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ABSTRACT

Interpretation of genetic variation is needed for de-
ciphering genotype-phenotype associations, mech-
anisms of inherited disease, and cancer driver muta-
tions. Millions of single nucleotide variants (SNVs) in
human genomes are known and thousands are as-
sociated with disease. An estimated 21% of disease-
associated amino acid substitutions correspond-
ing to missense SNVs are located in protein sites
of post-translational modifications (PTMs), chemi-
cal modifications of amino acids that extend pro-
tein function. ActiveDriverDB is a comprehensive hu-
man proteo-genomics database that annotates dis-
ease mutations and population variants through the
lens of PTMs. We integrated >385,000 published
PTM sites with ∼3.6 million substitutions from The
Cancer Genome Atlas (TCGA), the ClinVar database
of disease genes, and human genome sequencing
projects. The database includes site-specific inter-
action networks of proteins, upstream enzymes such
as kinases, and drugs targeting these enzymes. We
also predicted network-rewiring impact of mutations
by analyzing gains and losses of kinase-bound se-
quence motifs. ActiveDriverDB provides detailed vi-
sualization, filtering, browsing and searching options
for studying PTM-associated mutations. Users can
upload mutation datasets interactively and use our
application programming interface in pipelines. In-
tegrative analysis of mutations and PTMs may help
decipher molecular mechanisms of phenotypes and
disease, as exemplified by case studies of TP53,

BRCA2 and VHL. The open-source database is avail-
able at https://www.ActiveDriverDB.org.

INTRODUCTION

DNA sequencing studies have enabled large-scale charac-
terization of human genomes and revealed millions of sin-
gle nucleotide variants (SNVs), copy number alterations,
and other types of genetic variants. Identifying genotype-
phenotype associations, molecular mechanisms, causal dis-
ease variants and cancer driver mutations remain major
challenges of current biomedical research (1,2). Large cat-
alogues of genetic variation comprising tens of thousands
of individual and tumour genomes are now available from
projects such as The Cancer Genome Atlas (TCGA) (3),
the International Cancer Genome Consortium (ICGC) (4),
the 1000 Genomes Project (5), The Exome Aggregation
Consortium (ExAC) (6), and others. Open-access databases
such as ClinVar (7) collect disease genes and mutations. Pre-
diction of functional impact and prioritization of candidate
variants primarily relies on evolutionary sequence conser-
vation and other genomic features (8–10), however infor-
mation about protein interactions and signaling is not rou-
tinely applied in such analyses.

Post-translational modifications (PTM) include more
than 400 kinds of chemical modifications of amino acids
that act as molecular switches and expand the functional
repertoire of proteins (11,12). PTMs are carried out by
modular reader–writer–eraser networks where specific en-
zymes induce PTMs in target proteins, remove PTMs, and
interact with modified sites (13). Phosphorylation, ubiqui-
tination, acetylation, and methylation are the most com-
monly characterized PTMs with nearly 400 000 experimen-
tally determined sites in human proteins (14–16). PTMs are
involved in various aspects of cellular organization includ-

*To whom correspondence should be addressed. Tel: +1 647 260 7983; Email: Juri.Reimand@utoronto.ca
Present address: B. F. Francis Ouellette, Génome Québec, Montréal, Québec, Canada.
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ing protein activation and degradation, protein-protein in-
teractions, chromatin organization, development, and sig-
naling pathways associated with disease (17–20). Further,
PTMs are increasingly drug targetable and used in precision
cancer therapies (21–23). Thus PTM information helps in-
terpret genetic variation, genotype-phenotype associations,
and molecular disease mechanisms.

PTM sites are enriched in disease mutations and rare
variants in the population (24–29). Such mutations often
alter sequence motifs bound by PTM enzymes and may
cause rewiring of signaling networks (27,30). Importantly,
the functional impact of PTM mutations is often underesti-
mated in standard annotation pipelines. We found that 15–
30% of disease mutations in PTM sites are considered be-
nign by tools such as PolyPhen2 (8), SIFT (9) and CADD
(10), likely because PTM sites are located in disordered
protein regions with lower evolutionary conservation (25).
Thus PTMs remain understudied in the context of genetic
variation and disease. The PhosphositePlus database main-
tains downloadable datasets with PTM site variation (14),
however, a dedicated comprehensive database of genetic
variation in PTM sites does not exist to our knowledge.

To address this limitation, we developed
ActiveDriverDB, a proteo-genomics resource for in-
terpreting human genome variation using PTM sites
(24–27). The database integrates experimentally deter-
mined PTM sites with large genomics resources: cancer
exomes from TCGA (3,31), known disease genes and
mutations from the ClinVar database (7) and population
variation from the 1,000 Genomes Project and ESP6500
(5,32). We also display the network context of PTM
mutations by analyzing PTM-specific protein-protein
interactions and the drugs targeting PTM enzymes that
regulate the protein (33). Hundreds of thousands of amino
acid substitutions in PTM sites are available in the database
for browsing, visualization and interpretation. Datasets can
be downloaded or analyzed using our application program
interface (API). Users can also interactively upload, store
and analyze their own custom datasets of mutations. Our
open-source database can be downloaded for local use.

MATERIALS AND METHODS

Genomic and proteomic data in ActiveDriverDB

ActiveDriverDB includes two major types of human -omics
data: genomics data on missense SNVs and proteomics
data on PTMs (Figure 1, Table 1). Human genome vari-
ation datasets include disease-associated SNVs and those
apparent in the human population. First, ActiveDriverDB
includes somatic cancer mutations of nearly 9000 tumor
samples of 34 types from exome sequencing by the TCGA
compiled in the recent PanCanAtlas MC3 release (3,31).
The TCGA dataset was further filtered to exclude non-
passed mutations and hyper-mutated samples. Second, in-
herited disease mutations from the ClinVar database (7) are
also available in ActiveDriverDB. Third, inter-individual
genome variation of the human population includes the
1,000 Genomes Project (5) with >2500 genomes and the
ESP6500 project (32) with >6500 exomes. Experimentally
determined human PTM sites are retrieved from public
databases PhosphositePlus (14), Phospho.ELM (15) and

HPRD (16) and include primarily proteomics data on
the four most frequently characterized PTM types (phos-
phorylation, acetylation, ubiquitination, methylation). Site-
specific protein-protein interactions of substrate proteins
and upstream enzymes (primarily kinases) are also included
from these databases. We also integrate drugs that target up-
stream enzymes of PTMs using data from the DrugBank
database (33).

Mapping mutations and PTM sites

Substitutions (SNVs) in PTM sites were mapped using
our previously designed pipelines (24–27). Genomic co-
ordinates of SNVs were mapped to protein amino acid
substitutions using the Annovar software (34) and RefSeq
genes (hg19/GRCh37). Peptide sequences corresponding to
PTM sites were mapped to RefSeq proteins using exact se-
quence matching permitting multiple matches per sequence.
PTM sites extended seven amino acids before and after of
the modified protein residue, and multiple clustered PTM
sites are merged into consecutive regions. Protein domains
from the InterPro database (35) were mapped into non-
redundant regions and combined with disorder predictions
of the DISOPRED2 software (36). ActiveDriverDB pro-
vides information for 39 159 high-confidence isoforms of
19 062 human genes. We identify those by HGNC gene sym-
bols (37) or RefSeq transcript IDs and show primary iso-
forms according to the Uniprot database (38) by default.

Impact of mutations on PTM sites

Amino acid substitutions (SNVs) in PTM sites are further
annotated regarding their position relative to PTMs and po-
tential impact on signaling networks. PTM mutations are
considered direct if they substitute the central PTM amino
acid residue while indirect mutations are classified either as
proximal or distal (1–2 or 3–7 amino acid residues to the
nearest PTM site, respectively). We distinguish variants that
affect different types of PTM sites and mutations affect-
ing multiple adjacent PTMs. To estimate the network im-
pact of mutations, we performed sequence motif analysis
with our machine learning method MIMP (27) using 476
models of sequence motifs of 322 kinases and families (14–
16,39,40). MIMP analyses substitutions in PTM sites and
predicts whether these cause loss of existing kinase-bound
motifs or create new motifs, suggesting the impact of muta-
tions on the rewiring of cellular signaling networks.

Software design and availability

The ActiveDriverDB website uses the Flask micro-
framework and two relational databases: the first for
constant biological data and the second for dynamic
content and user-provided data. An additional key-value
BerkleyDB database allows mapping of all potential
missense SNVs in the human genome. Visualizations
are implemented in the d3.js framework. Our needle-
plots are inspired by the muts-needle-plot library
(https://zenodo.org/record/14561). All code is available
on terms of LGPL 2.1 license. Documentation is available
at https://github.com/reimandlab/ActiveDriverDB.

https://zenodo.org/record/14561
https://github.com/reimandlab/ActiveDriverDB
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Figure 1. Overview and workflow of ActiveDriverDB. Our database integrates genomic and proteomic data for interpreting disease mutations and human
inter-individual variation with PTMs. Genomics datasets include cancer exome sequencing studies (TCGA), disease genes and mutations (ClinVar), and
human genome variation studies (ESP6500, the 1000 Genomes Project) (top-left panel). Proteomics datasets include PTM sites of four commonly studied
PTM types, site-specific interactions of PTM enzymes and target proteins, and drug interactions with PTM enzymes (top-right panel). Our systematic
analysis pipeline aligns PTM sites with missense SNVs, predicts the impact of amino acid substitutions on kinase-bound sequence motifs using the MIMP
method, and organizes site-specific interaction networks of PTMs, upstream enzymes and drugs (middle panel). The protein sequence view shows the
distribution of PTMs and substitutions along the protein sequence (bottom left panel), while the interaction network view shows site-specific interactions
of mutated proteins with upstream PTM enzymes and their associated drugs (bottom right panel). The database also provides exporting, visualization,
searching and automated analysis tools (bottom middle panel).

RESULTS

Thousands of disease mutations are enriched in PTM sites

The database is available at https://ActiveDriverDB.org. In
total, ActiveDriverDB characterises 506 974 unique amino
acid substitutions in PTM sites across high-confidence pro-
tein isoforms, including 221 472 in cancer genomes, 27
305 in inherited diseases and 143 489 and 185 982 in
human genomes from the population sequencing projects
1000 Genomes and ESP6500, respectively. These substitu-
tions affect the four types of most frequently characterized
PTMs: phosphorylation sites (299 241), ubiquitination sites
(67 933), acetylation sites (21 670) and methylation sites
(5666), with 385 185 distinct sites in total across all pro-
tein isoforms. Among 558 high-confidence cancer genes of
the Cancer Gene Census database (41), 9542 unique sub-
stitutions in the TCGA dataset (25%) are associated with
PTM sites when considering primary isoforms of proteins
(5773 expected from sampling of substitutions from the
1000 Genomes dataset, empirical P < 10−5). Among dis-

ease genes annotated in the ClinVar database, 11 041 unique
substitutions (21%) are associated with PTM sites (7963
PTM SNVs expected, P < 10−5). Enrichment of disease-
associated mutations in PTM sites is in agreement with our
earlier studies (24–27). These statistics suggest that a large
fraction of germline and somatic disease mutations can be
interpreted using PTM information.

Visualization and analysis of mutations in PTM sites

The two primary pages of the database, the protein sequence
view and the interaction network view, are focused on indi-
vidual proteins (genes). Both views provide detailed visu-
alizations of PTM-associated amino acid substitutions, ta-
bles with additional information, protein descriptions, and
external links. The views permit filtering of mutations by
dataset (inherited disease mutations, somatic cancer muta-
tions, or inter-individual genome variation), disease types,
pathogenicity and PTM types. All non-PTM mutations can
be filtered as well. Both views display the primary isoform
as default, while alternative isoforms can be selected.

https://ActiveDriverDB.org
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Table 1. Overview of genome variation datasets and post-translational modifications included in ActiveDriverDB

TCGA PanCanAtlas ClinVar 1000 Genomes ESP6500 Total

Dataset
Size 8 856 exomes 494 059 records 2504 genomes 6503 exomes -
Description Cancer (somatic) Inherited disease General population -

Mutations
Total 1 595 400 137 860 1 066 906 1 318 972 3 588 280
in PTM sites 221 472 27 305 143 489 185 982 506 974
with network-rewiring effect 30 882 2 869 20 525 26 498 70 518
Annotated nucleotides
(hg19/GRCh37)

1 865 173 155 824 1 206 968 1 486 067 4 124 041

PTM sites affected by mutations*
Total 214 362 16 597 157 420 186 800 303 401
Phosphorylation sites 169 632 12 999 128 097 150 505 239 509
Acetylation sites 11 581 1 258 7 216 8 988 16 384
Ubiquitination sites 35 058 2 659 22 678 28 226 50 081
Methylation sites 3 377 272 2 293 2 577 4 416

Proteins with mutations affecting PTM sites
Total 27 316 3 317 25 132 26 202 29 462
Kinases & PTM enzymes 613 115 580 594 624
Kinase families 127 58 127 126 127

PTM sites
Total - - - - 385 185
Phosphorylation sites - - - - 299 241
Acetylation sites - - - - 21 670
Ubiquitination sites - - - - 67 933
Methylation sites - - - - 5 666

Counts of PTMs and amino acid substitutions reflect all high-confidence protein isoforms collected in the database.

Protein sequence view: mutation impact on PTMs, sequence
features and network rewiring. The main components of
this view include a needleplot with mutations and impact
on PTM sites, sequence tracks with protein domains (35)
and disorder predictions (36), and a detailed table of mu-
tations. The needleplot represents the protein sequence and
its PTM sites horizontally, while mutations extend vertically
from the sequence according to their frequency (Figure 2A).
Colored circles on top of needles represent mutation im-
pact on PTM sites, and mouse-over motion shows infor-
mation about the mutation, disease annotations, known
PTM enzymes such as bound kinases, predictions of net-
work rewiring with mutation-induced gains and losses of
sequence motifs (Figure 2B), and drugs targeting the up-
stream PTM enzymes. The needleplot can be zoomed and
searched by amino acid position. Mutations are also de-
scribed in the table below (Figure 2C). The needleplot can
be exported as a high-resolution PDF (Portable Document
Format file) and the mutation table can be exported as a
spreadsheet.

Interaction network view: PTM site-specific interactions, up-
stream enzymes and drug targets. This view displays the se-
lected protein in a site-specific interaction network with up-
stream enzymes and associated drugs (Figure 2D). Two in-
teraction networks are available: the high-confidence experi-
mental network includes experimentally determined kinase–
substrate interactions, and the computationally predicted
network includes gained and lost kinase-substrate interac-
tions derived from sequence motif analysis with MIMP.
Most interactions comprise phosphorylation sites and as-
sociated kinases with largest body of experimental data.
The network view uses an automatic layout algorithm that
emphasizes the hierarchical network structure. It can be

zoomed and arranged for clarity and exported as a high-
resolution PDF.

Searching and browsing PTM mutations in proteins

The database provides a flexible graphical user interface for
finding, visualizing and interpreting mutations in PTM sites
and their potential impact on signaling networks.

Searching for genes, pathways, and diseases. The main
search bar supports several options. First, the user can
identify a gene (protein) of interest by either its HGNC
symbol that retrieves the primary isoform (e.g.TP53) or a
RefSeq transcript ID that retrieves a specific isoform (e.g.
NM 000546). Second, genes associated with biological pro-
cesses of Gene Ontology (42), molecular pathways of Reac-
tome (43) (e.g. Wnt signaling pathway), and diseases in the
ClinVar database (e.g. Noonan syndrome) can be looked up.
These search options benefit researchers who are interested
in specific genes, pathways, or disease mutations.

Searching for mutations. The user can search for a gene or
protein using amino acid substitutions (e.g. TP53 R282W)
or coordinates of missense mutations (e.g. chr17 7577094 C
T) through our rapid indexing system that covers all poten-
tial missense SNVs in the human genome. Search for mu-
tations is especially beneficial for genetics researchers who
have identified interesting missense SNVs in a genome-wide
association or DNA sequencing study.

Browsing top disease-associated genes and pathways. Users
may browse sets of disease-associated genes and path-
ways with unexpectedly frequent mutations in PTM sites.
Candidate gene lists are available for cancer mutations
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Figure 2. PTM-associated cancer mutations in the tumor suppressor protein TP53. (A) Needleplot in the protein sequence view shows the distribution of
missense cancer mutations from TCGA (vertical bars) and their associations with PTM sites (blue boxes) with protein sequence on the x-axis and number
of mutations on the Y-axis. (B) The substitution R282W disrupts the sequence motif bound by the Aurora Kinase B (AURKB). (C) Detailed table of
mutations with disease associations and impact of substitutions on PTMs. (D) Experimentally determined interaction network shows the TP53 protein
(middle node) and its PTM site-specific interactions with upstream enzymes, as well as approved drugs targeting these enzymes. Node shapes indicate
types of interacting molecules and sites: protein of interest (oval), PTM sites (squares), enzymes interacting with PTM site (circles), and drugs targeting
the enzyme (triangles). Arrows indicate the interaction of TP53 and Aurora kinase B at phosphosite T284 and the associated substitution R282W.

from TCGA and inherited disease mutations from Clin-
Var. Genes are ranked according to statistical significance of
PTM mutations computed using our ActiveDriver method
(26). These lists are useful for novice users of the database
who are looking for an overview of the database through
examples of genes and pathways.

Analysing custom datasets of mutations. Users can upload
VCF or tab-separated files to analyze their datasets of vari-
ants with PTM information, using chromosomal or protein
coordinates. A password-protected area is available for up-
loaded data.

Application programming interface (API).
ActiveDriverDB includes an API allowing access to
the database with programming languages like R and
Python using the Representational State Transfer (REST)
pattern. The API accepts chromosomal or protein coor-
dinates of mutations, converts these appropriately and
returns PTM annotations. Filters for mutation types (can-
cer, inherited disease, population), querying of mutations
by gene symbol or RefSeq ID, and other options are also
supported. Datasets of PTM sites and associated mutations
are also available for download for advanced computa-
tional biology studies. We provide up-to-date input datasets
for the ActiveDriver method (26) that reveals proteins with
statistical enrichment of mutations in PTM sites.

Case studies of PTM-associated disease mutations

Frequent cancer mutations in PTM sites in the tumor sup-
pressor protein TP53. Mutated in 50% of cancers, the tran-
scription factor TP53 relies on its DNA-binding activity to
perform its function as a tumour suppressor (44). Consis-
tently, most mutations are found in the DNA-binding do-
main (DBD) of the protein with a third clustered in seven
hotspot residues with high-frequency mutations (R175,
G245, R248, R249, R273, R282) (Figure 2A) (45). Al-
though most of the mutations in TP53 are associated with
loss of function, mutations such as R282W lead to gain of
function and TP53 with distinct oncogenic properties (re-
viewed in (45,46)). The mechanisms by which R282W leads
to this transformation are still unclear (47). MIMP analy-
sis of sequence motifs in TP53 predicts that the mutations
R282W/G/Q rewire the phosphosite T284 by abolishing
the sequence motif of the AURKB in the DBD of TP53
(Figure 2B and C) (27). This phosphosite is bound by AU-
RKB kinase in vitro and in cells with AURKB ectopic ex-
pression (Figure 2D) (27,48,49). The substitution T284E in-
hibits the ability of TP53 to promote CDKN1A expression
(48) highlighting a role of AURKB in TP53 signaling. More
than 200 mutations in the TCGA dataset potentially inter-
fere with the phosphosite T284 (Table 2), suggesting that
these regulate a common function of TP53. As R282W is
associated with early cancer development (50), the muta-
tions should be further studied regarding their impact on
the gene regulatory and tumour suppressive roles of TP53
(46). By highlighting clusters of PTM-associated mutations,
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our database helps design experiments to understand the
post-translational regulation of TP53.

PTM-associated disease mutations of BRCA2 and the
DNA damage response pathway. Mutations in the tumor
suppressor BRCA2 are associated with elevated risk of
breast and ovarian cancers as well as Fanconi Anemia,
a rare chromosome instability syndrome characterized by
aplastic anemia and susceptibility to childhood cancer
(51,52). Consistently, disease-associated SNVs in BRCA2
reported in the ClinVar database are associated with famil-
ial breast cancer and hereditary cancer-predisposing syn-
drome. BRCA2 is essential for DNA double-strand break
(DSB) repair by homologous recombination and protects
the stalled replication fork (53). To prevent genomic insta-
bility, BRCA2 relies on interactions with RAD51 mediated
by cell cycle-dependent kinases (CDKs) (54–57). Using the
ActiveDriverDB database, we found that a significant num-
ber of somatic and inherited cancer mutations of BRCA2
coincide with phosphosites (29 SNVs in ClinVar, FDR =
10−47; 15 SNVs in TCGA, FDR = 10−6) (Figure 3A). In-
terestingly, three phosphosites S3291, S3319 and T3323 oc-
cur in the C-terminus of BRCA2 whose deletion is asso-
ciated with increased radiation sensitivity and early-onset
breast and ovarian cancer (58–60). The C-terminal TR2 do-
main at 3265-3330 a.a. mediates the interaction of BRCA2
with nucleofilaments of RAD51 (55,57) and its phospho-
rylation by CDKs inhibits this interaction and is essen-
tial for mitotic entry (54,55,57,61). Substitutions that ei-
ther abolish these phosphosites or the CDK consensus sites
(P3292L/S, P3320H and P3324L) (Figure 4B–D) are as-
sociated with familial breast cancer and hereditary cancer-
predisposing syndrome, suggesting that the mutations inter-
fere with maintenance of genomic stability. Consistently, the
substitution S3291A inhibits the interaction of BRCA2 with
RAD51 filaments, a phenotype that abrogates the replica-
tion fork protection without affecting DNA repair (62).
Whether the phosphorylation of S3319 and T3323 regulates
BRCA2 is unknown, however mutant BRCA2 with gluta-
mate substitutions in these amino acids still interacts with
RAD51 filaments (54). This example illustrates the integra-
tion of PTM information and germline disease mutations to
predict novel experimentally testable hypotheses of mecha-
nisms.

Network-rewiring mutations in the tumour suppressor VHL
alter putative CDK binding sites. The tumour suppressor
VHL encodes a member of a E3 ubiquitin ligase complex
that inhibits oncogenic substrates such as protein kinase C,
retinol binding protein 1, and hypoxia-inducible transcrip-
tion factors (HIF) (63,64). VHL is frequently inactivated in
cancer and clear cell renal cell carcinomas (ccRCCs) har-
bour gene-silencing mutations including L169P and oth-
ers in the p.157–172 subdomain (64) (Figure 4A). Phos-
phorylation of VHL at S168 by NIMA Related Kinase 1
(NEK1) has been associated with VHL degradation and
cilliary homeostasis (65). The mutation L169P may impact
VHL signaling as it flanks the phosphosites S168 and Y175
bound by the NEK1 kinase. ActiveDriverDB analysis sug-
gests that three L169P substitutions observed in TCGA kid-
ney cancers may induce gains of phosphosites of the cyclin

dependent kinase 1 (CDK1) or related CDK and MAPK
kinases (Figure 4B and C). While little is known about the
interactions of VHL and CDKs, VHL inactivation has been
linked to increased levels of CDK1 and CDK2 (66), and
CDK1 stabilizes HIF transcription factors that are targets
of VHL (67). Studying the L169P mutation in the context
of VHL phosphorylation and upstream kinases may re-
veal details about disease mechanisms (Figure 4D). Since
CDK1 is pharmaceutically targetable, drug assays using al-
sterpaullone and alvocidib (33) may also advance develop-
ment of targeted therapies.

DISCUSSION

ActiveDriverDB is a comprehensive human proteo-
genomics resource that uses PTMs to interpret disease
mutations and inter-individual variation. Although PTMs
are important regulators of protein function and signaling
pathways, genetic variant impact analysis pipelines usually
neglect this information. Our database aims to advance
analysis of missense mutations using PTMs. Novice users
of our database can start from example queries of well-
annotated genes and browse gene lists with PTM-enriched
disease mutations. Basic and translational researchers can
look up their favourite genes, upload candidate variants
from DNA sequencing experiments, and export tables
and publication-quality figures. Computational biologists
can use the API to automatically analyze variants and
download entire datasets for advanced studies.

Our collection of PTM sites is derived from many pub-
lished studies that represent diverse cells and experimen-
tal conditions. While this large dataset allows us to max-
imise coverage of disease mutations and genetic variation,
all PTM sites may be not directly comparable with one an-
other. PTM sites observed in certain cell types may not be
expressed as proteins or may be excluded due to alternative
splicing in cells relevant to a disease of interest. Although
we processed PTM sites uniformly across the entire col-
lected dataset, false positives may have emerged from anal-
yses in original studies, the databases reporting the data,
or our multi-database integration pipeline. We recommend
that users validate top PTM sites by looking these up in
databases such as PhosphoSitePlus and the publications
and supplementary materials that originally reported the
PTM site.

We plan several important future developments of the
database. Maintaining timely biomedical data resources is
essential as new datasets accumulate rapidly and outdated
resources hamper scientific advances (68). Thus we aim to
provide at least annual updates of our database to include
recent large-scale genomics and proteomics studies and
molecular interaction networks. Recent proteomics tech-
nologies enable large-scale characterization of other PTM
types such as glycosylation (69) and SUMOylation (70) and
such datasets will be included in future releases. Additional
species and genomes will be also considered, such as the
most recent human genome assembly (GRCh38) and model
organisms such as mouse and Arabidopsis with abundant
genome variation and proteomics data (14,71).

Interpreting inter-individual genetic variation will be-
come an increasingly important challenge as we enter the
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Figure 3. PTM-associated mutations in the BRCA protein involved in DNA repair and breast cancer. (A) Zoomed needleplot shows germline disease
mutations located in three phosphorylation sites in the protein sequence at 3,200-3,400 residues. Only PTM-associated mutations are shown. (B) Mutations
P3292L and P3292S are predicted to disrupt the sequence motif of the CDK2 kinase. (C) Table shows additional information on the two mutations. (D)
The computationally derived PTM interaction network of BRCA2, kinases predicted to interact with mutant BRCA2, and drugs targeting the kinases.
Arrows point to the mutations P3292L/S.

Figure 4. PTM-associated mutations in the tumor suppressor protein VHL. (A) Needleplot of mutations from the TCGA dataset with the VHL mutation
L169P near two phosphsites. (B) The mutation L196P is predicted to disrupt the sequence motif of the CDK1 kinase. (C) Table shows additional information
on the mutation. (D) The computationally predicted interaction network of VHL, its PTM sites, kinases predicted to interact with mutant VHL according
to the MIMP method, and drugs targeting the kinases. Arrows indicate the mutation L169P.
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Table 2. PTM-associated cancer mutations affecting the phosphosite T284 in the tumor suppressor protein TP53

Phosphosite Reference a.a. Mutated a.a Number of mutations Impact on PTM

TCGA ClinVar

T284 R280 T 19 3 Distal
I 4 3 Distal
K 14 Distal
S 3 Distal
G 5 Distal

D281 V 4 2 Distal
G 2 Distal
A 2 Distal
H 3 Distal
N 2 Distal
Y 7 Distal
E 6 Distal

R282 W 74 5 Network-rewiring
G 2 5 Network-rewiring
Q 1 2 Network-rewiring
L 2 Network-rewiring

R283 H 1 2 Proximal
P 8 Proximal
C 3 Proximal
S 3 Proximal

T284 I 1 Direct
P 1 Direct
A Direct
E Direct

E285 V 4 2 Proximal
K 23 Proximal
Q 1 Network-rewiring

E286 K 11 1 Network-rewiring
A 1 Proximal
G 4 Proximal
V 1 Proximal
Q 1 Proximal

Total - - 201 37 -

Somatic and germline disease mutations that potentially affect the phosphosite of Aurora kinase B.

era of personal genomics. Integration of proteomic and ge-
nomic information for deciphering the impact of variation
on cellular systems and organism-level phenotypes is a pow-
erful approach that will improve with future datasets of
increased magnitude and complexity. We provide an inte-
grated database resource to the research community to en-
able future discoveries.
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