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S U M M A R Y

Background: Several medical procedures involving the respiratory tract are considered as
‘aerosol-generating procedures’. Aerosols from these procedures may be inhaled by
bystanders, and there are consequent concerns regarding the transmission of infection or,
specific to nebulized therapy, secondary drug exposure.
Aim: To assess the efficacy of a proprietary high-efficiency-particulate-air-filtering
extractor tent on reducing the aerosol dispersal of nebulized bronchodilator drugs.
Methods: The study was conducted in an unoccupied outpatient room at St. James’s
Hospital, Dublin, Ireland. A novel real-time, fluorescent particle counter, the Wideband
Integrated Bioaerosol Sensor (WIBS), monitored room air continuously for 3 h. Baseline
airborne particle count and count during nebulization of bronchodilator drug solutions
were recorded.
Findings: Nebulization within the tent prevented any increase over background level.
Nebulization directly into room air resulted in mean fluorescent particle counts of 4.75 x
105/m3 and 4.21 x 105/m3 for Ventolin and Ipramol, respectively, representing more than
400-fold increases over mean background level. More than 99.3% of drug particles were <2
mm in diameter and therefore small enough to enter the lower respiratory tract.
Conclusion: The extractor tent was completely effective for the prevention of airborne
spread of drug particles of respirable size from nebulized therapy. This suggests that
extractor tents of this type would be efficacious for the prevention of airborne infection
from aerosol-generating procedures during the COVID-19 pandemic.
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Introduction

Infectious aerosols are airborne particles containing
pathogens. Infectious aerosols from coughing, sneezing and
talking can transmit disease from person-to-person by deposi-
tion in the respiratory tract. While numerous particle sizes are
generated by these activities, particles <10 mm in diameter
(conventionally called ‘aerosols’) remain suspended in air for
long periods of time, increasing the risk of inhalation by those
more than 1 m away. Particles <5 mm are most likely to cause
infection in the lower respiratory tract [1]. The severe acute
respiratory syndrome (SARS) pandemic in 2003, the emergence
of multi-drug resistant Mycobacterium tuberculosis and the
current SARS coronavirus-2 (SARS-CoV-2) pandemic have
heightened interest in the aerosol transmission of disease.
Evidence exists supporting the aerosol transmission of SARS [2]
and tuberculosis (TB) [3,4]. Preliminary data indicate that
SARS-CoV-2 could also be spread in this manner [5], including
the demonstration that airborne particles <5 mm in diameter
carry the highest coronavirus RNA titres [5].

Several medical procedures involving the respiratory tract,
including intubation, non-invasive ventilation and nebulizer
therapy, are known to generate aerosols [6]. These aerosol-
generating procedures create aerosols in addition to those
from breathing and speaking. Aerosols from these procedures
may be exhaled from patients being treated and inhaled by
bystanders. To date, the only airway treatment delivery proce-
dure for which there is clear evidence for aerosol production is
endotracheal intubation [7]. Bronchoscopy and sputum induc-
tion have long been associated with nosocomial transmission of
TB [8,9]. More recently, bronchoscopy, and respiratory and air-
way suctioning have resulted in above baseline (background)
values for the detection of H1N1 influenza aerosols [10].

Deliberate aerosolization by a nebulizer is a common
method of drug delivery to the respiratory tract [11]. A nebu-
lizer is a device that converts liquid into polydisperse aerosol
droplets suitable for inhalation [11]. In the most common type,
a jet nebulizer, the liquid drug solution is broken up into pol-
ydisperse droplets by compressed air or oxygen, and the larger
droplets are then removed by baffles where they amalgamate
and fall back into the reservoir to be recirculated. Most of the
drug released from nebulizers is in particles 1e5 mm in diam-
eter, as required for therapeutic efficiency. Studies with radi-
olabelled inhaled aerosolized drug particles show that only 44%
of inhaled aerosols with mass median diameter (MMD) of 10.3
mm reach the lungs during inhalation, while 79% of aerosols
with MMD of 1.8 mm are deposited in the lungs [12]. Up to two-
thirds of the prescribed dose is released from the nebulizer or
exhaled, passing into the surrounding air [13,14].

There has been some concern about nebulized drug therapy
and transmission of SARS-CoV-2 [15], and most countries have
reduced nebulized bronchodilator treatment for common
conditions such as asthma [16] during the pandemic, prefer-
entially using inhalers. Systematic reviews [17e19] have
characterized clinical evidence that nebulized drug therapy
could transmit viral respiratory infection as inconsistent and of
poor quality. A caseecontrol study of transmission from the
first community-acquired case of coronavirus disease 2019
(COVID-19) in the USA found that exposure to the patient
during nebulized therapy was associated with acquisition of
disease [20].
In the UK, guidance has been issued from the New and
Emerging Respiratory Virus Threats Advisory Group that nebu-
lizer use does not constitute an infectious aerosol-producing
procedure [21].

Several studies have highlighted concerns regarding the
adverse effects of secondary exposure to nebulized aerosols
(inhalation by people other than the intended patient), mainly
with respect to allergy [22], or toxicity of drugs such as cis-
platin [23], pentamidine [24] or ribavirin [25]. In the USA, the
National Institute for Occupational Safety and Health guide-
lines for administration of cytotoxic drugs by nebulizer rec-
ommend the use of engineering controls [26]. Likewise, the use
of nebulized sterile hypertonic saline to induce sputum for the
diagnosis of TB is known to carry consequent risks of TB
transmission [27]. The two main types of controls used to
prevent airborne drug or infectious particle dispersion are local
exhaust ventilation (LEV) devices and negative pressure iso-
lation rooms. LEV devices are, in principle, the most efficient
control method, capturing infectious particles close to the
point of generation. The preferred type of LEV is a complete
enclosure (booth or tent) surrounding the patient, with exhaust
air passage via a high-efficiency particulate air (HEPA) filter
[28,29]. Tents have flexible walls with rigid frames, and require
minor assembly and disassembly [29].

Although LEV devices of this type are in widespread use,
efficacy for reducing dispersal has been assessed by chemical
quantitation [23] rather than direct aerosol particle detection.
Direct, continuous bioaerosol sampling is an established tech-
nology for ambient air characterization in widely differing
external environments [30]. Therefore, the objective of this
study was to examine the efficacy of an extractor tent
(Demistifier 2000; Peace Medical, Wharton, NJ, USA) for
reducing aerosol dispersal of nebulized bronchodilator drugs by
continuous monitoring of particle dispersal from a nebulizer
using a bioaerosol detector.
Methods

This study was conducted in an unoccupied TB outpatient
room at St. James’s Hospital, Dublin, Ireland on 19th July 2019
(Figure 1). The room did not have an active heating, ventilation
and air conditioning system, and the windows were sealed due
to external building work.

Real-time airborne particle data were recorded using a
Wideband Integrated Bioaerosol Sensor (WIBS)-4a (Droplet
Measurement Technologies, Longmont, CO, USA). This uses
light-induced fluorescence to detect single fluorescent aerosol
particles in real-time. It provides particle size (0.5e12 mm),
shape and fluorescent intensity in three channels. Fluo-
rescence emission following excitation at the maximal
absorption wavelengths of tryptophan (280 nm) and NAD(P)H
(370 nm) is detected in two bands: 310e400 nm (Band I) and
420e650 nm (Band II) [30]. WIBS was placed approximately 1 m
from the extractor tent at a height of 40 cm (Figure 1). Con-
tinuous measurements were taken with WIBS counting particles
over a pre-nebulization period to establish background level,
during nebulization with and without tent enclosure, and after
nebulization (Table I and Figure 2). After both open-tent neb-
ulizations, fluorescent particle counts returned to background
level (Figure 3), within mean þ 3 standard deviations (Table I).



Table I

Fluorescent particle statistics

Tent Type Mean � SD Maximum % Increase without tent

Fluorescent

Particles/m3 �104 Particle count/s Particles/m3 �104 Particle count/s

NA Background 0.091 � 0.20 0.026 � 0.055 1.07 0.3 NA
Change 0.261 � 0.35 0.073 � 0.097 1.42 0.4
Nurse entry 0.43 � 0.36 0.119 � 0.1 1.43 0.4

Yes Ventolin 0.065 � 0.16 0.018 � 0.44 0.71 0.2
Ipramol 0.057 � 0.15 0.16 � 0.043 0.71 0.2

No Ventolin 47.51 � 23.47 11.3 � 6.57 87.13 24.4 99.18
Ipramol 42.11 � 37.43 11.79 � 10.48 123.2 34.5 99.42

SD, standard deviation; NA, not applicable.

A

B

C

Figure 1. Demistifier 2000 arrangement in outpatient consulting room. (A) Filtration system containing the pre-filter, high-efficiency
particulate air filter and carbon filter. (B) Plastic tent covering. (C) Nebulizer pump on chair. The Wideband Integrated Bioaerosol Sensor
is on a chair in the bottom right corner (out of picture). Note the tent is loose-footed and does not touch the floor.
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A PARI LC SPRINT jet nebulizer placed on a chair 40 cm above
the ground (Figure 1) was used with a PARI TurboBOY SX com-
pressor (PARI Medical Ltd, West Byfleet, UK), and the nebulizer
solutions were Ventolin Nebules (GlaxoSmithKline Ltd, Dublin,
Ireland) and Ipramol Steri-Neb (IVAX Pharmaceuticals UK,
Runcorn, UK). The nebulizer air flow was approximately 10 L/
min, and nebulization was commenced by turning on the air
flow and continuing until reservoir dryness. No experimental
subject or mannequin was used.

Extractor tent

The LEV device used was the Demistifier 2000, a tent-style
mobile filtered-air isolation device (Peace Medical)
(Figure 1). An extractor fan expels air from the enclosure via a
filter pack incorporating a carbon (charcoal) pre-filter which
captures large airborne particles and a HEPA fibre silicate filter
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Figure 3. Detailed timeline of fluorescent particle counts after Ipram
background level after Ipramol and again after Ventolin (blue dotted
that removes 99.99% of particles�0.3 mm in diameter. The pre-
filter incorporates the Aegis Antimicrobial System (quaternary
silane compound, Croda International, Snaith, UK). The patient
sits or stands in a loose-footed PVC enclosure which reaches
almost to the floor. As the fan operates, air is expelled through
the HEPA filter system at a rate of 240e360 enclosure air
changes/h, and is drawn inwards from the surroundings
underneath the loose-footed enclosure. This continuous cir-
culation does not alter room air pressure.

Bronchodilator drugs

Ventolin Nebules (GlaxoSmithKline Ltd) have 2.5 mg salbu-
tamol (sulphate) as the active ingredient in each ampoule.
Ipramol Steri-Nebs (IVAX Pharmaceuticals UK) have 0.5 mg of
ipratropium bromide (monohydrate) and 2.5 mg of salbutamol
(sulphate) as active ingredients. Other ingredients are sodium
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chloride, water for injections and dilute hydrochloric acid.
Prior experiments (Fennelly et al., submitted) confirmed light-
induced fluorescence of these drugs when aerosolized, facili-
tating WIBS-4A detection.
Statistical analysis

WIBS-4A records raw data as CSV files on a directly con-
nected laptop (Fennelly et al., submitted). A single CSV file
records a maximum of 30,000 particles or up to a maximum
duration of 3 h. During the 3-h measurement period, a total of
22 raw Excel files were collected, comprising a total of 162,487
individual particles. The data were imported into MATLAB
(MathWorks Inc., Natick, MA, USA) and processed further into
appropriate files, subsets and matrices. They were then sum-
med into 10-s intervals and analysed and graphed using R Studio
1.1.383. P-values were calculated using Student’s t-test
(parametric) or ManneWhitney U-test (non-parametric).
Results

The study observation timeline is shown in Figure 2, starting
at 11:42 h and finishing at 14:11 h. Background level was
measured for 21 min before nebulization of drugs. WIBS was in
the same location for both in-tent and out-of-tent nebulizer
analysis. Ipramol was nebulized, followed by Ventolin, twice
inside the tent and then once outside the tent.

There was no increase in fluorescent particle count over
background level associated with nebulization of drugs
inside the tent (Table I and Figure 2). Nebulization of drugs
directly into room air resulted in a >700-fold increase in
fluorescent particle count over background level for Ventolin
and Ipramol (Table I and Figure 2).

Regarding laboratory in-vitro experiments with nebulized
Ventolin and Ipramol (Fennelly et al., submitted), 100% of
particles counted following open nebulization were fluo-
rescent in all channels, but the highest intensity was found
in the FL1 channel. Less than 1% of background particles
were fluorescent. Mean particle size was 1.26 mm and 1.27
mm with size range of �0.06 mm and �0.19 mm for Ventolin
and Ipramol, respectively. Tent enclosure of an operating
nebulizer therefore prevents exposure to these small drug
particles outside the tent (Table I).

The mean fluorescent particle count in the room during
operation of the tent was slightly (but significantly) lower than
background level with the tent filter pump off for both in-tent
nebulized drug time periods (P<0.001) (Table I and Figure 2).

There were two potential confounding events. First, after a
drug sample had run dry while nebulizing in the tent, the tent
had to be breached (opened) in order to change the nebulizer
solution. The time during drug solution change is referred to as
‘change’. During nebulizer changeover, a significant increase in
fluorescent particle count was observed compared with back-
ground level (P<0.001) (Table I and Figure 2). However, it must
be noted that although this increase was significant, it was
quite small in terms of particle count, on average increasing by
0.047/s, and the maximum count observed differed by only one
particle. Second, the entry of a nurse to the room from 12:22 h
to 12:26 h (Figure 2) was associated with a significant two-fold
increase in mean fluorescent particles on a very low back-
ground level from 12:23 min after Ventolin nebulization
commenced to Ventolin þ 6.00 min. However, a simultaneous
statistically significant 12.5-fold increase in non-fluorescent
particles was observed from 0.11/s to 1.31/s (p < 0.001) con-
sistent with nurse entry-associated particles comprising dust.
Discussion

WIBS monitoring showed 100% efficacy of the tent in
restricting the spread of nebulized drug particles. The only
time an increase in fluorescent particles was detected in room
air over background level when nebulization was underway was
during external events (i.e. nurse’s entry). The mean fluo-
rescent particle count was significantly lower than background
level for both in-tent nebulized drug time periods. The likely
explanation for this is indirect filtration of room air by the
extractor tent.

Previous experiments assessing the efficiency of the
Demistifier 2000 in limiting cisplatin secondary exposure from
sustained-release lipid-inhalation-targeting treatment used
inductively coupled plasma mass spectrometry measurement
of platinum content of air samples [21]. No detectable cisplatin
escaped the tent during 14 h of patient dosing [23]. The present
findings using a different (particle counting) method are con-
sistent with this. After nebulization, a small but significant
increase in fluorescent particle count occurred at one point
compared with the background level, but this time point cor-
responded with an event outside the tent that was likely to
increase airborne particles (i.e. room door opening when a
nurse entered).

These data demonstrate that the Demister 2000 extractor
tent was completely effective in the prevention of airborne
spread of drug particles from nebulized therapy. Particles
retained within the tent fell within the size range of airborne
particles of probable respiratory origin shown to contain SARS-
CoV-2 RNA in clinical studies, including those <5 mm in diam-
eter shown to carry the highest coronavirus titres [5,31].
Although this study was not conducted with infectious particles
or human subjects, this suggests that the Demister 2000, like
other portable isolation devices employing filtered extraction
[32], would prevent the dispersal of respiratory viruses such as
SARS-CoV-2 from aerosols generated from infected patients. By
expanding isolation capacity effectively without building or
structural alterations, these devices have potential to increase
treatment capacity during respiratory pandemics whilst pro-
tecting healthcare staff and patients from infection.
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