, 56]. Thus, IFITM3 performs at least two anti-
viral activities against HIV-1 for which there may be 
mechanistic overlap. For reasons that are not yet clear, 
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CD4 engagement by Env is an important determinant 
for whether virus is restricted at the level of target cells 
and producer cells [48, 55]. It is possible that CD4 bind-
ing and the conformational changes in Env that follow 
(which dictate interactions with co-receptors) affect the 
route and kinetics of HIV-1 entry into cells [58], and 
in turn, affect sensitivity to IFITM-mediated antiviral 
activities. Globally, the multiple constraints that IFITM 
proteins place on HIV-1 Env suggest that these cellular 
factors contribute to the genetic bottleneck that selects 
for interferon-resistant virus at the earliest stages of 
HIV-1 infection in vivo [59].

The extended immunological impact of IFITM: 
beyond the endosome
The study of diverse viruses has been central to discover-
ies involving the IFITM protein family. The physiological 
importance of IFITM activity has been clearly demon-
strated for those viruses that exhibit the greatest sensi-
tivity in cell culture experiments, such as IAV. However, 
additional functions were found using viruses that are 
actually resistant to the block at cellular entry. In both 
cases, the use of transgenic mice deficient for the murine 
ifitm locus was central to establishing the in vivo signifi-
cance of IFITM proteins in diseased and healthy states.

Downregulation of IFITM3 in target cells can lead to 
increased cytopathicity upon virus challenge in  vitro, 
which has been attributed to its role as a protective bar-
rier preventing virus entry and subsequent replication 
[60, 61]. Nonetheless, in vivo experiments using mouse-
adapted virus strains have been critically important to 
understanding the full spectrum of downstream conse-
quences resulting from ifitm deletion, ranging from cell 
death to the manifestation of virus-associated disease 
propagated throughout the host organism. For exam-
ple, accelerated disease progression and mortality are 
observed in IFITM3-deficient mice challenged with IAV, 
suggesting that IFITM3 confers a survival advantage to 
cells exposed to virus [62, 63]. Indeed, the expression of 
IFITM3 may preserve the integrity and function of cells 
that would otherwise be destroyed by uninterrupted viral 
replication [64]. It was reported that elevated levels of 
IFITM3 protein in memory CD8+ T lymphocytes, which 
kill virus-infected cells and serve as important targets 
themselves for IAV infection in the lung, promotes their 
survival during infection and enables long-term defense 
against future viral exposures [65]. In a murine model 
of Chikungunya virus (CHIKV), mice lacking IFITM3 
sustained greater joint swelling which was correlated to 
increased viral burden and pro-inflammatory cytokine 
production [66]. IFITM3-deficient mice were also found 
to be more vulnerable to lethality in the context of WNV. 
While WNV disease is associated with neurotropism, 

IFITM3 limited pathogenesis by suppressing viremia first 
in peripheral organs [67]. Thus, by acting as the first line 
of defense in cells exposed to invading viruses, IFITM 
proteins prevent a plethora of adverse events that can 
lead to disease and death.

Yet unexpected antiviral activities associated with 
IFITM3 were revealed during murine cytomegalovirus 
(CMV) infection. In this case, IFITM3 does not limit 
virus entry into cells (the protein was previously shown 
to facilitate CMV virion morphogenesis [68]). Rather, 
CMV infection in IFITM3-deficient mice led to much 
higher production of the pro-inflammatory cytokine 
interleukin-6 (IL-6) [69]. The result was dysregulation of 
cellular immunity and impaired control of virus replica-
tion, suggesting that murine IFITM3 plays a part in regu-
lating cytokine production important for resolution of 
virus infection. Another example in which IFITM3 could 
be found performing a non-canonical activity was in 
the setting of Sendai Virus (SeV) infection. This murine 
paramyxovirus has been shown to be insensitive to the 
IFITM3-mediated block to virus entry [70]. Notwith-
standing, it was shown that IFITM3 regulates interferon-
beta production triggered by SeV infection in human cell 
lines [71]. That is, overexpression of IFITM3 inhibited 
production of the cytokine while knockdown had the 
opposite effect. The authors propose that IFITM3 associ-
ates with the transcription factor driving interferon-beta 
gene expression, IRF3, and accelerates its turnover in 
autophagosomes. Since interferon-beta itself induces the 
expression of IFITM3, this implies a role in negative feed-
back of the interferon pathway [71]. This finding warrants 
testing in an in  vivo murine model, but it seems likely 
that the effects of IFITM proteins on interferon signaling 
will yield much interest from researchers and clinicians 
in the field of microbial pathogenesis.

Naturally occurring variation in IFITM genes has pro-
vided an additional genetic platform for the study of 
pathogenic virus infections important to human public 
health. Population-level associations have been drawn 
between single-nucleotide polymorphisms (SNP) in 
IFITM3 and severe outcomes following IAV infection, 
corroborating an important in vivo function but lacking 
a mechanistic explanation. The most cited example is 
rs12252-C, a nonsynonymous mutation in the first cod-
ing exon of IFITM3, which was predicted to affect mRNA 
splicing and to produce protein with an amino-termi-
nal truncation [63]. This minor variant was found to be 
enriched in a group of individuals hospitalized following 
IAV infection, and it is found at relatively high frequency 
among Asian ethnic groups. However, the reasons for 
the disease association has remained elusive, as the trun-
cated isoform of IFITM3 predicted to result from the 
SNP had not been detected in cells or individuals. It has 
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now been reported that cell lines derived from individu-
als who are homozygous for rs12252-C express a mRNA 
transcript encoding full-length IFITM3, whereas the 
shorter isoform was not found [50]. Over the course of 
several years, a slew of publications has either confirmed 
or refuted the genetic association between rs12252-C 
and IAV infection outcome.

A recent and comprehensive study now links an addi-
tional variant in the IFITM3 locus to severe influenza-
associated illness in three independent cohorts, albeit 
the SNP identified is distinct from rs12252-C. Known as 
rs34481144-A, it is found in the 5’ untranslated region 
and is linked to lower IFITM3 protein levels in cells [72]. 
Experimental evidence showed that the SNP controls 
gene promoter activity via decreased binding of tran-
scription factor IRF3 and increased binding of CTCF, 
which promote and repress IFITM3 transcription, 
respectively. In agreement with the previous finding that 
IFITM3 preserves antiviral CD8 + T cells [65], individu-
als harboring rs34481144-A contained reduced numbers 
of these cells in lung airways during infection [72]. The 
evolutionary pressures responsible for the maintenance 
of this ‘defective’ allele in humans are unclear, but its 
existence may allude to the involvement of IFITM3 in cel-
lular processes requiring fine-tuned protein expression.

Moonlighting in the membranes
Before it was realized that IFITM proteins perform 
broad-spectrum antiviral activities, they were implicated 
in pathways important to embryonic development and 
cancer (exhaustively reviewed in [73]). A crucial con-
tribution to developmental processes seems unlikely, 
since transgenic mice in which the murine ifitm locus is 
knocked out exhibit no obvious abnormalities apart from 
being fat, suggesting a metabolic irregularity [74]. There 
is ample evidence, on the other hand, for both positive 
and negative regulation of IFITM expression during tum-
origenesis. While detailed descriptions were previously 
lacking, recent developments have provided a mechanis-
tic grounding to many observations linking IFITM pro-
teins to cell proliferation, adhesion, and migration.

In addition to the interferon signaling pathways, IFITM 
gene expression is controlled by a number of cascades 
involved in cellular homeostasis (Fig.  2). For example, 
growth factor receptors lead to downstream upregula-
tion of IFITM2 upon triggering by insulin-like growth 
factor-1 (IGF1), which relies on signaling via phosphati-
dylinositol-3-kinase (PI3K) and Akt kinase. In gastric 
cancer cohorts, the upregulation of IFITM2 is associ-
ated with accelerated disease progression and shorter 
survival time [75]. Silencing of IFITM2 in gastric cancer 
cells decreased cell proliferation, migration, and metasta-
sis, while IFITM2 depletion in a mouse model resulted in 

dramatic decreases in tumor size [75]. IFITM3 has also 
been functionally implicated in this cancer type, as its 
knockdown suppressed  tumor cell migration, invasion 
and proliferation capacity [76]. There is also evidence that 
IFITM3 acts indirectly to affect these cellular proper-
ties through regulation of other cellular proteins, such as 
osteopontin [77]. Recently, the involvement of IFITM3 in 
cancer was further extended to include spatial regulation 
of the Src oncoprotein. The trafficking of Src between 
focal adhesions and the cell interior, which is regulated 
by activating molecule in Beclin1-regulated autophagy 
(Ambra1) and focal adhesion kinase (FAK), is important 
for cell migration and metastasis. Ambra1 redirects Src 
towards autophagosomes to disfavor substrate attach-
ment and favor cell movement in an IFITM3-depend-
ent manner [78] (Fig.  2). Collectively, the twin antiviral 
proteins IFITM2 and IFITM3 may serve as biomarkers 
for tumorigenic phenotypes as well as targets for anti-
cancer interventions. It remains to be determined which 
domains of IFITM proteins are involved in the control of 
cellular properties and if they overlap with those known 
to be involved in antiviral immunity. For example, just as 
the subcellular localization of IFITM proteins is impor-
tant to their antiviral activities [11], it may also affect 
their involvement in cellular housekeeping functions. 
As a proof of principle, IFITM2 can act as a cell surface 
receptor for a secreted form of BAG3, which promotes 
pro-survival signaling through the  PI3K and p38 MAPK 
pathways [79].

Several reports highlighting IFITM-mediated impacts 
on basic cellular processes provide further opportuni-
ties to test how these proteins inhibit virus infections. 
A focus on functional roles of endogenous, rather than 
overexpressed, IFITM proteins has been crucial to this 
end. A prime example is the observation that deletion 
of the ifitm locus in murine cells led to interruption of 
clathrin-mediated endocytosis and loss of acidity within 
endosomes, suggesting that endogenous IFITM proteins 
might positively regulate these processes in  vivo [80]. 
This possibility is further supported by work in astrocytes 
showing that knockdown of IFITM3 inhibits clathrin-
dependent endocytosis [81]. As previously mentioned, 
the ifitm-deficient mice exhibit an age-related obesity 
associated with defects in leptin signaling, which could 
be explained by disturbances in ligand-receptor inter-
nalization [74]. Interestingly, the IFITM proteins are 
also involved with the endocytosis-associated protein 
caveolin-1 (CAV-1), with consequences for cell signaling 
events [82, 83]. Together, these data hint that impacts on 
endocytic trafficking may also contribute to the mecha-
nisms by which IFITM proteins inhibit virus entry. 
While the antiviral effects of IFITM proteins are gener-
ally assumed to manifest at the stage of virus-cell fusion, 
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these data suggest that an effect on virus internalization 
must be carefully considered on a case-by-case basis. 
For example, since knockdown or knockout of IFITM3 
leads to decreases in clathrin-mediated endocytosis and 
increases in virus entry, it is possible that IFITM3 pro-
motes the trafficking of incoming virions into endocytic 
pathways that are acidified, degradatory and/or other-
wise non-productive.

Perspectives
Since IFITM proteins share a high degree of sequence 
homology (especially IFITM2 and IFITM3, which dif-
fer by only 13 amino acids), future efforts must assess 

the specific or redundant role for each IFITM family 
member when describing new activities. Only then can 
the functional utility of each be properly understood, be 
it during virus infection or basal cellular homeostasis. 
Furthermore, it is important to test whether interferon 
signaling serves as a ‘switch’ to promote antiviral func-
tions over housekeeping ones. We expect that boosting 
efforts towards understanding the host factors interact-
ing with IFITM proteins will expose novel purposes in 
cells, which may, in turn, reveal additional ways by which 
these proteins interfere with virus infections. Cell-based 
experiments have identified many binding partners of 
IFITM proteins, but in most cases, it is unclear whether 
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these interactions are direct or specific. Interrogation of 
potential interactors in transgenic mice will help clarify 
their precise role and enable prioritization of different 
hypotheses. In general, increased experimental cross-
talk between virology and cell biology will provide much 
needed opportunities for discovery and will facilitate the 
development of host-directed therapies targeting IFITM 
proteins in the setting of infection and cancer.
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