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Abstract

Analytical devices that combine sensitive biological component with a physicochemical

detector hold a great potential for various applications, e.g., environmental monitoring, food

analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biode-

vices for detecting target substances typically focus on the design of biorecognition ele-

ments and their physical implementation, while the methods for processing signals

generated by such devices have received far less attention. Here, we present fundamental

considerations related to signal processing in biosensor design and investigate how unde-

manding signal treatment facilitates calibration and operation of enzyme-based biodevices.

Our signal treatment approach was thoroughly validated with two model systems: (i) a bio-

device for detecting chemical warfare agents and environmental pollutants based on the

activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of

0.01–0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of

γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocy-

clohexane of 0.01–0.3 mM. We demonstrate that the advanced signal processing based on

curve fitting enables precise quantification of parameters important for sensitive operation of

enzyme-based biodevices, including: (i) automated exclusion of signal regions with substan-

tial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening

of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The

presented simple signal curve fitting supports rational design of optimal system setup by

explicit and flexible quantification of its properties and will find a broad use in the develop-

ment of sensitive and robust biodevices.

Introduction

There is great interest in the development of simple bioanalytical systems because of their high

sensitivity, specificity, rapid responses, compatibility with on-line and on-site control configu-

rations, and cost-effectiveness. Because of these qualities, they are potentially attractive tools
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for detecting metabolites, hazardous chemicals, toxins or pathogens in clinical, environmental,

food, and biological warfare analyses [1, 2]. Advances in enzyme-based biosensors for hazard-

ous chemicals have been published recently [3, 4, 5]. The hardware and systems used to gener-

ate signals in such devices have been studied extensively [6, 7]. While conventional laboratory

techniques, such as gas chromatography (GC) and mass spectrometry, usually demonstrate

higher sensitivity and selectivity, they require sophisticated and expensive instrumentation,

highly skilled staff, and usually time-consuming sample transportation and pretreatment. In

contrast, portable biosensors are usually cheap, simple to use, and able to measure pollutants

in complex matrices with minimal sample pretreatment [8]. Moreover, they provide fast

response time, continuous signal enabling a real-time monitoring data, the possibility of mini-

aturization, and portability, which permits their use as field devices working on-site.

Among a variety of methods in biosensing, electrochemical and optical techniques are most

widely used in the development of catalytic biosensors [9, 10]. Potentiometric systems often

require only simple and inexpensive instrumentation and exhibit a wide detection range, high

sensitivity, and selectivity due to the ion-selective working electrode. However, a highly stable

and accurate reference electrode is required. A wide range of potential problems coming from

complex environmental samples, namely electrode fouling, drifting, dissolution, and general

instability may result in erroneous response characteristics, poor reproducibility, and a high

surface excess of analyte that degrades the detection limit of the ion-selective electrode [11].

Optical biosensors measure optical signal changes, e.g., due to the changing concentration of

protons as a result of an enzymatic reaction, and offer similar benefits such as miniaturization

and cost-effectiveness [12]. Moreover, these biosensors do not require additional reference ele-

ment, but tend to have a narrower dynamic range compared to the electrodes, higher sensitiv-

ity to the sample turbidity, the ambient/scattered excitation light, and the dye quality [13].

Irrespective of the type of biorecognition element, the output signal is usually time-depen-

dent. However, there have been few comprehensive studies on the mathematical analysis of

the signal generated by the biosensor even though signal processing is at least as important for

effective use of biodevices as the development of a robust biochemical system. Most systematic

research on the mathematical modeling and analytical treatment of biodevice signals has

focused on devices for enzyme characterization and interaction analysis [14, 15]; existing sub-

stance detectors primarily use ad-hoc data treatments, and only a few publications described

more systematic approaches based on mathematical modeling [16]. Some notable exceptions

include recent publications describing the use of the Gaussian Process for efficient calibration

of sensors in drifting environments [17], reservoir computing algorithms to overcome the

slow temporal dynamics of metal oxide gas sensor arrays [18], a system of reaction-diffusion

equations for the detection of Hg(II) with an inhibition-based biosensor [19], a mathematical

model for a single-enzyme two-substrate biocatalytic amperometric biosensor [20], a two-sub-

strate mathematical model of microspherical optical enzymatic glucose sensors [21], and a

study on validity of one particular type of functions for describing calibration curves [22].

While these contributions are important, there is little literature discussing and systemizing

signal processing techniques for biosensors. This paper aims to fill the gap by comparing and

contrasting simple methods with those employing mathematical modeling. The commonly

used standard procedure for performing analyte concentration measurements is to monitor

the response of a biodevice to an analyte concentration at a fixed time after mixing and then

plotting the amplitude (i.e., the difference in signal intensity before and after mixing) or slope

of the response against concentration. Thus, a significant part of the information is not used

because only two points or an initial fraction of the signal curve are analyzed. In contrast,

modeling of signal curves usually involves curve-fitting and thus uses the whole signal curve,

but challenges the researchers with additional tools for data analysis. The problem of the
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choice between these two approaches is bound to arise in every development of biosensors as

long as precision, robustness, and automation of signal collection are considered.

The paper is organized as follows. We will first define a standard analysis and nonlinear

curve fitting, which are the two most intuitive ways of analyzing signals in enzyme kinetics.

We then present a summary table highlighting pros and cons of those two approaches. After

discussing each point separately, we will also compare the two types of the variables used for

calibration, namely signal amplitudes and slopes. As model examples, we present two newly

developed biosensing systems for detection of hazardous halogenated compounds (Fig 1) that

consist of a pocket-size fluorimeter and enzymes haloalkane dehalogenase (EC 3.8.1.5) or γ-

hexachlorocyclohexane dehydrochlorinase (EC 4.5.1.B1). The signal recorded by the device

was processed using the abovementioned standard procedure and nonlinear curve fitting, and

resulting calibration curves provided by those methods were compared and contrasted.

Materials and methods

Materials

The haloalkane dehalogenase LinB and γ-hexachlorocyclohexane dehydrochlorinase LinA

from Sphingobium japonicum UT26 [23] were heterologously expressed in Escherichia coli
BL21 and purified using metal affinity chromatography [24]. Biophysical characterization of

the enzymes was reported earlier [25]. The ion-paired fluorescent pH indicator (HPTS-IP) was

synthesized according to a previously described procedure [26]. Ampicillin sodium salt and

isopropyl-β-D-thiogalactopyranoside were obtained from Duchefa (the Netherlands). Ethanol

Fig 1. A schematic representation of the biodetection systems and data processing methods. Compounds to be detected by the developed biodevices are the

surrogate bis(2-chloroethyl)ether, a common environmental pollutant 1-chlorohexane, a wide-spread toxic pesticide lindane (1,2,3,4,5,6-hexachlorocyclohexane, γ-

hexachlorocyclohexane), and the chemical warfare sulfur mustard (left). The handheld fluorimeter and the model enzymatic reaction is given in the middle; in the

case of the handheld fluorimeter, the reaction is initiated by adding the respective enzyme, and a fluorescent signal is recorded at ambient temperature and calculated

as a ratio of the responses obtained after excitation at 485 and 410 nm, respectively. The two types of data analysis compared in this article are standard analysis

mainly based on the raw data and a more sophisticated nonlinear curve fitting (right).

https://doi.org/10.1371/journal.pone.0198913.g001
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and methanol were purchased from Chromservis (Czech Republic). All other chemicals were

purchased from Sigma-Aldrich (USA). All reagents were of analytical grade and used without

purification. Solutions were prepared with deionized water with a resistivity of 18.2 MO cm

using a Millipore Milli-Q water purification system (Millipore Inc., USA). Disposable plastic

cuvettes having an optical length of 10 mm with lids were obtained from P-lab (Czech

Republic).

Instrumentation

A cuvette version of the AquaPen fluorimeter SN-AP-288 (Photon Systems Instruments,

Czech Republic) was constructed using the solid-state LED containing a 410 and 485 nm

band-limiting filter as a light source and a PIN photodiode with a 520 nm band-limiting filter

as a detector. All the fluorescence measurements were performed at the angle of 90o. The

device was connected to a computer via USB and the output signal was recorded using the

FluorPen 1.0 program (Photon Systems Instruments, Czech Republic). The full relaxation of

the enzyme-based biodevices was achieved within fifteen minutes. However, reliable slope esti-

mates were obtained within the first three minutes. Curve-fitting was able to reduce the time

necessary to estimate the relaxation amplitudes to six minutes by extrapolation (see Results

and Discussion).

Sample preparation and measurement procedure

The reaction mixtures (1 ml) in the cuvettes contained haloalkane dehalogenase LinB and

dehydrochlorinase LinA, the pH indicator HPTS-IP at a concentration of 3 mM unless stated

otherwise, 1 mM HEPES buffer (pH 9.0), and a halogenated substrate: the analog of warfare

chemical sulfur mustard bis(2-chloroethyl) ether, the environmental pollutant 1-chlorohexane,

and the pesticide 1,2,3,4,5,6-hexachlorocyclohexane. The reaction was initiated by adding the

respective enzyme. The fluorescent signal was recorded at 23˚C and calculated as a ratio of the

responses obtained after excitation at 485 and 410 nm, respectively.

The concentrations of bis(2-chloroethyl) ether were determined using a 7890A gas chro-

matograph (Agilent Technologies, USA) with a DB-FFAP 30m × 0.25mm × 0.25μm capillary

column (Phenomenex, USA) and a flame ionization detector. The temperature program began

with an isothermal period at 40˚C for 1 min, followed by a temperature increase to 170˚C at a

rate of 20˚C per min. The concentrations of 1-chlorohexane and 1,2,3,4,5,6-hexachlorocyclo-

hexane were quantified using the same instrument equipped with a ZB-5 30m × 0.25mm ×
0.25μm capillary column (Phenomenex, USA) and an Agilent 5975C mass spectrometer (Agi-

lent Technologies, USA). The temperature program began with an isothermal period at 40˚C

for 1 min, followed by a temperature increase to 250˚C at a rate of 20˚C per min and a final

period of 2 min at 250˚C.

Data fitting

Curve fitting was performed by means of nonlinear least square minimization in MATLAB

2016a (The MathWorks, United States). Each progress curve was fitted independently accord-

ing to analytical approximations to the Michaelis-Menten equations [27] and then standard

errors were calculated based on the assumption of asymptotically normally distributed residu-

als (Wald statistics). Noise due to mixing was detected and accounted for using the following

automated procedure. After the signal was obtained from the biodevice, it was subjected to

two modeling procedures: (i) elimination of the noisy signal and (ii) curve fitting using the

smooth segment of the signal to obtain reliable results for calibration curve construction. To

identify the noisy segment of the signal, two timepoints were calculated for each curve: tmixing
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(the starting point of mixing, i.e., the start of the noisy signal) and tsmooth (the starting point of

the smooth observations, i.e., the end of the noisy signal). These timepoints were determined

by iteratively performing linear fitting using data for 20 sequential data points, and computing

the slopes of the fitted lines. The time tmixing was defined as the final time point of the first seg-

ment for which the absolute value of the slope exceeded the threshold value of 0.2. The time

tsmooth was defined as the starting point of the first 20-timepoint segment in the first sequence

of ten iterative calculations over which the change in the calculated slope was less than 0.2.

Curve fitting to the signal was performed starting from tsmooth using a representation of the

signal as a linear function of the product:

Signalt ¼ APt þ B;Pt ¼ 1 � KMW
1

KM
e

1� Vmaxt
KM

� �

Here W(x) is a Lambert function [27] so that Pt is the solution to a normalized Michaelis-Men-

ten kinetic equation for time t. The amplitude is given by the parameter A, and the initial slope is

obtained by taking the first derivative at t = 0, which is equal to A.Vmax/(Km+1). B is a parameter

responsible for the signal shift; Vmax and KM are constants from Michaelis-Menten framework. In

the latter formula, the substrate concentration is fixed (normalized) at 1 since otherwise it over-

parameterized the system together with the amplitude factor A. For cases with low KM values

(Amplitudes vs. slopes section), one more exponential with parameters C and D was added:

Signalt ¼ APt þ Bþ Cð1 � e� DtÞ

It should be noted that this work mainly focuses on describing some basic mathematical

data treatments rather than seeking to discuss and evaluate every available function for curve

fitting in specific situations. Excellent comprehensive reviews of curve fitting functions can be

read elsewhere [28, 29].

Results and discussion

Two biosensing systems for the detection of selected hazardous halogenated compounds have

been developed and used for the validation of proposed approach (Fig 1 and Figure A in S1

File). In both cases, the enzymatic conversion of the analyte involves the proton release [30,

24]. These protons, in turn, affect the fluorescence of the ion-paired pH indicator HPTS-IP

producing a biodevice signal which depends on the analyte concentration. The signal recorded

by the device was processed using the standard analyses and nonlinear curve fitting, and

resulting calibration curves and operational precision provided by those methods were com-

pared. The standard analyses included: (i) amplitudes calculated as the difference between the

maximal and minimal values of the signal in the chosen time window, and (ii) signal slopes

determined by linear regression from the first few points of measurement. The curve fitting

produced: (i) fitted amplitudes calculated using the exact formula from fitting; and (ii) fitted

slopes calculated as the first derivative of the previous formula with respect to time, when the

time is equal to zero. Table 1 summarizes the advantages and disadvantages of curve fitting in

comparison to the standard analysis of biodevice signals with respect to the four key criteria

that are discussed in more detail below: (i) simplicity of implementation on biodevices, (ii) the

automatization of the signal collection and pre-treatment, (iii) the standard errors that one

would expect to see based on repeated analysis of the same data sets during calibration, (iv) the

ability to extrapolate signals to initial point of observation, e.g., to determine the sample pH, as

well as to future times to reduce the detection time window.

Standard calibration variables are total amplitudes of signals or their initial slopes quantify-

ing initial velocities. Despite simple calculation, they are based on a limited amount of

Sensitive operation of enzyme-based biodevices by advanced signal processing
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information from experimental data as their calculation excludes most of the measured points

except for only a few. The results are affected by initial dead time of measurements, e.g., due to

mixing, and often by reading from nonequilibrated data in the given timeframes. On the con-

trary, such incomplete data could be effectively analyzed by curve fitting and initial as well as

equilibrium conditions can be extrapolated with high precision and provide more realistic esti-

mates of total amplitudes or real initial rates. Moreover, automated data treatment can cut out

the initial noise which can significantly augment the quality of the data for analysis. We will

elaborate on each of those points below based on the datasets from the model experimental

assays with a pocket-size fluorimeter. Although quantitative descriptions are obviously depen-

dent on the assay under consideration, we believe that general principles of mathematical anal-

yses are applicable to a wide range of analogous enzymatic biodevices.

Simplicity of implementation

The first criterion–simplicity–is relatively straightforward: the standard analysis does not

require any modeling or numerical fitting (explicit expressions exist for the linear regressions

involved in the estimation of the slopes [29]). On the contrary, the nonlinear curve fitting

requires determination of a model and algorithms for fitting. These algorithms, in turn, neces-

sitate appropriate model progress curves, a program for fitting and parameter estimation, and

hardware for program execution in biodevices. Nonetheless, progress curves have been studied

extensively [28], fitting software is widely available, and many implementations tailored to bio-

chemical applications exist [31]. It is also generally not problematic to incorporate some signal

treatment units into biodevices [6]. We thus consider this disadvantage to be relatively insig-

nificant. And in the case of initial slopes, the simplicity due to the lack of the model for fitting

may often backfire: the initial few points might not align well leading to erroneous initial slope

estimates based on a simple linear fit. In such cases either the smaller number of points has to

be selected resulting in larger errors or nonlinear fit should be preferred.

Automated noise handling

The simplicity of the standard analysis comes at a cost: it does not readily accommodate auto-

mated noise reduction. Raw experimental signals are typically not very smooth because there

is usually at least one noisy segment corresponding to the mixing period (Fig 2A). Mixing of a

substrate with enzyme or immersion of a transducer with an immobilized enzyme into a sam-

ple often lead to disruption of the signal and are considerably personalized. Therefore, signal

Table 1. Comparison of different approaches to signal processing and calibration.

Standard analysis Nonlinear curve fitting

Amplitude estimates + ++

Slope estimates + ++

Simplicity of implementation ++ +

Automated noise handling - ++

Calibration error mitigation - ++

Extrapolation to starting or ending points - ++

Reduction of measurement time + ++

- not supported

+ low efficiency

++ high efficiency.

https://doi.org/10.1371/journal.pone.0198913.t001

Sensitive operation of enzyme-based biodevices by advanced signal processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0198913 June 18, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0198913.t001
https://doi.org/10.1371/journal.pone.0198913


pre-treatment is required to obtain a “smooth” dataset for the calculation of any of the four

variables considered in this work. If the biodevice incorporates a data treatment unit, simple

modeling can be used to automatically detect the smooth segment of the progress curve. If

there is no such module, either manual intervention is required during every measurement or

a fixed threshold time must be defined, which could lead to the loss of smooth signal if the

threshold is too late or the inclusion of mixing noise if it is too early. Moreover, the depen-

dence of the mixing on a person performing experiments further favors automated data treat-

ment, which eliminates precisely mixing periods from analysis irrespective of how long and

“noisy” they are.

In our system, we chose to calculate slopes over moving windows of time-points to enable

discrimination between the noisy signal acquired during mixing when the slope varies

strongly, and the smooth signal acquired later on when the calculated change in slope from

segment to segment falls below some predefined threshold (Fig 2B). This enabled automatic

identification of the smooth segment of each curve for further analysis. For example, for the

sample with the substrate concentration of 0.6 mM the smooth signal started 26 seconds after

the initiation of the sensor, whereas for 0.4 mM it was 57 seconds. Hence, manual editing

would have either excluded 30 seconds of the meaningful signal for 0.6 mM or included 30 sec-

onds of the noisy signal for 0.4 mM concentrations. And a close comparison of the signal seg-

ments automatically chosen by the software (solid lines in Fig 2B) with the actual signal and

noise revealed that this relatively simple noise handling procedure identified the smooth

regions in the signal with a precision of a few seconds.

Fig 2. An example of raw data from measurements and the demonstration of the principle behind the automated selection of the relevant signal part for further

analysis. (A) The signals with a substantial mixing noise in experiments using 2 mg of haloalkane dehalogenase LinB and different concentrations of bis(2-chloroethyl)

ether; (B) The corresponding absolute values of the slope differences calculated by linear regression with a moving window; the solid lines correspond to the smooth

signal region identified automatically by the software; a dashed line is the threshold for the definition of the smooth segment. A mixing period (dots) is usually the time

from the beginning of an injection to a completely dissolved/mixed sample and, thus, this period varies in time among different measurements. The y-axes were cut to

focus on the meaningful signal.

https://doi.org/10.1371/journal.pone.0198913.g002
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Calibration error mitigation

In addition to the substantial noise that occurs at the start of the measurement period, artifacts

such as sudden spikes or troughs can also appear in the middle of an otherwise smooth data

set. This is why the standard error of the fit is one of the criteria used to evaluate the two

approaches. The nonlinear curve fitting resulted in the smallest standard deviations for the

estimates (Fig 3) of the amplitudes (the normalized average standard deviation was 0.8�10−3)

and slopes (2.2�10−3). The standard analysis showed larger values for both variables (6.7�10−3

and 64.5�10−3 for amplitudes and slopes, respectively). The linear slopes in the standard analy-

sis have significant standard errors even despite the linear fitting used because the slope is

mainly determined by the few points at the beginning of the measurement. The amplitudes in

the standard analysis are more robust in this respect, although they do depend on the points

selected, which are also prone to error. In the curve fitting, the fitted slopes exhibited smaller

standard errors than those from the standard analysis mainly because fitting enables the entire

curve to contribute to the determination of the parameter. Quite expectedly, the smallest stan-

dard errors were observed for the fitted amplitudes.

It should also be noted that both amplitude variables yielded more linear calibration curves

than did the slopes (the relative deviations from a straight line are 22%, 27% for fitted and sig-

nal amplitudes versus 43%, 48% for fitted and signal slopes, respectively, based on the area

under the curves). In other words, the normalized calibration curves for the slope variables

were more concave and exhibited faster saturation upon increases in substrate concentration,

which is disadvantageous because any curvature reduces the sensitivity of the biodevice to the

region where it occurs. For instance, a 20% deviation from the maximal signal in Fig 3A will

produce ranges of approximately 0.6–0.8 mM for amplitudes but only 0.4–0.8 mM for slopes,

Fig 3. Comparison of the calibration curves obtained via the two approaches: The standard analysis and nonlinear curve fitting. (A) Calibration curves for the

biodevice based on experiments with 0.8 mg of haloalkane dehalogenase LinB and sulfur mustard surrogate bis(2-chloroethyl) ether; (B) The normalized standard

deviations of the estimates of the corresponding values used for calibration; the average normalized standard deviations of estimates (bars) were 0.8, 2.2, 6.7, and 64.5

�10−3 for amplitudes and slopes from nonlinear curve fitting, and amplitudes and slopes from the standard analysis, respectively.

https://doi.org/10.1371/journal.pone.0198913.g003
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making calibration based on amplitude variables more sensitive to substrate concentrations in

that range. This is normally the case because the initial slopes are more prone to saturation

than amplitudes, as in the case of Michaelis-Menten kinetics [32]. Ideally, a calibration curve

should be a straight line (the zero-relative deviation of the area under curves) indicating uni-

form sensitivity to substrate concentrations in the range of interest, which is why in the case of

initial velocities a Lineweaver–Burk reciprocal plot may be used to obtain straight lines [33].

However, this transformation complicates the calculation of standard errors as the corre-

sponding transformation of the error term is quite non-trivial; therefore, the amplitude vari-

ables are better choices with respect to this criterion.

Extrapolation to starting and ending points

The use of simple variables in the standard analysis also makes it impossible to extrapolate

whereas in the nonlinear curve fitting extrapolation can be implemented straightforwardly.

There are two applicable types of the extrapolation: the extrapolation to the initial time and the

future time outside of the measurement window. One potential application of curve fitting

and extrapolation to the initial state is in the determination of the sample pH (Fig 4), which

may be useful when attempting to determine whether the pH is within the calibrated range. If

it is not the case, the pH should be adjusted to increase the precision of the measurement or

another part of the calibration surface should (automatically) be selected given there exists

such a pH dimension of calibration.

The extrapolation to the future times may significantly reduce the time required for analy-

sis. Indeed, in case of amplitudes in contrast to the standard analysis, where the whole relaxa-

tion curve must be obtained to provide reliable measures of signal amplitudes, in the nonlinear

curve fitting a partial signal might already be enough to estimate the amplitudes with sufficient

Fig 4. An example of the sample pH estimation by extrapolation of the fitted curve to the starting point of the measurements. (A) The response of the biodevice

based on experiments using 0.8 mg of haloalkane dehalogenase LinB and 0.4 mM of sulfur mustard surrogate bis(2-chloroethyl) ether at four different pH values; (B) the

estimated pH based on the initial point of the fitted curve.

https://doi.org/10.1371/journal.pone.0198913.g004
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precision. In Fig 5 we investigated a trade-off between a time window for measurement and an

acceptable level of data quality, i.e., the error of extrapolation to infinity. We tested the effect of

limiting the timeframe used for curve fitting from the first 3 minutes to the first 15 minutes.

Observation windows as short as 6 minutes proved to be adequate to obtain amplitude values

very similar to those derived by considering complete signal curves, and the confidence inter-

vals for amplitudes determined using these shortened windows were very similar to those

based on complete curves. It might be expedient to note at this point again that this extrapola-

tion is also only possible because of the model available, i.e., if the nonlinear curve fitting was

used; the standard analysis is incapable of providing such information.

Amplitudes vs. slopes

As was pointed out earlier, substrate concentration usually affects both signal amplitudes and

slopes. Based on enzyme kinetics, assuming the pH change is within a linear segment of the

calibration curve for the dye, the amplitude is linearly proportional to the total substrate con-

centration. In contrast, even in the simplest Michaelis-Menten setting, the initial slope is a lin-

ear function of the initial reaction rate, which is proportional to the substrate concentration

but in a hyperbolic manner, i.e., Vmax [S] / (KM+[S]). Consequently, while both absolute values

of amplitudes and slopes increase with the increase of the substrate concentration, the depen-

dence is different. For instance, unlike amplitudes, slopes can be computed without obtaining

a full signal curve, and any reduction of the detection time is usually preferred other things

being equal. However, as was demonstrated in the previous section, amplitudes from the non-

linear curve fitting may also provide reasonable timeframes for quick sample analysis since

they may be explicitly derived by extrapolation of the equations fitted in a short time window

Fig 5. Extrapolation of the curves fitted based on the different time windows to the equilibrated signal at later times in the nonlinear curve fitting. (A) A signal

based on experiments with 0.8 mg of haloalkane dehalogenase LinB and sulfur mustard surrogate bis(2-chloroethyl) ether and the (extrapolated) nonlinear fit for

different cut-off times (in the legend); (B) The values of the amplitude as a function of the cut-off time for fitting (left), and the proportion of the curve excluded from

the fitting expressed as a percentage (right).

https://doi.org/10.1371/journal.pone.0198913.g005
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to the infinite time. Moreover, in the case of low KM values, the enzyme becomes saturated,

which results in the relatively constant initial reaction rate (close to Vmax) and unlike ampli-

tude, the slope becomes insensitive to the substrate concentration. When comparing slopes

and amplitudes, the latter are more robust to the occurrence of more complex than the simple

Michaelis-Menten kinetics in the signal curves.

This is illustrated by an example observed in experiments with LinB and environmental pol-

lutant 1-chlorohexane (Fig 6). LinB has a low Km value of 0.005 mM for this substrate [34]. The

slopes for different substrate concentrations were expected to be very similar even when the sub-

strate concentration was very low because most of the observations would be acquired in the flat

region of the Michaelis-Menten curve. On the contrary, the measured and fitted amplitudes

should still be proportional to the initial substrate concentrations because they are based on the

absolute change in pH caused by substrate conversion but not the kinetics to reach this equilib-

rium parameter. However, in our experiments complex kinetics were observed: the signal curve

exhibited two distinct phases, the first of which exhibited a relatively constant initial slope but was

too brief to permit separate parameter estimation for both phases. Consequently, slope-based cali-

brations obtained by considering complete signal curves lacked robustness and exhibited poor fit

qualities; these problems were not observed for calibrations based on amplitudes.

The above-mentioned case is quite extreme, and the slope estimates do not have to be as

poor as in Fig 6 for more favourable kinetic constants, but if there are some delays in the devel-

opment of signals, the curve fitting will provide more reliable estimates of the slopes. For

instance, apart from the biodevice for detection of chemical warfare, we assembled a similar

biodevice for detection of hazardous pesticide lindane, listed by the Stockholm Convention on

Persistent Organic Pollutants. The importance of such a biodevice is difficult to overestimate:

1,2,3,4,5,6-cyclohexachlorohexane (HCH) production in Sabinanigo between years 1975 and

Fig 6. Poor calibration based on slope versus a better quality calibration based on amplitudes in the case of a complex reaction kinetics. (A) The response of a

biodevice based on experiments using 0.8 mg of haloalkane dehalogenase LinB and different concentrations of environmental pollutant 1-chlorohexane; (B) calibration

points for slopes and amplitudes.

https://doi.org/10.1371/journal.pone.0198913.g006
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1988 alone resulted in approximately 115,000 tonnes of hazardous organochlorine wastes,

largely HCH waste isomers [35]. As can be seen from the calibration curves (Fig 7), the signal

develops rather slowly upon mixing so the initial slopes from the standard analysis of the sig-

nals are again of little value for calibration. Nonetheless, fitted slopes demonstrated the quality

of fit comparable with that of amplitudes.

Based on the amplitudes from the fitting, the acquisition system was also tested on real sam-

ples taken from thirteen places nearby the waste sites in Sabinanigo (Fig 8), which was done in

collaboration with SARGA, Zaragoza (Spain). The results were also confirmed using standard

Fig 7. Comparison of the four candidate variables for calibration of a biodevice for the detection of lindane. (A) The response of a biodevice based on experiments

with 0.1 mg of dehydrochlorinase LinA and different concentrations of environmental pollutant lindane and the corresponding fitted curves (black); (B) Calibration

curves for the biodevice: amplitudes from the nonlinear curve fitting (green), slopes from the nonlinear curve fitting (red), amplitudes from the standard analysis

(blue), and slopes from the standard analysis (yellow); the average normalized standard deviations of estimates (bars) were 2, 6 �10−3 for the amplitudes and slopes

from nonlinear curve fitting and 7, 126 �10−3 for the amplitudes and slopes from the standard analysis, respectively.

https://doi.org/10.1371/journal.pone.0198913.g007

Fig 8. The 13 sites selected for testing the detection of lindane in Sabinanigo.

https://doi.org/10.1371/journal.pone.0198913.g008
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GC. In three different localities, signals obtained with the biosensor resulted in a detectable

concentration, albeit at the lower end of the detection range. For the remaining ten sites, the

concentration confirmed by GC was below the detectable levels for the biosensor of 2.9 mg/L

(Table A in S1 File). These results demonstrate both the applicability of the biosensor in field

measurements as well as (dis)advantages of the acquisition system compared to the standard

analytical technique, i.e., the portability and ease of use of the former versus more precision

and higher sensitivity of the latter.

It is worth mentioning, that the advantages of the nonlinear curve-fitting with fitted initial

slopes and amplitudes are not limited to the acquisition systems discussed in the current

study. They can also be observed in other enzyme-based biodevices provided they capture

relaxation signals, i.e., record signal versus time. Bidmanova and co-workers [24] describe

another portable hand-held biosensor used at contaminated sites in Pančevo, Serbia, where a

chemical factory was bombarded during the Yugoslav wars in 1999. This biosensor EnviroPen

(Photon Systems Instruments, Czech Republic) is based on haloalkane dehalogenase DhlA

and a fluorescence pH indicator 5(6)-carboxynaphtofluorescein. The biosensor produced

relaxation curves with similar features to those described here. Thus, if an enzyme-based bio-

sensor produces time-dependent signals, it may benefit from a more advanced curve-fitting

signal processing. This approach leads to automatic noise removal, more robust parameter

estimation, and the possibility of extrapolation to the initial time or equilibrium.

Conclusions

The aim of this study was to rigorously compare different methods of signal analysis and dem-

onstrate the advantages of using mathematical data treatment techniques to improve the perfor-

mance of newly developed bioanalytical devices. Models derived from raw signal allow more

precise quantification of measurements generated during biodevice development than the

information obtained by standard techniques. In particular, we demonstrated how simple signal

processing helps to optimize biodevices for the detection of various hazardous chemicals: the

analog of warfare chemical sulfur mustard bis(2-chloroethyl) ether, the common environmental

pollutant 1-chlorohexane, and a toxic pesticide 1,2,3,4,5,6-hexachlorocyclohexane and related

molecules, listed by the Stockholm Convention on Persistent Organic Pollutants. The tested

concentrations revealed positive correlation for signal variables in the range of 0.01–0.8 mM for

bis(2-chloroethyl) ether and in the range of 0.01–0.3 mM for γ-hexachlorocyclohexane. As far

as applications of the developed devices are concerned, the nonlinear curve fitting and data

analysis enable automated treatment of the initial noise generated during quite personalized

sample mixing, reducing the measurements’ dependence on the mixing time and the need for

manual signal processing. It also enables reliable extrapolation to initial conditions, making it

possible to precisely quantify actual sample characteristics. In the case when only partial relaxa-

tion was measured, the nonlinear curve fitting allows extrapolation to the equilibrium, reducing

the necessary detection time window even when the amplitudes are used. After comparison of

the calibration based on amplitudes and slopes determined by the fitting to that from the stan-

dard analysis, we conclude that amplitudes from curve fitting should be preferred in most cases

because of their robustness and powerfulness. We expect that presented advanced signal pro-

cessing will find a broad use in the development and operation of new biodevices.
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