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Introduction

“Nabana” is the Japanese name for Brassica vegetables—
except for broccoli and cauliflower—used for their edible 
young inflorescences and stalks. This type of vegetable in-
cludes two species, B. rapa and B. napus (see Ishida 2004 
for a review), in which the former species is more popular. 
In Kyoto, nabana is called “hanana” because it was formerly 
planted for cut flowers (Takashima 2003). Nabana or hanana 
is currently regarded as an associated heirloom vegetable of 
Kyoto (Kyo-yasai). According to the parts mainly used for 

consumption, two types exist in Japanese nabana: “flower- 
bud type” mainly used for young stalks with flower buds; 
and “stem-and-leaf type” used for stems including tender 
young leaves and small flower buds. Chinese and European 
types of such vegetable are also known and are often 
called flowering Chinese cabbage. They include “cai-xin”, 
“zicaitai” (“kosaitai” in Japanese), and “broccoletto” (and 
many other designations for each), all of which are mem-
bers of B. rapa (Bonnema et al. 2011, see Cheng et al. 
2016b for their morphotypes). Several nabana cultivars 
have been released from seed companies, and landraces are 
locally maintained from northeastern to western parts of 
Japan (Vegetable and Ornamental Crops Research Station 
1980). However, reports on their relationships are quite lim-
ited. Aoba (1964) measured several morphological traits in 
Japanese non-heading B. rapa vegetables including local 
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quence repeats (SSRs) are DNA repeats consisting of 1–6 
nucleotide repeat units. SSRs are frequently used as molec-
ular markers in many eukaryotic organisms because of their 
merits: abundance in eukaryotic genomes; high rates of 
polymorphism and stability; and relatively easy detection of 
different alleles (see Merritt et al. 2015 for a review).

In this study, we conducted a classification of nabana 
cultivars and landraces with other B. rapa vegetables (neep 
greens, turnips, heading and non-heading Chinese cab
bages). Tests for CR and detection of CR alleles were also 
performed in nabana cultivars because of their agronomical 
importance. Genetic relationships among nabana lines and 
CR properties of nabana cultivars are discussed.

Materials and Methods

Plant materials
Thirty-nine lines of Japanese nabana cultivars and land

races were used in this study (Table 1; Supplemental 
Table 1), all of which are members of B. rapa. No nabana 
line belonging to B. napus was investigated because its am-
phidiploid genome could produce more than two alleles per 
SSR locus. For Chinese and European types, five (one cai-
xin, three zicaitai (kosaitai), and one broccoletto) cultivars 
were used. Six cultivars of other B. rapa vegetables (neep 
greens, turnips, non-heading and heading Chinese cab
bages) were also included in this study. Approximately 20 
individuals per line were investigated for SSR analysis.

DNA extraction, data analysis, and construction of a 
phylogram

Genomic DNA was extracted from fresh leaves using the 
CTAB method (Murray and Thompson 1980) or DNeasy 
Plant Mini Kit (Qiagen, Valencia, CA, USA) with slight 
modifications. Eight Chinese cabbage SSR markers 
(Suwabe et al. 2002, 2006) were selected from preliminary 
experiments based on polymorphisms (Supplemental 
Table 2). SSR fragments were amplified by polymerase 
chain reaction (PCR) with fluorescence-labeled primers 
(Sigma-Aldrich, St Louis, MO, USA) and analyzed on a 
CEQ8000 DNA sequencer (Sciex, Vaughan, Canada) as 
reported previously (Kubo et al. 2009).

Numbers of alleles per locus (A), allelic richness (AR, a 
measure of the numbers of alleles independent of sample 
size) (Petit et al. 1998), expected (HE) and observed hetero
zygosities (HO), and fixation index (FIS) (Table 1) were 
calculated with GENEPOP 4.2 (Rousset 2008) and FSTAT 
2.9.3 softwares (Goudet 1995, 2001). Deviation of FIS from 
Hardy-Weinberg equilibrium (HWE) was tested with 
FSTAT 2.9.3. A population-based neighbor-joining (NJ) 
phylogram was constructed using Populations 1.2.32 soft-
ware (Langella 2011). A Chinese cabbage cultivar ‘Muso’ 
was used as an outgroup of the phylogram. Bootstrap analy-
sis was performed from 1,000 replications.

varieties of nabana and showed a correlation between seed 
coat type and geographical distribution. Takuno et al. 
(2007) included a nabana landrace for classification of 
B. rapa vegetables. Previous studies indicated that cai-xin 
and broccoletto were close to pak choi and turnips, respec-
tively (Pino Del Carpio et al. 2011, Zhao et al. 2005). 
Cheng et al. (2016a, 2016b) re-sequenced hundreds of 
B. rapa and B. oleracea germplasms, including several cai-
xin and zicaitai lines. They classified germplasm based on 
single nucleotide polymorphism markers to show that the 
pak choi, wutacai, cai-xin, and zicaitai varieties form a sin-
gle group (Cheng et al. 2016a). The relationship of zicaitai 
to other B. rapa vegetables is unclear because its closest 
type differed in previous reports (Cheng et al. 2016a , Pino 
Del Carpio et al. 2011, Zhao et al. 2005).

Nabana is mainly grown in Chiba Prefecture and the 
western part of Japan (Kansai and Shikoku regions). In 
these cultivation areas, clubroot disease caused by the soil-
borne, obligate parasite Plasmodiophora brassicae is one of 
the most serious diseases. Multiple pathotypes or races of 
this species with different pathogenicity are found in the 
field (see Hirani and Li 2015 for a review). Hatakeyama et 
al. (2004) classified Japanese field isolates into four patho-
types (groups 1–4) based on their pathogenicity to a clubroot 
resistant (CR) Chinese cabbage cultivar set. Group 2 and 4 
pathotypes have been found in nabana cultivation fields in 
Chiba and Kyoto Prefectures (Kubo et al. 2017, Oshikiri et 
al. 2014). Concerning the CR trait, some of the European 
fodder turnips are highly resistant to clubroot disease and 
their responsible CR loci have been identified in part (see 
Hirani and Li 2015 for a review). For example, the CRb 
locus derived from a Chinese cabbage cultivar ‘CR Shinki’, 
whose resistance source might be a CR fodder turnip 
‘Gelria R’ (Hirai 2006), is effective against group 3 and 4 
pathotypes in a dominant manner (Kato et al. 2012). Crr1 
from a CR fodder turnip ‘Siloga’ is an incompletely dominant 
locus conveying resistance to group 2 and 4 pathotypes 
(Hatakeyama et al. 2013, Suwabe et al. 2006). Crr2, anoth-
er locus from ‘Siloga’, provides high resistance under the 
co-existence of homozygous resistance alleles at both Crr1 
and Crr2 loci (Suwabe et al. 2003, 2006). Crr3, CRc, and 
CRk loci derived from CR fodder turnips ‘Milan white’ and 
‘Debra’ have also been identified (Hirai et al. 2004, 
Sakamoto et al. 2008). Several CR cultivars have been bred 
in B. rapa vegetables from CR fodder turnips and such cul-
tivars are also available in Japanese nabana. To date, eight 
CR nabana cultivars have been tested to show that they are 
resistant to group 3 and 4 pathotypes but are susceptible to 
group 2 pathotype (Kuginuki 2001, Oshikiri et al. 2014). 
However, genetic information on CR traits is unknown for 
Japanese nabana except for ‘Hanamusume’, whose resis
tance source is ‘Gelria R’ (Tomikawa 1997).

Molecular markers are useful tools for genetic analyses 
such as classification, linkage mapping, and positional clon-
ing of genetic loci. Many kinds of molecular markers have 
been developed and used in B. rapa. Of these, simple se-
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Table 1.	 Genetic diversity of 50 B. rapa lines analyzed in this study

Type Cultivar or line namea Nb HO
c HE

d FIS
e Note

Japanese nabana, “flower-bud type”
CR Hanakanzashi 19 0.2961 0.1711 –0.7308* Hybrid CR cultivar
CR Hanamatsuri 20 0.4500 0.2444 –0.8412* Hybrid CR cultivar
CR Hananomai 17 0.3750 0.2822 –0.3290* Hybrid CR cultivar
CR Kyobare 17 0.3162 0.2544 –0.2430 Hybrid CR cultivar
CR Kyonoharu 19 0.3816 0.2712 –0.4070* Hybrid CR cultivar
Eika 18 0.2639 0.1640 –0.6090* Hybrid CR cultivar
Hanamusume 19 0.8224 0.4433 –0.8549* Hybrid CR cultivar
Shunka 13 0.3365 0.2881 –0.1683 Hybrid CR cultivar
Shunrai 15 0.4000 0.2119 –0.8876* Hybrid CR cultivar
88 go no. 20 20 0.4375 0.2352 –0.8601* Hybrid cultivar
Hanaguruma 18 0.6042 0.3505 –0.7238* Hybrid cultivar
Hanakazari 20 0.5312 0.3059 –0.7366* Hybrid cultivar
Kanzaki 21 go 20 0.3563 0.2569 –0.3867* Hybrid cultivar
Shuka 20 0.3125 0.2053 –0.5224* Hybrid cultivar
Soyo 1 go 20 0.3250 0.3105 –0.0466 Hybrid cultivar
Toka 18 0.5139 0.3288 –0.5627* Hybrid cultivar
Ezuki 19 0.4803 0.4549 –0.0558 Non-hybrid cultivar
Kaneki hanana 19 0.5066 0.4846 –0.0452 Non-hybrid cultivar
Kanzaki natane 14 0.5625 0.4753 –0.1835 Non-hybrid cultivar
Kurokawa kanzaki 20 0.3875 0.3903 0.0072 Non-hybrid cultivar
Kyoto Fushimi kanzaki 19 0.4605 0.4958 0.0711 Non-hybrid cultivar
Nabana (kanzaki hanana) 19 0.4671 0.4635 –0.0079 Non-hybrid cultivar
Shokuyo nanohana 20 0.4313 0.4979 0.1338 Non-hybrid cultivar
Shunyo 20 0.0187 0.0638 0.7062 Non-hybrid cultivar
Soshun nabana 20 0.2687 0.2789 0.0366 Non-hybrid cultivar
Awa zairai 19 0.3092 0.3876 0.2023 Landrace
Nagaokakyo 20 0.0750 0.1082 0.3070 Landrace

Japanese nabana, “stem-and-leaf type”
Fukitachina (kasamai-kei) 20 0.6188 0.6128 –0.0097 Non-hybrid cultivar
Himeji wakana 20 0.3563 0.3768 0.0546 Non-hybrid cultivar
Kukitachina 18 0.5833 0.5729 –0.0182 Non-hybrid cultivar
Nagaokana 20 0.4437 0.4595 0.0344 Non-hybrid cultivar
Orina 19 0.5461 0.5475 0.0027 Non-hybrid cultivar
Wakana 18 0.5139 0.5118 –0.0040 Non-hybrid cultivar
Wakana (kurona) 22 0.5739 0.5974 0.0394 Non-hybrid cultivar
Fukidachi (kukidachi) 18 0.5000 0.5139 0.0270 Landrace
Katsuyama mizuna 1 go 16 0.2812 0.2599 –0.0822 Landrace
Natane G 16 0.5469 0.4870 –0.1230 Landrace
Orina (fukitachi) 20 0.6375 0.5868 –0.0863 Landrace
Sangatsuna 20 0.4062 0.4977 0.1837 Landrace

Chinese flowering cabbage, “zicaitai”
Hon tsai tai 19 0.1842 0.1776 –0.0370 Non-hybrid cultivar
Kosaitai 19 0.3355 0.3330 –0.0077 Non-hybrid cultivar
Kosaitai (beni nabana) 20 0.2938 0.3089 0.0490 Non-hybrid cultivar

Chinese flowering cabbage, “cai-xin”
Wasekei saishin 20 0.2812 0.3285 0.1437 Non-hybrid cultivar

European flowering cabbage, “broccoletto”
Cima di rapa 20 0.5000 0.5360 0.0672 Non-hybrid cultivar

Other B. rapa vegetables
Shiroguki hatakena 19 0.5855 0.6513 0.1010 Non-hybrid cultivar
CR Omasa 19 0.3750 0.1875 –1.0000* Hybrid CR cultivar
Golden ball 17 0.3897 0.4058 0.0396 Non-hybrid cultivar
Pak choi 20 0.4562 0.5166 0.1168 Non-hybrid cultivar
Taasai 19 0.3553 0.3359 –0.0577 Non-hybrid cultivar
Muso 17 0.0588 0.0460 –0.2800 Hybrid cultivar

a	Cultivars are sorted according to their categories (CR/non-CR and hybrid/non-hybrid) (see Supplemental Table 1 for details).
b	Sample number.
c	Observed heterozygosity.
d	Expected heterozygosity.
e	Fixation index. Asterisk: significant deviation from Hardy-Weinberg equilibrium expectations after Bonferroni corrections (p < 0.05) based on 

400,000 randomisations.
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lines could be classified into four groups (I–IV). Group I in-
cluded 23 flower-bud types of Japanese nabana (21 cultivars 
and two landraces) (Fig. 1, filled boxes). Group II was a 
mixture of four flower-bud types, two stem-and-leaf types, 
and three zicaitai cultivars (Fig. 1, filled, gray, and open 
boxes). Group III comprised of 10 stem-and-leaf types of 
nabana lines, one broccoletto (‘Cima di rapa’), two turnips, 
and one neep greens (Fig. 1, gray and open boxes, and plain 
typeface). Group IV contained one cai-xin (‘Wasekei 
saishin’) and two non-heading Chinese cabbage cultivars 
(Fig. 1, open box and plain typeface).

Population structure analysis
Detection of a hierarchical genetic population structure 

was performed with STRUCTURE 2.3.4 software (Hubisz 
et al. 2009) with 50,000 burn-in steps and 1,000,000 
Markov chain Monte Carlo steps after burn-in. Suitable 
number of subpopulations (K) was determined based on the 
ΔK values (Evanno et al. 2005) (Supplemental Table 3) 
with STRUCTURE HARVESTER 0.6.94 software (Earl 
and vonHoldt 2012). Bar plots at determined K value were 
drawn with CLUMPAK 1.1 software (Kopelman et al. 
2015).

Tests for CR and CR marker analysis of nabana cultivars
Inoculation tests were performed according to Kuginuki 

et al. (1999). P. brassicae isolates Ng2 and Ng9, whose 
pathotypes are groups 4 and 2, respectively (Kubo et al. 
2017), were inoculated to 10 CR and two non-CR nabana 
cultivars (Table 2), in which approximately 20 individuals 
were tested for each cultivar. A Chinese cabbage cultivar set 
with differential pathogenicity (Hatakeyama et al. 2004) 
was also inoculated as a control.

Six markers linked to four known CR loci (CRb and 
Crr1-3) were tested by PCR amplification using 10 CR and 
one non-CR nabana cultivars (four individuals per cultivar) 
(Supplemental Table 4) according to previous reports 
(Hirai et al. 2004, Kato et al. 2013, Matsumoto et al. 2017, 
Suwabe et al. 2006). DNAs of three CR lines (‘CR Shinki’, 
G004, and N-WMR-3) (Hirai et al. 2004, Suwabe et al. 
2003) were used for positive controls of CRb, Crr1/Crr2, 
and Crr3 resistance alleles, respectively. Alleles were de-
tected using a DNA sequencer with a post-labeling method 
(Shimizu and Yano 2011) or by agarose gel electrophoresis.

Results

Polymorphisms of SSR markers and genetic diversity of 
nabana lines

In eight SSR markers used in this study, A and AR values 
ranged from 3 to 12 and from 2.915 to 7.995, respectively 
(Supplemental Table 2). The average value of A in this 
study (8.75) was similar to that in a previous report on tur-
nips (8.72) (Takahashi et al. 2016). HE ranged from 0.0638 
to 0.4979 and from 0.2599 to 0.6128 in flower-bud and 
stem-and-leaf types of Japanese nabana, respectively 
(Table 1). The latter type showed higher values than the 
former. FIS values of non-hybrid cultivars and landraces in 
any type of B. rapa did not differ significantly from HWE. 
In contrast, FIS values were significantly deviated from 
HWE in hybrid cultivars of 13 flower-bud types of nabana 
and a turnip (Table 1, asterisks).

Relationships of nabana cultivars and landraces based on 
an NJ phylogram

According to the SSR data, a population-based NJ phylo-
gram was constructed using a heading Chinese cabbage 
cultivar ‘Muso’ as an outgroup (Fig. 1). The ingroup 49 

Fig. 1.	 A neighbor-joining phylogram of nabana based on eight 
B. rapa SSR loci. “Flower-bud type”, “stem-and-leaf type”, Chinese 
and European types, and other types of B. rapa cultivars (neep greens, 
turnips, non-heading and heading Chinese cabbages) are indicated 
with filled, gray, and open boxes, and plain typeface, respectively. 
Four potential groups are indicated with roman numbers (I–IV). Num-
bers on nodes are bootstrap values from 1,000 replicates (≥50%). The 
scale bar indicates the genetic distance DA (Nei et al. 1983).
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2004, Kato et al. 2013, Matsumoto et al. 2017, Suwabe et 
al. 2006). The 10 CR cultivars tested had a resistance allele 
with the CRb marker B1210 (Supplemental Table 4, red 
text). Nine CR cultivars (except for ‘Hanamusume’) showed 
a resistance allele with another CRb marker (KB59N06) and 
two Crr1 markers (BSA7 and B359). By contrast, only 
‘Hanamusume’ had a resistance allele with the Crr2 marker 
523A1R. Most of the resistance loci were heterozygous in 
the CR nabana cultivars (Supplemental Table 4, two num-
bers connected with slashes) except for the B1210 locus, 
whose genotype might have been detected as homozygous 
because of low levels of polymorphisms. There was no 
nabana cultivar with a resistance allele carrying the Crr3 
marker OPC11-2S.

Discussion

Genetic diversity of nabana lines
In this study, we classified Japanese nabana cultivars and 

landraces, foreign types of cultivars, and other B. rapa veg-
etables based on SSR markers. Our data suggest that the 
stem-and-leaf type lines were under less stringent selection 
pressure because they are maintained as local crops (Vege-
table and Ornamental Crops Research Station 1980). 
Non-hybrid cultivars and landraces in our samples could be 
treated as randomly mating populations based on their FIS 
values without significant deviation from HWE, although 
the Nagaokakyo landrace might be inbred judging from its 
low HE value (0.1082). In contrast, many hybrid cultivars 
deviated from HWE probably because of artificial selection 
in breeding programs.

Classification of nabana lines
In the SSR-based NJ phylogram, 49 ingroup samples 

could be classified into four groups (I–IV). Although a few 
terminal nodes were supported with relatively high bootstrap 
values, no large group was supported by ≥50% bootstrap 
value. This could be because many of the lines were closely 
related and because some cultivars might be derived from 
intercrossing between distantly related lines. The flower- 
bud and stem-and-leaf types of Japanese nabana strains 
were separated into groups I and III, respectively, with a 
slight overlap in group II (Fig. 1). This result suggests that 
Japanese nabana lines were differentiated according to the 
parts used for consumption (flower buds or young stem-
and-leaf portions). The separation of flower-bud type from 
stem-and-leaf type was also supported by the population 
structure analysis (Supplemental Fig. 1).

Chinese and European types formed three clusters and 
were located in groups II–IV. Of these, ‘Wasekei saishin’ 
and ‘Cima di rapa’ were close to non-heading Chinese cab-
bage (‘Pak choi’ and ‘Taasai’) and turnip cultivars (‘CR 
Omasa’ and ‘Golden Ball’), respectively (Fig. 1). This find-
ing was similar to previous reports (Pino Del Carpio et al. 
2011, Zhao et al. 2005), confirming their close relationships 
and their cultivar origins. A cluster composed of three 

Population structure of nabana lines
We investigated the population structures of the 50 

B. rapa lines. The most suitable value for K was obtained at 
K = 2 (Supplemental Table 3, red text) based on ΔK values 
(Evanno et al. 2005) after the calculation of K values from 1 
to 7. According to the estimated two subpopulations, clus-
ters 1 and 2 represented flower-bud type and the other 
B. rapa vegetables, respectively (Supplemental Fig. 1, light 
blue and orange colors). Exceptions were observed in Awa 
zairai and ‘Shunyo’, which were more derived from cluster 
2 than the other flower-bud types, and for ‘Sangatsuna’, 
‘Wakana’ and ‘Wakana (kurona)’, which were more derived 
from cluster 1.

Tests for CR in nabana cultivars
We tested for CR traits in Japanese nabana cultivars 

because these are the most important targets for the breed-
ing of B. rapa vegetables. Ten CR and two non-CR nabana 
cultivars were inoculated with pathogens of group 2 and 4 
pathotypes. Non-CR cultivars were susceptible to both path-
ogens, as expected. All of the 10 CR cultivars were resistant 
to group 4 pathotype of mild virulence (Table 2, gray 
boxes) whereas they showed no resistance to more virulent 
pathotype from group 2. This result was consistent with the 
previous reports for eight CR cultivars (Kuginuki 2001, 
Oshikiri et al. 2014).

Genotypes of CR loci in nabana cultivars
Next, we analyzed genotypes of Japanese nabana culti-

vars with six markers linked to CRb and Crr1-3 (Hirai et al. 

Table 2.	 Test for clubroot resistance (CR) of nabana cultivars

Pathogen
Cultivara

Ng2 (group 4)
IDb

Ng9 (group 2)
IDb

Chinese cabbage 
(control)

SCR Hioroki 0.0 (–) 0.1 (–)
CR Ryutoku 0.0 (–) 2.0 (+)
Muso 3.0 (+) 3.0 (+)

Non-CR nabana Hanakazari 3.0 (+) 3.0 (+)
88 go no. 20 2.8 (+) 3.0 (+)

CR nabana

CR Hanakanzashi 0.0 (–) 1.9 (±)
CR Hanamatsuri 0.0 (–) 2.2 (+)
CR Hananomai 0.0 (–) 2.3 (+)
CR Kyobare 0.0 (–) 2.1 (+)
CR Kyonoharu 0.0 (–) 2.2 (+)
Eika 0.0 (–) 2.1 (+)
Kanzaki 21 go 0.0 (–) 2.2 (+)
Shunka 0.0 (–) 2.0 (+)
Shunrai 0.0 (–) 2.3 (+)
Hanamusume 0.2 (–) 3.0 (+)

a	Three different cultivars of Chinese cabbage used for classification 
based on the system of Hatakeyama et al. (2004). Two CR cultivars, 
‘CR Ryutoku’ and ‘Super CR Hiroki’, showed different resistance re-
sponses depending on clubroot pathogen. A non-CR cultivar ‘Muso’ 
susceptible to any clubroot pathogen was used as a positive control.

b	Mean disease index according to Kuginuki et al. (1999). –, ±, and + 
represent resistant (ID ≤ 1.0), intermediate (1.0 < ID < 2.0), and sus-
ceptible (ID ≥ 2.0), respectively. Resistance is indicated with a gray 
box.
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