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Asthma is a heterogeneous respiratory disease characterized by airflow obstruction,

bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma

patients suffer from uncontrolled severe asthma (SA). A major difference between

patients with SA from those with mild-to-moderate asthma is the resistance to common

glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark

of SA. An impediment in the development of new therapies for SA is a limited

understanding of the range of immune responses and molecular networks that can

contribute to the disease process. Typically SA is thought to be characterized by

a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway

inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed

Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate

that the immunophenotype of SA is diverse. This review attempts to summarize the

interplay of different immune mediators and related mechanisms that are associated with

airway inflammation and the immunobiology of SA.
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INTRODUCTION

Asthma is a complex, respiratory disease characterized by airway inflammation and
bronchoconstriction, which make it difficult to breathe. Asthma affects ∼300 million people
worldwide (1). There are heterogeneous clinical symptoms with varying degrees of response
to therapy in asthma. Inhaled corticosteroid (ICS) is a common therapy for asthma, to which
controllers such as a long-acting β2 agonist (LABA) are added if required, and if these fail oral
corticosteroids are also added (2, 3). Approximately 10% of asthma patients do not respond to
available steroid treatments (2). In 2014, a task force of ERS/ATS defined severe asthma (SA) as
“asthma which requires treatment with high dose inhaled corticosteroids (ICS) plus a second
controller (and/or systemic corticosteroids) to prevent it from becoming ‘uncontrolled,’ or which
remains ‘uncontrolled’ despite this therapy” (2). Although patients with SA make up a small
proportion of asthma patients, this subgroup accounts for more than 50% of direct and indirect
healthcare costs associated with asthma (1). Research in the last three decades has shown that
there are multiple phenotypes or subgroups in SA, with differences in clinical symptoms and
molecular profiles. There is also a prominent sex-related disparity, as SA disproportionally affects
adult females compared to males. Some studies demonstrate that almost 2/3rd of severe asthmatics
are females (4). Resistance to corticosteroids can be attributed to a variety of components, from
genetic variability to various molecular factors such as defective glucocorticoid receptor (GR)
function with increased expression of the non-responsive isoform of GRβ , different transcription
factor and signaling pathways, as well as specific cytokine-mediated downstream responses (5–7).
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The repertoire of immunological response that contributes to
the pathophysiology in SA is diverse, and not well characterized.
In this review, we attempt to summarize the immunobiology
of airway inflammation and related molecular mechanisms that
contribute to SA.

Inflammatory Phenotypes Associated With
Severe Asthma
Asthma was traditionally classified as a disease with an increase
in predominantly T-helper (Th) 2 cells and elevated abundance of
Th2-related cytokines namely IL-4, IL-5 and IL-13. Persistence of
elevated levels of these typical Th2 cytokines does not necessarily
correlate with disease severity in SA (8). Current understanding
indicates that the inflammatory phenotypes in SA can be Th2-
low as well as Th2-high (9–11). Inflammatory profile that is
Th2-low with Th17-high responses, accompanied by dominant
neutrophilia, is primarily defined for SA (11–14). However,
some SA patients also demonstrate a Th2-high inflammation
with persistent airway eosinophilia (6). Emerging studies have
started to unravel the heterogeneity based on the abundance
of different types of leukocytes and cytokines in the lungs and
sputum of SA patients. A variety of immunophenotypes which
includes Th2-low/Th17-high, Th2-high or mixed Th1/Th17
inflammatory profiles have been demonstrated in SA. There is
an increase in airway granulocytes, neutrophils and eosinophils
(15), with significantly higher neutrophil accumulation in the
airways and sputum in patients with SA (6, 16–18). The
percentage of neutrophils in the sputum of patients with SA
is ≥40% higher than those with mild to moderate asthma
(19). Importantly, the extent of neutrophilic inflammation has
been shown to be positively associated with the severity of the
disease and steroid-unresponsiveness in SA (17, 19, 20). Th17-
and IL-17-mediated cellular mechanisms are primary drivers
of neutrophil recruitment in the airways of patients with SA
(6, 20). Interestingly, some patients with SA also show airway
subepithelial cells expressing significantly higher IFNγ and IL-
8, and lower IL-4 (Th2-low), compared to those with moderate
and treatment-responsive disease, suggesting the occurrence
of a Th1-skewed inflammatory disease phenotype in SA (16).
Unfortunately, there are no clinically accepted biomarkers
for Th2-low SA characterized with neutrophilic inflammation.
Although neutrophilia is predominantly associated with SA,
clinical trials with a selective CXCR2 antagonist (developed
by AstraZeneca) significantly reduced neutrophil infiltrate but
did not show any benefits in clinical outcomes of SA (21),
further indicating that diverse leukocyte-mediated mechanisms
can contribute to the disease phenotype.

SA patients with Th2-high inflammation show persistent
airway eosinophilia, also termed as late-onset eosinophilic
asthma (6). The eosinophil positive subtype of SA is associated
with an increase in CD3+ CD4+ CD8+ T-cells, mast cells
and macrophages (15). It remains unclear how this subtype of
asthma patients with a Th2-high inflammatory phenotype are
resistant to steroid treatments. Recent studies suggest that IL-
33 produced by airway epithelial cells activate innate lymphoid

cells 2 (ILC2). These IL-33-activated ILC2s produce Th2-
cytokines IL-4, IL-5, and IL-13, leading to eosinophilic asthma
which is steroid-resistant (6, 22). The molecular mechanisms
that underpin steroid-resistance in an eosinophilic airway
inflammation induced by the IL-33-ILC2 axis are not entirely
defined. Nevertheless, IL-33 is significantly elevated in the
airways of patients with steroid-unresponsive asthma (23–25), is
known to mediate glucocorticoid resistance (23, 26), and being
examined as a biomarker for SA (described below). Although
there are several biomarkers described for Th2-high eosinophilic
inflammation such as FeNO, blood total eosinophil count and
eosinophil-derived neurotoxin, longitudinal cohort studies have
shown that none of these biomarkers can sufficiently differentiate
the phenotypes/endotypes in SA (20). Due to the diversity of
inflammatory phenotypes associated with SA, it is important to
unravel the immunobiology of this disease. Here, we further
summarize some of the mechanisms associated with neutrophilic
airway inflammation in SA.

Promotion of Airway Inflammation by
Neutrophils in Severe Asthma
Neutrophils promote airway inflammation in SA by several
mechanisms (Figure 1). Activated neutrophils promote
dysregulation of lipid mediators of inflammation such as
the ceramide/sphingosine-1-phosphate pathway, which results
in further recruitment of neutrophils and eosinophils, thus
amplifying airway inflammation in SA (27). Neutrophils release
pro-inflammatory cytokines such as TNF and IL-1β that
have been associated with SA (12, 28). Neutrophilic airway
inflammation also correlates with increased expression of the
NLRP3 inflammasome and IL-1β in SA patients (28, 29). A study
by Kim et al showed that steroid-unresponsive neutrophilic
airway inflammation is promoted by NLRP3 inflammasome,
mediated primarily through the activation of caspase 1 and
subsequent enhancement of IL-1β (29). In the study by Kim
et al., inhibition of caspase 1 and suppression of IL-1β alleviated
steroid-unresponsive neutrophilic airway inflammation in an
animal model. This is corroborated by another study which
showed that sputum of patients with SA have high levels of
Neutrophil Extracellular Traps (NETs)-derived extracellular
DNA, with concurrent activation of inflammasome marker
caspase 1 in the airways (30). NETs are essentially a lattice of
chromatin fibers released from activated neutrophils which
contain DNA, histones, granule-derived antimicrobial peptides
and enzymes such as myeloperoxidase and neutrophil elastase.
Several studies have demonstrated NETs-mediated mechanisms
in the enhancement of airway inflammation and subsequent
airway epithelial cell damage in SA (6, 30, 31). NETs can
induce pro-inflammatory cytokines by stimulating macrophages,
which further promotes neutrophil infiltration, thus generating
a feedback loop for amplifying airway tissue damage in
neutrophilic asthma (32). Interestingly, a NETs-independent
mechanism mediated by enucleated neutrophil cytoplasts via
the activation of dendritic cells, and driven by IL-17, was
demonstrated in an animal model of neutrophilic airway
inflammation (33). However, neutrophils, NETs and neutrophil
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cytoplasts, have all been shown to correlate with IL-17 levels in
the airways, and are increased in the lungs of SA patients (6, 33).
It thus remains unclear if NETs and/or neutrophil cytoplasts are
essential for the development and persistence of SA characterized
with neutrophilic airway inflammation.

Neutrophil Proteins and Airway
Remodeling in Severe Asthma
Neutrophils are a major source of the proteolytic enzyme
matrix metalloproteinase (MMP) 9, also known as gelatinase
B, which can degrade extracellular matrix. MMP9 degrades
collagen type IV of the vascular basement membrane, and
promotes biological processes that contribute to the decline of
lung function connected to airway hyperresponsiveness (AHR)
and airway remodeling (34–36). Neutrophil-derived MMP9 is
increased in the bronchoalveolar lavage fluid (BALF) and sputum
of patients with SA (37, 38). The amount of MMP9 in BALF
directly correlates with the disease severity and decline in lung
function in asthma (39, 40). A recent study using a treatment with
omalizumab, an anti-IgE monoclonal antibody, demonstrated
that a decrease in BALF levels of MMP9 correlates with a
lower asthma exacerbation rate in SA patients (41). Interestingly,
although the decrease of MMP9 abundance in BALF correlates
with reduction in reticular basementmembrane thickness, it does
not alter collagen or fibronectin accumulation in SA patients
(41). Proteomics and transcriptomics studies have demonstrated
that the neutrophil-derived protein neutrophil elastase (NE) is
upregulated in the sputum of SA patients (42). NE is known
to inhibit tissue inhibitors of metalloproteinases 1 (TIMP1),
which is an inhibitor of MMP9, thus facilitating an increase in
MMP9 and subsequent decline in lung function (43). Aligned
with this, a dysregulated balance of the MMP9/TIMP1 ratio in
sputum has been shown to associate with airway remodeling
and asthma exacerbation (44, 45). Another study showed
that imbalance in MMP9/TIMP1 ratio in serum associates
with reduced responsiveness to steroids (46). It has been
shown that ICS is ineffective in reducing MMP9 levels or
controlling MMP9 activity, thus substantiating a functional
role of MMP9 in steroid-unresponsiveness in SA (47, 48).
Therefore, unraveling mechanisms that underpin MMP9 activity
and subsequent airway remodeling may provide insight for the
development of new intervention strategies to mitigate steroid-
unresponsiveness in SA. A caveat to consider is that although
TIMP1 and MMP9 enzyme activities have been associated with
decline in lung function, the ratio of MMP9/TIMP1 does not
necessarily correlate with the disease severity in asthma (49).
As MMP9 primarily promotes pulmonary fibrosis linked to
airway inflammation (35, 36), it may well be that MMP9 may
not be a critical mediator of AHR wherein the process is
independent of airway inflammation. Thus, targeting MMP9
or its downstream activity may not be fully effective for the
control of airway remodeling in SA. This highlights the need
for a better understanding of the molecular mechanisms that
underpin the biological process of airway remodeling, and that it
should be considered independently from airway inflammation.
This is consistent with recent studies suggesting that airway

remodeling and AHR may be governed by inflammation-
independent biological processes (50, 51).

Cytokines in Steroid-Unresponsive Airway
Inflammation
The cytokine networks that facilitate and amplify the disease in
SA have not yet been completely defined. Cytokines enhanced in
the BALF obtained from children and adults with SA are often
associated with neutrophilic inflammation, with primarily either
a Th17-high or a mixed Th17/Th2/Th1 immunophenotype (17,
52, 53). It is critical to unravel the role of specific cytokines and
interacting protein partners that promote airway inflammation,
AHR and the disease pathophysiology in SA, to gain a better
understanding of immunomodulatory pathways that may be
targeted for new interventions. Cytokines that are dominant
in Th2-high inflammation such as IL-4, IL-5 and IL-13, are
typically associated with eosinophil-skewed responses that are
steroid-sensitive (54). However, the interplay of IL-5 with IL-33
contributes to late-onset eosinophilic asthma that is unresponsive
to steroids (6). Furthermore, a recent study showed that SA
patients with bacterial dysbiosis in peripheral airways have high
levels of IL-13 in BALF along with neutrophilia (14). It is
likely that the cytokine profile in SA is related to subclinical
infections in the lungs (52). However, this is disputed by a study
demonstrating that the BALF cytokine profile in neutrophilic
SA is independent of respiratory pathogens (53). Thus, the
association of airway cytokine profile and the microbiome in SA
is not well understood, and needs to be fully examined. However,
this is beyond the scope of this review. Here, we briefly discuss
cytokines gaining prominence as critical mediators of airway
inflammation in SA, namely IL-33, IL-17, TNF and IFNγ .

IL-33 is a member of the IL-1 family of cytokines, is a
potent activator of ILC2s, and primarily promotes steroid-
resistant eosinophilic inflammation (6, 22, 26, 42). IL-33 is
typically sequestered in the nucleus and released as an “alarmin”
following cell injury and stress, as well as in response to allergen
exposures. Proteases in environmental allergens can cleave the
full length IL-33 to release its mature inflammatory form (55).
The cleaved extracellular form of IL-33 engages the ST2 receptor
to activate ILC2s, resulting in the induction of eosinophilic
inflammation in response to allergens (55, 56). Although, many
immune cells such as macrophages, dendritic cells, eosinophils
and various subsets of T-cells also express the ST2 receptor (56),
the interaction of IL-33 via the ST2 receptor on these immune
cell types, and consequent downstream responses are not fully
understood. Interestingly, chronic exposure to IL-33 results in a
“memory” CD4+ Th2 cell type that preferentially produce IL-
5, resulting in eosinophilic airway inflammation (56). We have
recently shown that IL-33 challenge in a murine model can
induce the production of IL-5 in the lungs (57), which suggests
a mechanism induced by IL-33 to augment IL-5 production.
Overall, the interplay of IL-33 and IL-5 signaling pathways
promote eosinophilic inflammation resistant to ICS therapy in
SA (7). In addition, the combinatorial effect of IL-33 with leptin,
an obesity-related adipokine, promotes eosinophilic airway
inflammation in obesity-related SA (58). Moreover, IL-33 can
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FIGURE 1 | Mechanisms of steroid-unresponsive airway inflammation. Steroid-unresponsive severe asthma (SA) includes both (A) eosinophilic and (B) neutrophilic

airway inflammatory phenotypes. (A) Eosinophilic airway inflammation in SA is characterized by a Th2-high inflammatory phenotype with increased levels of

Th2-cytokines such as IL-4, IL-5 and IL-13 that promote increased accumulation of eosinophils in the lungs. The alarmin IL-33 interacts with innate lymphoid cells

(ILC) 2 to facilitate the production of Th-2 cytokines. In addition, chronic exposure to IL-33 results in “memory” CD4+ Th2 cells that preferentially produce IL-5. (B)

Neutrophilic airway inflammation in SA is typically characterized with a Th17-high and Th2-low inflammatory phenotype, with increased accumulation of neutrophils in

the lungs. Different cytokines, namely IL-17, IFNγ , TNF and IL-1β, as well as the activation of inflammasome NLRP3, play a critical role in promoting neutrophilic airway

inflammation in SA. Cytokines associated with both these immunophenotypes in SA dysregulates glucocorticoid receptor (GR) function; IFNγ and IL-27 suppress the

nuclear translocation of GRα, the GR isoform that regulates glucocorticoid-mediated anti-inflammatory gene expression. IL-17 and TNF increases the expression of

GRβ, isoform that attenuates GRα. This figure summarizes some of the key mechanisms related to airway inflammation in SA (created with BioRender.com).

also stimulate mast cells to enhance Th17-mediated responses in
neutrophilic inflammation (59). This is corroborated by various
clinical studies, both in children and adults, which correlate
the levels of IL-33 with asthma disease severity and steroid-
unresponsiveness (23–25, 60, 61). Consequently, IL-33 is defined
as a biomarker and a therapeutic target for SA (62, 63).

Another biomarker associated with SA is IL-17. Clinical
studies show enhanced levels of IL-17, primarily IL-17A and
IL-17A/F, in the lungs, serum and peripheral blood-derived
mononuclear cells, of patients with SA (6, 64–67). Moreover,
enhanced abundance of IL-17 in the lungs positively correlates
with asthma severity, and is not mitigated by steroid treatments
(6, 13, 33, 66, 68). IL-17 contributes to the Th2-low/Th17-
high immunophenotype characterized by neutrophilic airway
inflammation in SA (6, 69). IL-17 produced from Th17 cells

recruit neutrophils to the lungs and promote steroid-resistant,
neutrophilic airway inflammation (13). Similarly, IL-17 produced
by ILC3 cells also leads to a steroid-resistant phenotype, which
is associated with obesity-related asthma (70). Thus, both IL-
33 (discussed above) and IL-17 have been shown to be critical
cytokines associated with promoting airway inflammation in
obesity-related SA. Inflammatory processes related to obesity and
asthma are thought be the underpinning bridge in obesity-related
SA [reviewed in (71)]. Although obesity is associated with SA,
immunomodulatory mechanisms of obesity-related SA are not
completely defined.

Immunoreactive IL-17 signals through IL-17-receptors
expressed on airway structural cells such as bronchial epithelial
cells, resulting in the induction of neutrophil chemoattractants
which enhances neutrophilic airway inflammation (69). These
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studies substantiate the critical role of IL-17 in the disease
process of SA. Recent studies have shown that Th17-derived
IL-17 can induce the expression of the steroid-unresponsive
GRβ isoform to promote steroid resistance (66, 67). Although,
the role of IL-17 in facilitating SA is now well established, there
are no effective therapies that can mitigate steroid-resistance
by targeting either IL-17 or associated neutrophil signaling to
effectively control SA (72, 73). This also point to the emerging
theme that the immune networks involved in the etiology and
pathophysiology of the different endotypes of SA are disparate
and complex. Previous studies clearly suggest that different
cytokine interactions with mixed leukocyte profiles promote
various immunophenotypes in SA (66, 74).

Interaction of IL-17 with TNF, a Th1-effector cell cytokine,
also drives Th17-inflammation and steroid-resistance, resulting
in a mixed Th1/Th17-mediated response in SA (12, 75). TNF is
elevated in the sputum, and TNF-receptors (TNFR1 and TNFR2)
are enhanced in the sputum and serum of patients with SA,
and are generally associated with neutrophilic inflammation (12,
76). The importance of TNF in SA is reinforced by a recent
study demonstrating that treatment with azithromycin, which
intervenes in TNF dysregulation, suppresses TNF and TNFR2
in SA (76). Aligned with this, a randomized clinical trial also
demonstrated that azithromycin can control exacerbations in
SA (77). TNF predominantly promotes airway inflammation in
SA (12). However, elevated TNF in the lungs can also induce
MMP9 production from bronchial epithelial cells, engaging the
TNFR1-TRAF2 axis involving protein kinase C and c-Jun / Src
kinase signaling pathways (78). As MMP9 promotes fibrosis and
decline of lung function in SA (described above), a consequence
of elevated TNF may be associated with lung remodeling
in SA. Contrary to this, neutralization of TNF does not
improve AHR, only improves airway inflammation, in animal
model studies (12). Therefore, a direct role of TNF facilitating
lung remodeling and AHR via MMP9 production cannot be
definitively stated.

Synergy of different cytokines has been defined to augment
steroid-resistance in asthma (Figure 1). The synergy of IFNγ

with various inflammatory mediators is described in the
pathobiology of SA. For example, TNF synergizes with IFNγ to
mediate steroid-resistance in asthma (79). Integrated signaling
of IFNγ with LPS induces neutrophilic inflammation and
macrophage-dependent steroid-insensitive AHR (80). Similarly,
IFNγ together with IL-27 mediate steroid-resistance and
AHR in SA (81). It is thus not surprising that IFNγ is
found to be increased in sputum and blood-derived cells
from patients with SA compared to those with mild-to-
moderate asthma (64). Similarly, high levels of IFNγ with
Th1-high immunophenotype have been demonstrated in the
airways of patients with SA (64, 82). Another important
biological function of IFNγ, in the context of SA, is its
ability to induce the production of IL-33 from airway smooth
muscle and bronchial epithelial cells (25, 83). IL-33 is a
critical mediator of the steroid-refractory phenotype (discussed
above). Therefore, IFNγ may be also contributing to the
pathobiology of SA by regulating the production of IL-33 in
the lungs.

Overall, studies characterizing the role of different cytokines
in SA suggest that interactions of different cytokines
lead to complex signaling networks resulting in disparate
immunophenotypes in the disease process of SA (Figure 1).
Thus, targeting a single cytokine or signaling cascade may not
be effective as an intervention strategy for all SA patients. In
order to gain insight into the complex signaling networks,
several international consortiums have used various omics-based
approaches to identify drug targets for SA (84). It is likely that
common hubs or nodes within overlapping immune networks
associated with the different immunophenotypes may be useful
as drug targets for SA. A challenge will be to maintain the
beneficial aspects of immune responses while targeting critical
nodes within immune networks in order to control SA.

Molecular Mechanisms of
Steroid-Unresponsiveness
Anti-inflammatory effects of glucocorticoids (type of
corticosteroids) are mediated by binding to the GR isoform
GRα, followed by the translocation of GRα from the cytoplasm
to the nucleus to regulate gene transcription (6). Whereas the
GRβ isoform located in the nucleus does not bind to steroids,
and also attenuates GRα function (85). A primary mechanism
of steroid-resistance in SA is by the dysregulation of GR
function, which can be mediated by the cytokines involved in the
pathobiology of SA (discussed above). For example, a primary
mode of action of TNF in SA is to promote increased expression
of the GRβ isoform, which changes the GRα/GRβ ratio making
GRβ the dominant isoform thus resulting in steroid-resistance
(86). Similarly, Th17-derived IL-17 induces the expression
GRβ to mediate steroid resistance (66, 67). IFNγ together with
IL-27 suppresses the nuclear translocation of GRα in response
to glucocorticoids, to induce the steroid-refractory phenotype
and AHR in SA (81). These studies clearly demonstrate that
specific cytokines that are integrally associated with the various
immunophenotypes of SA can facilitate dysregulation of
GR-mediated response to steroids (Figure 1).

Another mechanism of anti-inflammatory effects of
glucocorticoids is via the induction of a dual phosphatase,
protein kinase phosphatase 1 (MKP1), which attenuates pro-
inflammatory gene transcription by dephosphorylating p38
MAPK (87). It is important to note that the anti-inflammatory
effects of MKP1 is dependent on the kinetics of its mode
of action, and post-translational modifications, thus MKP1-
mediated functions may not be always anti-inflammatory
(88). Nevertheless, the steroid-unresponsiveness phenotype
is also thought to be mediated by the impairment of MKP1
function (88, 89). Thus, a higher concentration of steroids
is required to induce MKP1 in patients with SA compared
to those with steroid-sensitive disease (89). Note that critical
elements of innate immunity, NLRP3 inflammasome and IL-1β ,
also contribute to steroid-resistance, with NLRP3 expression
enhanced in SA patients with neutrophilic inflammation (28, 29).
TNF, which can mediate steroid-unresponsiveness (86), also
regulates the expression of NLRP3 and MKP1 albeit with
different kinetics (90). These studies suggest integral links
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between innate immune responses and regulatory pathways
that underpin steroid-unresponsiveness, the immunobiology of
which remains to be determined. Recently, epigenetic regulations
primarily by microRNAs miR-9, miR-21 and miR-126 have been
defined as molecular mechanisms in the process of steroid-
resistance (91, 92). Thus, there is emerging interest in examining
interventions that modulate microRNA-mediated epigenetic
regulation of inflammasome and other immune pathways for
the control of SA. It is clear that further studies are needed
to unravel regulatory mechanisms and immune networks that
control steroid-resistance, and to better understand how these
are related to the various immunophenotypes in SA, in order to
develop new therapies for effective management of the disease.

SUMMARY

Fundamental immunobiology of SA is extremely complex and
heterogenous, with various immunophenotypes defined from
patient cohorts and animal studies. The immune heterogeneity
in the disease process is a considerable obstacle in developing
new therapeutic approaches to efficiently mitigate SA and/or
overcome steroid-resistance. It is clear that a comprehensive
understanding of immune networks that contribute to the
pathogenesis and regulation of inflammatory phenotypes in SA
is critical to gain insight into the biological processes related to
heterogeneity in SA. Furthermore, as studies emerge detailing
the functions and signaling mechanisms of specific cytokines e.g.,
IL-17 and IL-33, or other immune mediators, on the initiation,
persistence and exacerbation of SA, the utility of these immune
effector elements as biomarkers or therapeutic targets will also
need to be examined in the context sex and population-associated

immunogenetics. It may well be that combination therapies or
personalized approaches will be needed for different patient
groups with different disease immunophenotypes to effectively
control SA. Nevertheless, detailing immune networks in SA is an
unmet clinical need, which is critical for the identification of new
drug targets and intervention strategies to alleviate the disease
process in SA.
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