Carey et al. BMC Genomics (2017) 18:543
DOI 10.1186/512864-017-3905-1

Novel Plasmodium falciparum metabolic

BMC Genomics

@ CrossMark

network reconstruction identifies shifts
associated with clinical antimalarial

resistance

Maureen A. Carey', Jason A. Papin® and Jennifer L. Guler**

Abstract

Background: Malaria remains a major public health burden and resistance has emerged to every antimalarial on
the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the
elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of
existing experimental knowledge and further understanding of these mechanisms.

Results: Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual
blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance.

We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene
knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration
of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial
resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging

and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are
consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite
biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an
incomplete transition to the metabolic state most appropriate for nutrient-rich blood.

Conclusion: Using this systems biology approach, we identify metabolic shifts that arise with or in support of the
resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data
for the identification of candidate drug targets for the treatment of resistant parasites.
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Background

Three billion people are at risk for malaria infection
globally and treatment approaches are failing. Malaria is
caused by Plasmodium parasites, and most deaths are as-
sociated with human-infective P. falciparum. Without an
efficacious vaccine, antimalarials are essential to combat
the severity and spread of disease. Combination therapies
are implemented to preserve antimalarial efficacy and

* Correspondence: papin@virginia.edu; jlg5fw@virginia.edu

“Department of Biomedical Engineering, University of Virginia, Charlottesville,
USA

Department of Biology, University of Virginia, Charlottesville, USA

Full list of author information is available at the end of the article

( BioMed Central

slow resistance development [1-3]; despite this approach,
this eukaryotic pathogen has developed resistance to every
antimalarial on the market [4-6].

Typically, resistance is conferred by genomic changes
that lead to drug export or impaired drug binding (for
example [7]); however, non-genetic mechanisms have also
been implicated in Plasmodium resistance development
[8-10] and other pathogenic organisms, such as Pseudo-
monas aeruginosa [11] (reviewed in [12]). These
laboratory-based studies provide insight into metabolic
flexibility but the presence of relatively few examples
limit our understanding of this method of adaptation,
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especially in malaria. Here, we aim to look beyond gen-
etic mechanisms of resistance to identify resistance-
associated metabolic adaptation. We hypothesize that
metabolic changes must occur to support the resistance
phenotype and resistance-conferring mutations. Ultim-
ately, these changes, or ‘shifts; are required to increase
the fitness of resistant parasites, or support the devel-
opment of additional genetic changes that affect fitness.
Metabolic or phenotypic ‘background’ could be as im-
portant as genetic background in the development of
resistance.

In clinical malaria infections, artemisinin resistance is
established in Southeast Asia [13—15]. This phenotype
is correlated with mutations in the P. falciparum
Kelchi13 gene [13, 14, 16, 17] and changes in both
signalling pathways [18-21] and organellar function
[22-29]. Overall, due to the complexity of artemisinin’s
mechanism of killing (see citations above and [30-36]),
it has been challenging to separate the causes and ef-
fects of resistance. For this reason, there are few novel
solutions to antimalarial resistance beyond altering the
components of combination therapies to regain efficacy
(e.g. artemisinin-atovaquone-proguanil [1]). We aim to
gain a new perspective on resistance by viewing it
through a ‘metabolic lens’. By characterizing the meta-
bolic shifts that occur during or after resistance acquisi-
tion, we can begin to understand more about what it
takes to support new functions, such as novel signalling
(e.g. PI3K signalling is affected by PfKelch13 mutations
[14, 15, 20, 37, 38]), drug detoxification (e.g. regulat-
ing ROS stress associated with artemisinin treatment
[24, 25, 30, 33]), or stage alterations (e.g. dormancy of
early ring stages [18, 39-42]) in resistant parasites.
Once we identify these compensatory changes, we can po-
tentially target them. Plasmodium metabolic genes are
better characterized than signalling pathways, as (for ex-
ample) PlasmoDB identifies 43 3D7 genes associated with
the term ‘signalling’ as opposed to 1112 3D7 genes associ-
ated with the term ‘metabolism’ [43], and many antimalar-
jals target metabolic functions [44—47]. Moreover,
metabolism has been described as the best-understood
cellular process [48], making interpreting metabolic ana-
lyses more tractable. Ultimately, if we can identify target-
able conserved metabolic differences that arise with or in
support of resistance, we can develop more robust anti-
malarial combination therapies aimed at preventing
resistance.

Here, we use a systems biology approach to analyze
the metabolic profile associated with resistant and sensitive
parasites. First, to maximize the accuracy of our predic-
tions, we curated an existing genome-scale network recon-
struction of asexual blood-stage P. falciparum metabolism.
Using constraint-based metabolic modeling, we inte-
grated transcriptomic data from over 300 clinical
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isolates from Cambodia and Vietnam with varying
levels of artemisinin sensitivity. This approach identi-
fied innate metabolic differences that arise with or in
support of the resistant phenotype, despite large clinical
variability, over multiple genetic backgrounds. Add-
itionally, we were able to explore the functional conse-
quences of expression changes by predicting essential
enzymes within these distinct metabolic contexts; these
enzymes are candidate drug targets for the prevention
of drug resistance.

Results

Analysis of artemisinin sensitive and resistant
transcriptomes

In order to investigate the presence of a distinct metabolic
phenotype in artemisinin resistant parasites, we analysed a
previously published expression dataset of clinical isolates
from Southeast Asia (NCBI Gene Expression Omnibus ac-
cession: GSE59097). Patient blood samples were collected
immediately prior to beginning artemisinin combination
therapy, and their relative expression was evaluated via
microarray [49]. This dataset profiles (1) in vivo artemisi-
nin naive parasites, providing a view of the innate differ-
ences between sensitive and resistance parasites, and (2) a
diverse population of parasites collected from multiple
collection sites across two countries, allowing us to
summarize variable resistant phenotypes that laboratory
adapted parasites and in vitro assays cannot practically
encompass.

We confined our analysis of this previously published
expression data to ring-stage parasites from Cambodia
and Vietnam, two countries that had clear resistant and
sensitive parasite populations as defined by parasite
clearance half-life, an in vivo phenotypic measure of re-
sistance, and PfKelch13 mutations, a commonly-used
genetic marker of resistance (Fig. 1la & b). There were 97
and 24 ring-stage resistant parasite expression profiles
from Cambodia and Vietnam, respectively; resistant
parasites are defined by both the presence of PfKelch13
mutations and a parasite clearance half-life of more than
5 h. There were 141 and 43 ring-stage sensitive parasite
expression profiles from Cambodia and Vietnam, re-
spectively, as defined by wild-type PfKelch13 alleles and
clearance half-life of less than 5 h. Despite obvious geno-
typic and phenotypic separation (Fig. 1a & b), artemisi-
nin sensitive and resistant parasites do not separate well
by hierarchical clustering of expression data (Fig. 1c).

Additionally, when comparing sensitive parasites to re-
sistant parasites in either country, the fold change of tran-
script expression is moderate; no genes exhibited notable
differential expression across both analyses (fold change
>2 or <0.5 for both Cambodia and Vietnam sample sets,
data not shown). Among metabolic genes specifically,
expression differences are small (maximum fold change
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Fig. 1 Ring-stage parasites are genotypically and phenotypically distinct, yet expression profiles fail to separate resistance phenotypes. a & b
Genotypic clustering: Genotypic (any mutation in PfKelch13) and phenotypic markers (parasite clearance half-life) were used to define artemisinin
resistance in ring-stage parasites from GSE59097; using both markers, resistant and sensitive parasites from Cambodia (a) and Vietnam (b) separated
into distinct populations. Genotype was identified in [49] with samples classified as containing the reference allele (blue), a mutant allele (red, any in

the PfKelch13 propeller domain), a mixed population (black, at least two reads from each the reference and mutant alleles), or missing (grey, no
sequencing data or fewer than 5 reads). ¢ Phenotypic clustering: Resistant (red) and sensitive (blue) parasites from the two countries fail to cluster
with consideration of genome-wide gene expression data (data not shown) or expression of metabolic genes alone

0.6 and 1.6) and few are both significant and conserved
between data sets (11 in common from 174 in Cambodia
and 37 in Vietnam; Additional file 1: Figure S1A & B).
Large amounts of transcriptional variation (due to
stage-dependent expression, genotypic variability, and
host-pathogen interactions) across the population of
clinical parasites may hide differences in the data sets.
Moreover, we built a Random Forest classifier with ex-
pression data to predict resistance outcomes; the classi-
fier predicted resistance poorly, with only 30.77%
sensitivity (indicating only 30.77% of resistant samples
were correctly identified) and 97.96% specificity (indicat-
ing 97.96% of sensitive samples were correctly identified)
(Additional file 2: Figure S2A).

Although the expression data classifier performed
poorly, a similar classifier built from metadata associated
with each sample (patient and parasite characteristics)
was highly predictive of resistance status with 85.71%
sensitivity and 88.91% specificity (Additional file 2:

Figure S2B). In our analysis, two specific mutations and
collection site were the most predictive of resistance status;
removing any of these three variables decreased classifier
accuracy by over 20%. If Kelchl3 mutations are used to
predict resistance (rather than used to define resistance),
Kelch13 mutations are most predicative of resistance (data
not shown). Thus, metadata better predicts resistance than
expression data. In order to deconvolve this innate variabil-
ity and identify functional cellular changes associated with
varying levels of artemisinin sensitivity, we integrated meta-
bolic expression data into a genome-scale metabolic model
of blood-stage P. falciparum.

Manual metabolic network curation

To maximize the predictive ability of the metabolic
network model, we curated an existing, well-validated
reconstruction of asexual blood-stage P. falciparum
(iTH366, [50]) to improve its scope, and species- and
stage-specificities. Our curated reconstruction, iPfall7,
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includes all metabolic reactions encoded by characterized
genes in the parasite’s genome, summarizing metabolic
behavior during the asexual blood-stage parasite. It is lar-
ger in scope from the previously published version due to
the addition of 268 reactions (Table 1, Additional file 3:
Table S1 & S2), with 9.6% more enzymatic reactions and
2.3% more reactions with gene annotations. We also
added 124 genes to the network (Table 1 & Additional
file 3: Table S1). It is larger in scope and gene coverage
than a recent de novo reconstruction (Table 1). iPfall7
has gene annotations for 80.0% of enzymatic reactions,
and 20.5% of transport and exchange reactions (Fig. 2).
iPfal17 includes 25.4% of the 1178 EC annotations in the
P. falciparum genome, adding 14 EC numbers [43] (Add-
itional file 3: Table S1). We evaluated enzyme complex
or isozyme status and replaced 7 gene-protein-
reaction relationships (Additional file 3: Table S1).

Following curation, the species- and stage-specificity of
the model was also improved. Gene annotations were
evaluated against PlasmoDB resources [43], resulting in
124 additional gene annotations (Additional file 3: Table
S1). Importantly, we removed cellular import of pyrimi-
dines from the host erythrocyte, as P. falciparum relies on
de novo synthesis (Additional file 3: Table S2) [47, 51].
Blood-stage specificity was improved by removing genes
only used in other life stages (specifically, the gene
encoding chitinase [52]). Additionally, 77 functionally
unnecessary reactions were removed due to a lack of
genetic and biochemical support (Additional file 3:
Table S2). Reactions necessary for growth were added
manually (Additional file 3: Table S1). Reactions were
individually curated, changing metabolite utilization
and stoichiometry (Additional file 3: Table S1).

The iPfall7 reconstruction contains five compart-
ments: extracellular space and four intracellular com-
partments (cytoplasmic, mitochondrial, apicoplast, and
food vacuole, Additional file 3: Table S1). Few studies
since the Plata, et al. reconstruction (iTH366) investigated
protein localization and therefore, few changes were made
to compartmental assignments; the food vacuole

Table 1 Asexual blood-stage Plasmodium falciparum parasite
model, iPfal17, summary statistics

iTH366 [50] iPfa [71] iPfal17

Reactions 1001 1066 1192
Enzymatic reactions 658 670 721
Reactions with gene annotations 657 586 672
Reactions with annotated citations 0 0 231
Metabolites 915 1258 991
Genes 366 325 482
Biomass components 51 73 82
Metabolites in extracellular environment 108 236 152
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Fig. 2 iPfal17 model curation is broad and comprehensive. Number
of reactions in the P. falciparum reconstruction grouped by metabolic
subsystems. Subsets of those reactions with gene annotations, literature
citations, and modifications in the curation effort for this reconstruction
are noted

compartment, containing two reactions, was added in this
version of the reconstruction (Additional file 3: Table S1).
As in iTH366, reactions with unknown localization were
placed within the cytoplasm (Additional file 3: Table S1)
[53]. Again, similar to iTH366, a mitochondrial inner
matrix was not added, as there is no evidence that the
blood-stage parasite requires a proton gradient for energy
production [51, 54, 55]. Nonpolar metabolites generated
in one compartment and utilized in another were trans-
ported as needed for network functionality by assuming
passive diffusion [53].

We also included annotations that will accelerate
future curation efforts. First, we did not remove blocked
reactions (those that do not carry flux due to their lack
of connectivity to other components of the network)
because further research may add connectivity to these
network components. iPfall7 contains 303 blocked
reactions and 78 dead-end metabolites (specifically, 32
metabolites are not consumed and 46 are not produced).
For example, 4-pyridoxate (a byproduct of vitamin B6
biosynthesis) is included; production is supported by
bioinformatic analyses of the parasite genome, but the
metabolite function or excretion pathway is not known.
Second, citations are included within iPfall7 to identify
the date of discovery and degree of literature support for
each reaction (Additional file 3: Table S1 & S2). Litera-
ture support was only added to modified reactions,
resulting in 231 citations (Table 1 & Additional file 3:
Table S1).

Metabolomics curation of biomass reaction

For the newly curated iPfall7 model, we modified the
Plasmodium biomass reaction to better represent in vitro
data (Table 2). We added tRNA-ligated amino acids to
the amino acid requirements to force protein
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production, rather than only demanding free amino
acids. Additionally, lipid classes were added based on
recently published metabolomics findings; phos-
phatidylinositol, phosphatidylglycerol, sphingomyelin, dia-
cylglycerides, and triglycerides were added due to their
observed increase in abundance between uninfected and in-
fected erythrocytes [56]. Phosphatidylcholine ethers, acyl
phosphatidylgycerol, lysophosphatidylinositol, bis(monoa-
cyl-glyceryl)phosphate, and monosialodihexosylganglioside
were excluded from the biomass reaction, as there is no
known Plasmodium catabolism or import pathways for
these lipids [56]. Analysis of metabolomics data enabled
further curation of the biomass reaction with the addition
of malate, alpha-ketoglutarate, and glutathione (both re-
duced and oxidized) [28, 57, 58]. Importantly, we included
the requirement for cellular export of lactate and hemozoin.
Lactate is measured in extracellular in vitro metabolomics
and in vivo via blood acidosis; it is the terminal product of
glycolysis, the sole energy production pathway used by the
blood-stage parasite [59-62]. By requiring lactate export,
we force the model to utilize glycolytic energy metabolism.
Similarly, hemoglobin degradation is essential for the
blood-stage parasite to produce free amino acids. Parasites
can also import and synthesize some amino acids, but the
breakdown of hemoglobin (and subsequent production of
its byproduct, hemozoin) is necessary for growth [23, 63,
64]. Thus, by requiring hemozoin export, we force the in
silico parasite to degrade hemoglobin as the primary path-
way for amino acid production.

iPfal17 validation and functional requirements
To validate the model against experimental results,
essential metabolic tasks of blood-stage growth were
identified and evaluated (Table 3). These tasks simulate
experimental manipulations of the parasite or culturing
environment, or clinical observations. For example, the
parasite is able to grow with glucose as the sole carbon
source and hypoxanthine as the purine source, and the
parasite’s induction of blood acidosis via lactate [65-67].
Additional tasks include the parasite’s failure to grow in
the presence of antimetabolites for riboflavin, nicotina-
mide, thiamine, and pyridoxine [68]. We defined this set
of tasks to provide a framework for curation and valid-
ation efforts of future network reconstructions. Although
iPfal17 fails to pass all metabolic task simulations, we be-
lieve this is the most comprehensive and accurate model
to date due to the curation efforts and results from tests
of the metabolic tasks. Failures generally exist in pathways
that currently contain many reversible reactions (i.e. tasks
5a—b for glycolysis) or if the experimental evidence is not
mechanistic (i.e. tasks la—d) or fully characterized (i.e.
task 4; Table 3).

We also evaluated predictions of the effects of gene
knockouts and enzyme inhibitors using previously
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Table 2 Metabolic components of the biomass function

Complex metabolites - protein, composed of:

> tRNA ligated amino acids (20)*
- lipid, composed of

o sphingomyelin*

o cholesterol

o phosphatidyl choline

o phosphatidyl ethanoloamine

o triacylglycerides*

o diacyclglycerides*

o phosphatidyl inositol*

o phosphatidyl glycerol*

o acyl phosphatidy!l glycerol*

- reduced and oxidized glutathione*

- protoheme
Amino Acids - alanine - arginine
- asparagine - aspartate
- cysteine - glutamate
- glutamine - glycine
+ histidine - isoleucine
« leucine « lysine
- methionine - serine
- phenylalanine « proline
- threonine - tryptophan
- tyrosine - valine
Carbohydrates + malate*
- a-ketoglutarate*
Nucleotides « ATP - dATP
. CTP - dCTP
. GTP - dGTP
- UTP - dTTP
- thiamine diphosphate
Excreted metabolites - lactate*
+ hemozoin*
Vitamins « pyridoxal
« 5-phosphate riboflavin
Other - s-adenosyl - putrescine
l-methionine
- spermidine « 2-octaprenyl
6-hydroyphenol
« f-thf « mthf
- thf - FAD
- coenzyme-A - NAD
- water - Fe’" & Fe’*
- NADP - so*
- NH*+

f-thf = formyl tetrahydrofolate;

mthf = methyltetrahydrofolate; thf = tetrahydrofolate

*metabolites that have been added to the iPfal17 and are not present in
the biomass function of iTH266
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Table 3 Experimentally derived metabolic tasks for evaluating iPfal17

Metabolic Task In vitro iPfal17  Hypothesis for in vitro/in silico discrepancies
1a Growth in the presence of antimetabolite, riboflavin? no [68] no -
1b  Growth in the presence of antimetabolite, thiamine? no [68] yes Unknown antimetabolite mechanism; Off target effects
of antimetabolite
1c Growth in the presence of antimetabolite, nicotinamide? no [68] yes Unknown antimetabolite mechanism; Off target effects
of antimetabolite
1d  Growth in the presence of antimetabolite, pyridoxine? no [68] yes Unknown antimetabolite mechanism; Off target effects
of antimetabolite
2a  Grows without loops? no no -
2b  ATP production if no exchange is allowed? no no -
3a  Can produce purines? yes yes -
3b  Growth with hypoxanthine as the only purine source? yes [65] yes -
3¢ No growth if guanine, guanosine, inosine, adenine, or yes [65] 60% -
adenosine are only purine sources?
4 Growth with IPP supplementation and no apicoplast? yes [139] no Nuclear encoded proteins that function within the
apicoplast may be expressed in the cytoplasm if
the organelle is not present.
5a  Growth with glucose? yes [66] yes -
5b  Growth with alternative sugar source (no glucose, with no [66] yes Central carbon metabolism contains many reversible
ribose, mannose, fructose, galactose, or maltose)? reactions. Carbon sources that support growth are
debated [140].
6a  Can produce all amino acids except isoleucine? yes [66] yes -
6b Is growth reduced without methionine, proline, tyrosine,  yes [63] no Model is not designed for growth reduction experiments.

cystine, glutamate, or glutamine supplementation?

6¢c  Growth without isoleucine supplementation?

7 Growth without calcium pantothenate? no [93]
8 Growth without p-aminobenzoic acid? no [141]
9 Cannot produce any metabolites if no exchange no

is allowed?

10 Accuracy of experimental essentiality predictions -

11 Accuracy of P. berghei essentiality predictions -

no [63, 93] no -

no -

no -

no -

79.5%"  See Table 4 and Additional file 3: Table S7
614%°  See Additional file 3: Table S6

#Accuracy calculated as the sum of true positives and true negatives, divided by total observations

published experimental results (Table 4; Additional file
3: Table S7). Our updated model had improved accuracy
of gene and reaction essentiality predictions, compared
to previous models (Table 4). We predict that there are
159 essential reactions, and 107 lethal single gene knock-
outs (Additional file 3: Table S3 & S4). Of experimen-
tally validated knockouts, iPfall7 accurately predicts
essentiality of 79.5% of genes and enzymes tested in P.
Salciparum and 61.4% for those tested in P. berghei (Ta-
bles 3 & 4, Additional file 3: Table S6); predictions are
also more accurate for gene knockouts and are less ac-
curate in predicting enzyme inhibition (Tables 3 & 4).

Integration of expression data into the metabolic model

With this high-quality metabolic network reconstruction,
we integrated expression data from sensitive and resistant
parasites collected in Cambodia and Vietnam into iPfal17
using the Metabolic Adjustment for Differential Expres-
sion algorithm (MADE [69]). MADE constrains gene

utilization in the model to maximally account for statisti-
cally significant changes in expression while maintaining
network functionality requirements (e.g. parasite viability).
MADE integrates differential expression by minimizing
the difference between significant expression changes (up/
down) and model constraints (gene usage); this avoids
arbitrary thresholding and ensures the condition-specific
model is consistent with experimental data. Essential
genes and genes supported by expression data (by having
no change in expression or being upregulated in that con-
dition) remain in the model that represents that condition.
Conversely, if a gene is significantly down regulated in a
condition and not functionally necessary for metabolism,
the reactions catalyzed by the encoded enzyme will be
removed from the model. Therefore, condition-specific
models contain a reduced network with a subset of re-
actions annotated in the original curated reconstruction
that are either necessary for network functionality (as
defined by the objective function) and/or are supported
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Table 4 Knockout predictions with experimental validation
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Enzyme Gene In vitro  In vitro method Species  Citation iTH366 iPfall7
Dihydrofolate reductase; thymidylate PFD0830w L Inhibitor (1843 U89) Pf [142] L L
synthase
FABI, enoyl-acyl carrier reductase PFF0730c 1)L 1) Inhibitor (Triclosan)? 2) Gene KO; siRNA 1) Pf 1) [99] - NL

2) NL 2) Pb 2) [143, 144]
FABB/F 3-oxoacyl-acyl-carrier protein  PFF1275c L 1) Inhibitor (Cerulenin) 1) Pf 1) [99] - NL
synthase I/Il 2)NL  2) Gene KO 2) Pb 2) [144]
Dihydroorotate dehydrogenase PFFO160c L RNAI; Inhibitors (several) pf [145, 146] L L
Adenosine deaminase PF10_0289 L Inhibitor (methylthiocoformycin) pf [102] Lbe cKO: NL
Deoxyuridine 5-triphosphate PF11_0282 L Inhibitors (several) pf [147] NL L
nucleotido- hydrolase
Lactoy! glutathione lyase PF11_0145 PFF0230c L Inhibitor (S-p-bromobenzylglutathione Pf [148] NL NL

diethyl ester)
Sphingomyelinase PFL1870c L Inhibitor (Scyphostatin) pPf [149] NL NL (GR)
Plasmepsin Il PF14_0077 L Inhibitors (several) pf [150] - NL
Cytosolic lysyl-tRNA synthetase PF13_0262 L Inhibitor (cladosporin) Pf [151] - L
Gamma-Glutamylcysteine PFI0925w 1)L 1) Inhibitor (L-buthionine sulfoximine); 1) Pf 1) [152] - NL
synthase 2) NL  fail to Gene KO 2) Pb 2) [27]
2) Gene KO

Glutathion s-transferase PF3D7_ 1419300 L Inhibitors (ellagic acid, others) Pf [153] - NL
Glutathione reductase PF3D7_ 1419800 1L 1) Inhibitors (several); fail to KO 1) Pf 1) [154, 155] - NL

2)NL  2) Gene KO 2) Pb 2) [156]
5-Aminolevulinic acid synthase PF3D7_ 1246100 1)NL 1) Gene KO 1) Pf,Pb 1) [100, 101] L NL

2) L 2) Inhibitor (Succinyl acetone) 2) Pf 2) [99]
Aconitase PF13_0229 NL Gene KO; Inhibitor (Sodium fluoroacetate) Pf [60, 61] - NL
a-Ketoglutarate dehydrogenase PF3D7_ 0820700 NL Gene KO pf [60] - NL
Succinyl-CoA synthetase PF3D7_ 1108500 NL Gene KO Pf [60] - NL
Protoporphyrinoxygen oxidase PF10_0275 L Inhibitor (Acifluorfen) Pf [99] L NL

Predictions for 18 enzymes of interest are included here. See Additional file 3: Table S7 for the complete list of predictions
Italics, inconsistent with experimental results; Bold, conflicting experimental results; Tg, Toxoplasma gondii; Pf, Plasmodium falciparum; Pb, Plasmodium
berghei; %, known off target effects; ® modified media conditions; <, contrary to published; KO, knockout; cKO, conditional KO; GR, growth reducing; L,

lethal; NL, nonlethal

by expression data [69]. Thus, MADE generates functional
condition-specific models representing the cell’s metabolic
capability given the condition-specific expression.

MADE integration of sensitive and resistant expression
data from both countries generated four condition-specific
models (Fig. 3). By comparing these models, we identified
differences in gene and pathway utilization between resist-
ant and sensitive parasites that are consistent between the
isolates from the two countries (Additional file 4: Fig. S3).
First, we conducted an enrichment analysis on genes that
remain in (i.e. can be utilized by) each constrained model
by comparing to the unconstrained curated model. As ex-
pected, all four models were enriched with genes involved
in pathways with many essential reactions or little redun-
dancy, such as transport reactions, tRNA synthesis, purine
metabolism, and others (Additional file 5: Fig. S4, see
model). Sensitive (wild type) models corresponding to iso-
lates from both Cambodia and Vietnam are uniquely
enriched with the utilization of genes involved in the me-
tabolism of nicotinate/nicotinamide (p-value = 1.47%1072),
glutamate (p-value = 1.28*1071%), and selenocysteine

(p-value = 5.85*107%). Thus, sensitive models contain
more reactions in these pathways than the unconstrained
model, resulting from increased expression of these path-
ways in sensitive parasites (Additional file 5: Fig. S4).
Resistant models from both countries are uniquely
enriched with the utilization of genes involved in pyrimi-
dine (p-value = 2.18*107), polyamine (p-value = 4.39*107%),
redox reactions (p-value = 5.13*107°), and central carbon
metabolism (glycolysis [p-value = 4.39*107*] and the pen-
tose phosphate pathway [p-value = 6.06*10~]). Thus, resist-
ant models have a larger proportion of their total reactions
associated with these pathways than the original uncon-
strained model, whereas sensitive models do not have this
enrichment. This indicates that these pathways are upregu-
lated in resistant parasites and may remain important for
metabolism in the resistant state (Additional file 5: Fig. S4).

Identification of conserved and uniquely essential pathways

Beyond general differences in pathway utilization, which
encompasses both essentiality and pathway-level differ-
ences in expression, artemisinin sensitive and resistant
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Fig. 3 Computational pipeline. We curated an existing blood-stage
P. falciparum reconstruction to generate our iPfal17 network
reconstruction. We integrated transcriptomics data into this model
using the MADE algorithm to generate four condition-specific
models. We used these models to predict reaction essentiality;

we highlight consensus results across resistant or sensitive models.
MADE, Metabolic Adjustment for Differential Expression

parasites have unique essential genes and reactions. To
identify these essential reactions and provide insight on
targetable metabolic enzymes in the clinical isolates, we
performed in silico single gene and reaction deletions
with each of the four condition-specific models. Datasets
from the parasites from each country were initially ana-
lyzed separately and then lists were compared to ensure
resistance-associated trends are reproducible and ob-
served in independent analyses. As expected, we identi-
fied many essential functions conserved in all models
(Additional file 3: Table S5), which is consistent with an
active core metabolism required for basic parasite sur-
vival. Importantly, 21 reactions were essential in only
resistant models, but not sensitive models (Table 5).
Theoretically, drugs targeting these reactions would kill
resistant parasites and have no effect on sensitive para-
sites; thus, there would be no selective pressure within
the sensitive parasite population to develop resistance to
these drugs. This list included serine hydroxymethyl-
transferase (PFL1720w in folate metabolism), the glycine
cleavage system (PFL1550w and others in folate metab-
olism), thiamine diphosphokinase (PFI1195c in cofactor
metabolism, specifically thiamine diphosphate), fumarate
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hydratase and malate dehydrogenase (PFI1340W and
PFF0895w, respectively, in the mitochondrial electron
transport chain and TCA cycle), and fructose hexokinase
(PFF1155W in glycolysis; Table 5). We also identified 12
reactions that were essential only in artemisinin sensitive
parasites (Table 6). Drugs targeting these reactions
should not be combined with artemisinin, as they would
not kill (and may select for) resistant parasites. Fortu-
nately, no existing drug targets were found in this list of
essential genes and reactions (Table 6). Among those
identified were sphingomyelin synthase 2 (PFF1215w)
and several transport reactions, which furthers our un-
derstanding of condition-specific intra-organellar func-
tion (Tables 5 & 6). Overall, our systems biology-based
approach reveals unique metabolic phenotypes associ-
ated with artemisinin sensitivity; these differences were
not detected in the original analysis of the expression data-
set or by separately analyzing Cambodian or Vietnamese
isolates ([49] and data not shown).

Discussion

Systems biology approaches enable unbiased analyses of
antimalarial resistance phenotypes. Here, we describe a
newly curated metabolic network reconstruction of the
malaria parasite that can serve as a platform for the ana-
lysis of gene expression and other ‘omics data, and as a
tool to generate testable hypotheses regarding essential
genes and metabolic phenotypes. In particular, we used
this network reconstruction to characterize key meta-
bolic dependencies in resistant and sensitive parasites.
We revealed emergent patterns in pathway activity, dif-
ferential utilization of organelles, metabolic flexibility,
and targetable weakness of resistant parasites.

Data-driven model curation improves predictive
capability

Several P. falciparum reconstructions have been generated
since the publication of iTH366, including those highlight-
ing unique developmental stages within the blood-stage
asexual cycle by integrating stage-specific expression [70],
de novo reconstructions to implement novel modeling ap-
proaches [71], integrated host and pathogen networks
[72], and those exploring the other life stages of the para-
site [73, 74]. iPfall7 represents the most comprehensive
and validated metabolic reconstruction of the asexual
blood-stage malaria parasite, P. falciparum, to date. With
iPfall7, we can simulate growth and predict gene and
reaction essentiality and integrate datasets to probe tar-
geted phenotypes, like resistance. It is larger in scope than
previous models, includes more gene annotations, and
documents literature citations associated with its compo-
nents (Table 1 & Additional file 3: Table S1, Fig. 2). More-
over, invalid reactions have been removed, improving
accuracy (Additional file 3: Table S2). These curation
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Table 5 Essential reactions unique to resistant parasites
Reaction Reaction Formula EC Number  Reaction Function Genes
CO2tmt CO5[m] < => CO,[c] - CO, transport -
EX_folate4  p-aminobenzoatele] < => - p-aminobenzoate exchange -
EX_frue)  fructosele] < => - fructose exchange -
EX_thm(e) thiaminele] < => - thiamine exchange -
FRUtTr fructosele] < => fructose[c] - fructose transport PFB0210c
FUM_mt fumarate [m] + H,O[m] < => malate[m] 4212 fumarate hydratase in the TCA cycle  PFI1340w
FUMtmt fumarate[m] < => fumarate [c] - fumarate transport into mitochondria -
GHMT2r serine[c] + thflc] < => glyine[c] + H,0[c] + mthflc] 2121 serine hydroxymethyltransferase in PFL1720w
folate synthesis
GLYCL_mt  glycine[m] + NAD[m] + thf[m] < => CO,[m] + mithf[m] + many glycine cleavage system in folate PF13_0345°
NADH[mM] + NH,4[m] synthesis and amino acid metabolism  PFL1550w
MAL13P1.390
PF14_0497
PF11_0339
GLYtmt glycine[m] < => glycine[c] - glycine transport into mitochondria -
HEX7 ATP[c] + fructose[c] = > ADP[c] + fructose-6-phosphate[c] + hic] 2711 hexokinase of glycolysis PFF1155w
MDHmM malate[m] + NAD[m] < => h[m] + NADH[m] + oxaloacetate[m] 1.1.1.37 mallate dehydrogenase in the TCA PFFO895w
Cycle
MLTHFtmt  mthfim] < => mthf[c] - mthf transport into mitochondria MAL8P1_13*
PF11_0172
NADPHtmt  NADPHI[c] < => NADPH[m] - NADPH transport into mitochondria -
NADPtmt NADPc] < => NADP[m] - NADP transport into mitochondria -
NH4tmt NH4[m] < => NHy[c] - NH, transport into mitochondria -
OAAtmt oxaloacetate [m] < => oxaloacetate[c] - oxaloacetate into mitochondria -
THFtmt thflm] < => thf[c] - thf into mitochondria -
THMt3 h[c] + thiamine[e] < => h[e] + thiaminelc] - thiamine import -
TMDPK ATP[c] + thiamine[c] = > AMP[c] + h[c] + thiamine diphosphate[c] 2.7.6.2 thiamine diphosphokinase in cofactor  PFI1195¢
metabolism
pABAt p-aminobenzoate[e] < => p-aminobenzoate[c] - p-aminobenzoate import l|;>/l|:AL8P1_13a
11_0172

All reactions in table are predicted to be lethal when removed from both Cambodia and Vietnam resistant models
9, deleted from at least one resistant model due to expression constraints by MADE localization: [e] extracellular, [c] cytoplasmic, [m] mitochondria, [ap] apicoplast

efforts improve the model validity by better recapitulating
experimental results, removing functions known to not
occur in the asexual blood-stage parasite, and adding
functions for which there is experimental evidence. Thus,
gene and reaction knockout predictions generated with
this model are more accurate. Moreover, iPfall7 has
greater interpretability as reaction citations are included
and accessible to users.

iPfal17 is similar in functional distribution and scope
to other high quality models of apicomplexans, despite
its reduced genome size. The P. falciparum genome is
23.3 MB and contains 5423 genes (excluding the anti-
genic var. genes) [43, 75, 76]; iPfall7 accounts for the
function of 987 metabolites, 730 enzymatic reactions,
1195 total reactions, and 488 genes (Table 1). For refer-
ence, the network reconstruction for Toxoplasma gondii,
with a genome of 80 MB with 8000 genes [77, 78], ac-
counts for 1019 metabolites, 1089 enzymatic reactions,

3387 total reactions, and 527 genes [79]; with a genome of
32.8 MB and 8272 genes [80], the Leishmania major net-
work reconstruction accounts for 1101 metabolites, 1047
enzymatic reactions, 1112 total reactions, and 560 genes
[81]. These parasites all have notably poor genome
annotation (40-60% of the genes are unknown) [43,
75] and, thus, have fewer associated genes than
many other reconstructions (e.g. the E. coli and S.
cerevisiae reconstructions account for 1366 and 910
genes [82], respectively [82, 83]).

Intracellular parasites, like Plasmodium, require more
exchange and transport reactions as they obtain many
nutrients from the host environment [57, 84—87]. This
reliance on the host for metabolic function permits the
parasite to increase fitness by reducing its genome and
hijacking host function. P. falciparum does just that: the
parasite remodels the host erythrocyte, generating a ves-
icular network for protein translocation and increasing
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Table 6 Essential reactions unique to sensitive parasites
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Reaction Reaction Formula EC Number Reaction Function Genes
2783 CDP-choline[c] + ceramidelc] + h[c] = > CMP[c] + 2783 sphingomyelinase 2 in lipid metabolism PFF1210wW*
sphingomyelin[c] PFF1215w
AMETt2 adenosyl methioninele] + hle] = > adenosyl - adenosyl methionine import PF11_0334
methioninelc] + h[c] PFB0435¢?
PFE0775¢°
PFF1430c
PFLO420w
PFL1515¢"
EX_02(e) Ojle] < => - oxygen exchange -
EX_ptrc(e) putrescinele] < => - putrescine exchange -
GAT_c diacylglycerol[c] + acyl-coenzyme-A[c] = > coenzyme- 23.1.20 diacylglycerol O-acyltransferase in lipid PFC0995¢
Alc] + triacylglycerol(c] metabolism
GPDDA4 glycerophosphoglycerol [c] + H,O [c] = > glycerol 3.1446 glycerophosphodiester phosphodiesterase PF14_0060
3-phosphatelc] + glycerol[c] + h[c] in lipid metabolism and glycolysis
02t O,le] < => O,[d] - oxygen import -
O2tmt O,[m] < => O,[c] oxygen transport into mitochondria -
Pltap phosphatelap] < => phosphatelc] - phosphate transport into apicoplast -
PTRCt2 hle] + putrescinele] = > h[c] + putrescine[c] - putrescine import -
PYK ADP [c] + h[c] + phosphoenol pyruvate[c] = > 2.7.140 pyruvate kinase in glycolysis PFF1300w
ATP[c] + pyruvate[c]
amet_ex adenosyl methioninele] < => - adenosyl methionine exchange -

All reactions in table are predicted to be lethal when removed from both Cambodia and Vietnam sensitive models
2, deleted from at least one sensitive model due to expression constraints by MADE localization: [e] extracellular, [c] cytoplasmic, [m] mitochondria, [ap] apicoplast

host cell permeability for nutrient acquisition from the
host serum [88-92]. Thus, the apicomplexan network
reconstructions include more transport reactions, many
of which are not genetically mapped. Additionally, we
chose to exclude an erythrocytic host compartment from
the extracellular environment, despite the parasite’s
intra-host growth [57, 66, 68, 93]. Other recent recon-
structions [72, 94] have added this compartment, but
the erythrocytic compartment is unlikely to improve
model function due to the gross disruption of the host
membrane as a barrier [57, 66, 68, 93].

We generated gene and reaction essentiality predic-
tions with our curated network model, prior to integra-
tion of expression data, and found results largely
consistent with previous models [50] (Table 4). We
identified 159 essential reactions and 107 essential
metabolic genes (Additional file 3: Table S3 & S4); 24
of these have been empirically tested in cultured P.
falciparum parasites (Table 4, and in P. berghei-
Additional file 3: Table S6). iPfal17 better predicts ex-
perimentally determined essential reactions than previ-
ous models, across a broad set of metabolic pathways
(Table 4 and data not shown). iPfall7 predictions fail
when essential genes or reactions are involved closely
with spontaneous reactions (i.e. lactoylglutathione lyase
is downstream of a spontaneous reaction and upstream of
nonmetabolic redox products), are in pathways with
uncharacterized mechanisms (i.e. plasmepsin II in

hemoglobin degradation) or if experimental evidence is
contradictory (i.e. heme biosynthesis pathway; Table 4).
Because pharmacological enzyme inhibition can be
quite noisy and genetic modification has been challen-
ging in Plasmodium, the development of CRISPR-Cas9
and other technologies will make it possible to integrate
new experimental observations into the model with
increasing accuracy [95-98]. Until then, the model can
be used to identify enzyme inhibitors with off-target
effects. For example, within the heme biosynthesis
pathway, pharmacological inhibition of aminolevulinic
acid dehydrogenase and protoporphyrinogen oxidase
kills blood-stage parasites [99]; however, disrupting the
genes encoding the first (aminolevulinic acid dehydro-
genase) and last (ferrochetalase) genes is not lethal in
blood-stage parasites [100, 101]. iPfall7 predictions are
consistent with the gene knockout experiments in P.
falciparum of Ke, et al.,, suggesting that the enzyme in-
hibitors used by Ramya, et al. have off target effects
(Table 4 and Additional file 3: Table S7). iPfall7 also
fails to predict the lethal nature of adenosine deaminase
in purine-free conditions [102]. Adenosine deaminase
converts adenosine to hypoxanthine; as 38 reactions
produce AMP, which then generate hypoxanthine prod-
ucts, we propose adenosine deaminase may be essential
for nonmetabolic functions or the inhibitor of adenosine
deaminase has off - target effects. Furthermore, these re-
sults generate hypotheses about the differential metabolic



Carey et al. BMC Genomics (2017) 18:543

capabilities of P. falciparum and P. berghei, as experi-
mental results in the rodent parasite conflict with some
P. falciparum predictions (Tables 3 & 4, Additional file 3:
Table S6).

Data integration reveals distinct metabolic patterns

The integration of expression data from clinical parasites
into our network reconstruction highlights the differen-
tial utilization of metabolic genes and reveals metabolic
shifts associated with variation in innate artemisinin
sensitivity (Additional file 4: Figure S3 & Additional file
5: Figure S4). Enriched metabolic pathways detected in
sensitive and resistant models are consistent with previ-
ous experimental observations. For example, resistant
models are uniquely enriched with genes involved in
pyrimidine biosynthesis and mitochondrial redox reac-
tions. This finding is consistent with the importance of
mitochondrial function in surviving artemisinin stress
[26, 29] and the physical interactions between artemi-
sinin and proteins involved in glycolysis, nucleotide
synthesis, and the mitochondria in mammalian cells
and P. falciparum [103-105]. Additionally, the meta-
bolic disruption of the redox reactions in the electron
transport chain upon artemisinin treatment (via decreased
production of orotate and fumarate, presumably via dihy-
droorotate dehydrogenase and succinate dehydrogenase
enzymes [22, 28, 106]) suggests that changes in these
pathways may be important for survival in the presence of
the drug. Thus, this metabolic network analysis approach
allows us to filter out noise from diverse clinical isolates
to identify alternative utilization of pathways associated
with artemisinin resistance. However, due to the nature of
this type of analysis, these enrichment results do not im-
plicate specific reactions that are uniquely active in arte-
misinin sensitive or resistant parasites.

Condition-specific models have unique metabolic
requirements
Upon integration of expression data and the identification
of differentially utilized pathways above, we next used
these models to predict targetable differences in sensitive
and resistant parasites by identifying reactions that are
essential within the context of the metabolic network
(Additional file 3: Table S5, Tables 5 & 6). We identified
(1) differences in intra-organellar function, (2) metabolic
flexibility of scavenging and biosynthesis pathways, and
(3) targetable weakness of resistant parasites. These meta-
bolic shifts primarily reside in mitochondrial metabolism,
as well as folate and polyamine metabolism. Together,
these results highlight the overall plasticity of P. falcip-
arum metabolism and opportunities for further develop-
ment of potential drug targets.

Interestingly, several transport reactions are found to
be differentially essential in our constrained models
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(Tables 5 & 6). Many transport reactions (79.5%) have
no associated gene due to the incomplete characterization
of the P. falciparum genome (Fig. 2). They are included in
the model due to biochemical evidence or functional ne-
cessity (i.e. a metabolite is produced in one compartment
but it is a substrate for an enzyme in another). Transcrip-
tomic data integration does not constrain their behavior
explicitly: expression integration reduces the total number
of reactions in a model, forcing transport of metabolites
among organelles if within-compartment biosynthesis is
non-functional. Function within organelles requires trans-
port and loss of function reduces transport needs. Specif-
ically, several mitochondrial and apicoplast transport
reactions are uniquely essential in the sensitive and resist-
ant parasite populations (Fig. 4). In resistant models, this
includes the mitochondrial transport of metabolites asso-
ciated with the TCA cycle and electron transport chain
(fumarate, oxaloacetate, and NADPH) and those involved
in generation of folates (tetrahydrofolate, glycine, CO,,
and NH,+) (Fig. 4a). In sensitive models, apicoplast trans-
port of ADP, ATP, and phosphate is essential (Fig. 4a).
Overall, these results indicate that sensitive and resistant
parasites are differentially utilizing pathways within these
organelles, and have unique requirements for transport of
essential substrates. This observation is consistent with
previous studies and our enrichment results highlighting
the influence of mitochondrial metabolism on survival in
the presence of artemisinin [26, 29]. Moreover, oxygen
transport into the cell and then into the mitochondria is
only essential in sensitive parasites, further predicting
differential use of the mitochondria in these parasites as
oxygen serves as the terminal step in the electron trans-
port chain. Resistant parasites are predicted to generate
oxygen within the mitochondria via superoxide dismutase
as opposed to transport (Fig. 4a).

We also identify differential utilization of transport
pathways from the extracellular environment into the
parasite. Plasmodium metabolism contains redundancies;
for many essential metabolites, the parasite’s genome
encodes one or more biosynthetic pathways, while there is
also evidence for a parallel host-scavenging pathway [91]
(e.g. lipid [56] and amino acid [56, 63] scavenging). Upon
model integration, we find that artemisinin resistant and
sensitive parasites utilize some of these metabolic path-
ways in alternative ways (Fig. 4a). Bioinformatic analyses
indicate Plasmodium can either scavenge or synthesize
putrescine [43] and adenosylmethionine [43] (two essen-
tial polyamines and precursors to spermidine [50, 107]).
Similar redundancy has been identified for the acquisition
of p-aminobenzoate, a folate precursor generated by branch
of glycolysis necessary for nucleotide synthesis ([43, 108];
Fig. 4a&b, Tables 5 & 6). These metabolites are measurable
via blood sample metabolomics [108, 109]; therefore, host
scavenging is a viable option for blood-stage parasites.
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We predict that sensitive parasites rely on the import of
putrescine, adenosylmethionine, and p-aminobenzoate.
Resistant parasite expression supports either host scaven-
ging or direct biosynthesis due to parasite survival upon
reaction knockout in silico. Thus, we expect that resist-
ant parasites are more metabolically flexible for these
metabolites; perhaps resistant parasites have failed to
appropriately modulate their transition to the nutrient-
rich blood-stage environment, and this unexpected
flexibility is evolutionarily beneficial once confronted
with artemisinin treatment.

Interestingly, recent metabolomics studies demon-
strate that intra-parasitic putrescine levels are decreased
upon artemisinin treatment [106]. Furthermore, protein
interaction studies indicate artemisinin covalently binds
with spermidine synthase and adenosylmethionine syn-
thetase [110]. Activity in both the biosynthetic and scav-
enging pathway of putrescine and adenosylmethionine
may allow resistant parasites to compensate for artemisi-
nin’s effect on polyamines. The essential role of poly-
amines is well established in Plasmodium [111, 112]. In
other organisms, these compounds stabilize DNA and
RNA [113] and signal a pause in the cell cycle [114]. In
the presence of artemisinin, perhaps polyamines act to
stabilize the genome from oxidative stress [24, 30, 33]
and trigger dormancy [18, 19]. As resistant parasites are

more likely to survive dormancy, flexibility in polyamine
metabolism could provide more routes for artemisinin
survival [29, 115].

Our systems biology approach also identifies metabolic
weaknesses of resistant parasites; these weaknesses can
be used to identify drug targets for combination therap-
ies (Fig. 5). For example, we identified the mitochon-
drial import of fumarate and subsequent conversion to
oxaloacetate (via fumarate hydratase, PFI1340W, and
malate dehydrogenase, PFFO895W) to be uniquely essen-
tial in resistant parasites (Fig. 5a, Table 5). Expression data
from sensitive parasites supports mitochondrial import of
malate and utilization of malate:quinone oxidoreductase
(PFF0815W) to generate oxaloacetate from malate, bypass-
ing the need for fumarate and the associated enzymes, fu-
marate hydratase and malate dehydrogenase. We predict
that inhibitors of fumarate transport or fumarate hydratase
and malate dehydrogenase would specifically kill artemisi-
nin resistant parasites, offering an example of enhanced
metabolic flexibility of sensitive parasites and a potential
artemisinin-combination therapy target. The TCA cycle is
essential during the mosquito-stage of parasite develop-
ment [61, 116], but not the blood-stage [60, 61]; this
once again highlights the possibility that resistant par-
asites exhibit incomplete transition to the metabolic
state most appropriate for nutrient-rich blood.
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Additionally, we identified serine hydroxymethyltransfer-
ase (SHMT) and thiamine diphosphokinase as potential
drug targets of resistant parasites (Table 5, Fig. 5b & c); see
below for discussion of SHMT. Both the import of
thiamine and thiamine diphosphokinase are essential only
in resistant parasites (Fig. 5c), and we predict inhibition of
import or enzyme activity would specifically target resistant
parasites. These reactions are relatively uncharacterized as
the parasite can likely synthesize thiamine diphosphate
(vitamin B1) de novo [117]. Thus, this approach can gener-
ate novel hypotheses and be utilized for the identification of
novel drug targets, and, importantly, targets to help prevent
the development of resistance.

Data-driven model implementation highlights knowledge
gaps

Although iPfall7 represents our best understanding of
intra-erythrocytic P. falciparum biochemistry as the
most comprehensive reconstruction to date, predictions
occasionally contradict published experimental results.
These results illuminate experimental complexities and
incompletely characterized pathways. For example, our
model predicted that cytosolic SHMT is only essential in
resistant parasites (Fig. 5b left). In sensitive parasites, the
essential metabolites can be generated by SHMT or the
mitochondrial glycine cleavage system, given the

reversible nature of these enzymes [118, 119]. Therefore,
in our sensitive models, neither SHMT nor the glycine
cleavage system is essential when knocked out individu-
ally. This observation conflicts with the literature, as
SHMT is essential in cultured parasites [118, 120, 121].
Thus, iPfall7 is unable to predict this intricacy of para-
site metabolism, revealing interesting regulatory effects,
an uncharacterized location dependency for metabolite
generation, or in vivo/in vitro differences in enzyme re-
versibility (Additional file 6).

Similarly, model integration reveals that protein
localization influences essentiality predictions. We pre-
dicted that the cyclical oxidization and reduction of gluta-
thione, a key regulator of oxidative stress [122—125], and
supporting reactions were essential only in resistant
parasites when the glutathione redox system was located
within the mitochondria (data not shown). This is con-
sistent with artemisinin’s induction of reactive oxygen
species, the parasite’s obvious need to survive this stress
[24, 33-35], data showing artemisinin sensitivity is cor-
related with glutathione levels in rodent Plasmodium
[27], and artemisinin’s inhibition of mammalian gluta-
thione s-transferases [103]. However, upon moving
these reactions to the cytosolic and apicoplast compart-
ments (as supported by [126]), these reactions were no
longer essential. Thus, model analysis challenges the
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integration of previously incomparable datasets by
demonstrating that this localization and role of gluta-
thione yield different predictions. Future studies will be
required to clarify these findings.

Conclusions

Here, we have presented both a novel blood-stage-
specific P. falciparum metabolic network reconstruction,
iPfall7, and investigation of the metabolic differences
between artemisinin sensitive and resistant parasites.
Antimalarial resistance is a major public health problem
and we demonstrate that constraint-based modeling can
be used to reveal metabolic shifts that arise with or in sup-
port of the resistant phenotype and discrepancies between
otherwise incomparable datasets. We find inherent differ-
ences in artemisinin resistant and sensitive parasite me-
tabolism, even before artemisinin treatment. Artemisinin
resistant parasites have major metabolic shifts in the mito-
chondria and in the synthesis of folates and polyamines,
indicating incomplete transition to the metabolic state
most appropriate for the blood-stage environment. These
findings generate areas of future research to elucidate
Plasmodium biochemistry, understand the evolution of
artemisinin resistant parasites, and tackle antimalarial
resistance.

Methods

Expression analysis

Normalized preprocessed data was obtained from GEO
(GSE59097) [49]. Probes on the microarray platform
GPL18893 were annotated using NCBI’s stand-alone
BLAST correcting the gene labels for 647 probes. Only
top hits were used; specifically, hits with greater than
95% identity, no gaps, and a score of over 100 were used
(Additional file 3: Table S8). The R package limma was
used to compare artemisinin sensitive and resistant
samples collected from Cambodia and Vietnam [127].
Samples with predominantly ring-stage parasites with no
detectable gametocytes were used. Resistant parasites
were defined as both having at least one mutant Kelch13
allele and a parasite clearance half-life of greater than
5 h (Fig. 1) [49, 128]. Sensitive parasites were defined by
having at least no mutant Kelch13 alleles and a parasite
clearance half-life of less than 5 h. Random Forest classi-
fiers were built using the R package randomForest, using
all ring-stage samples [129]. The metadata classifier used
the variables listed in Additional file 2: Figure S2, as out-
lined in the original study [49]. Cambodian and Vietnam-
ese ring-stage transcriptomes were compared separately
to ensure patterns associated with resistance status were
reproducible across phylogenies. These countries were
chosen for large number of isolates and prevalence of re-
sistance. Microarray probes were screened to remove non-
metabolic genes and to keep only one probe per gene
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(consistent with standard practice). Multiple testing correc-
tion was conducted using a false discovery rate [130, 131].

Gene expression data with calculations of fold changes
and associated adjusted p-value were incorporated into
our curated model using the Metabolic Adjustment for
Differential Expression (MADE) algorithm. MADE utilizes
statistical significance of gene expression changes along
with network context to assign binary gene states (‘on’/
‘off’) to each metabolic gene. This constrains the network
by limiting flux through reactions mapped to ‘off” genes
while maintaining growth, or a similar objective. An 80%
growth threshold was used given that there is no reported
evidence that resistant and sensitive parasites produce
variable biomass as measured by the size of ring-stage
parasites; while varying this threshold affects sensitive
parasite biomass yield, it does not affect essentiality pre-
dictions (data not shown). Essential genes were predicted
for the resultant condition-specific models (Fig. 3) by con-
ducting single gene and reaction deletions with established
algorithms [132]. Consensus lethal gene and reaction
deletions from the Cambodian and Vietnamese parasite
models were used.

Flux analysis and metabolic tasks

Flux balance analysis (FBA) is an approach to explore
metabolic phenotypes in silico [133]. FBA simulates
steady-state flux values for each of the network’s
reactions that maximize subsequent flux through an
objective function given a set of constraints. We chose
biomass production as the objective reaction, consistent
with previous studies interrogating gene essentiality
[50, 53, 79, 134], and permitted flux through all transport
reactions. Constraints on the system include conservation
of mass, reversibility of reactions, and reaction localization.
Flux variability analysis (FVA) uses a related approach to
find the range of fluxes permissible given system con-
straints [135].

We simulated in vitro experiments and in vivo data to
evaluate the model; these are our metabolic ‘tasks’ that
the reconstruction should pass. We simulate in vitro
growth requirements by modifying media components
or access to particular metabolites. Metabolite import or
production was eliminated from the reconstruction, and
subsequent biomass production was observed. Effects of
enzyme inhibition, gene knockouts, and metabolite pro-
duction were also used to evaluate the model. Lethal
modifications were defined as changes that resulted in
no production of biomass; growth-reducing modifica-
tions were defined as producing less than 90% of uncon-
strained flux value [81, 134].

The COBRA Toolbox 2015, Tiger Toolbox (version
1.3.1), and MATLAB R2013b were used for model gen-
eration and flux simulations.
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Curation
Manual curation of an existing P. falciparum metabolic
network reconstruction [50] was conducted by a litera-
ture review and reference to generic and Plasmodium-
specific databases (KEGG, Expasy, and PlasmoDB,
MPMP) [43, 136—138]. Data obtained from these sources
were used to evaluate the inclusion of reactions as well as
their stoichiometry, reversibility, localization, and gene
annotations. Genetically and biochemically supported
reactions were kept and new reactions were added. Reac-
tions were removed if (1) explicitly determined to be false
or (2) were nonfunctional and not supported biochem-
ically or genetically. Spontaneous reactions (reactions that
occur without enzymes) are noted to differentiate from or-
phan reactions (reactions with unknown enzyme catalysts).
In order to assess gene essentiality, we used a biomass
reaction as the modeling objective function. Thus, flux
through this reaction, simulating cellular growth, was
maximized for all in silico experimental procedures. We
used the biomass reaction from a previous study [50] with
modifications. Curation of the biomass reaction was in-
formed by metabolites detected in metabolomics studies
[28, 56-58]; if possible, metabolite ratios were predicted
from metabolomics data. We curated the biomass reaction
with consideration of published essentiality data; metabo-
lites detected in metabolomics experiments with no
known catabolism or import pathways were excluded
from the biomass reaction.

Essentiality studies

We predicted essentiality by performing single deletion
studies with both genes and reactions and double gene de-
letion studies in our curated model and each expression-
constrained sensitive and resistant models. All simulations
were performed in an in silico red blood cell environment
(Additional file 3: Table S9). Gene deletions were simu-
lated by removing the gene of interest from the model.
This change results in the inhibition of flux through all
reactions that require that gene to function. If the model
could not produce biomass with these constraints, the gene
was deemed essential. Growth reducing phenotypes were
also observed and noted. For reaction deletion studies, we
removed reactions sequentially. Subsequent growth effects
were used to determine reaction essentially. Consensus re-
sults for resistant or sensitive models are discussed.

Additional files

Additional file 1: Figure S1. Distribution of genome-wide expression
data demonstrates moderate differential expression between sensitive
and resistant parasites. Fold change values from differential expression
between sensitive and resistant parasites from Cambodia (A) and Vietnam
(B) with significantly differentially expressed genes in red. Fold change is
the ratio of mean expression in resistant parasites to mean expression in
sensitive parasites, for each respective country. (PDF 820 kb)
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Additional file 2: Figure S2. Artemisinin resistance is better predicted
by metadata classifier than expression classifier. Using full expression
profile (A) or metadata (B), including patient and parasite features (see
Methods), we can classify samples as artemisinin sensitive or resistant by
Random forest analysis. Of the top 25 most important variables (gene
probes) in the expression classifier, 12 encoded exported proteins, four
genes of complete unknown function, three encoded a putative kinase
and putative phosphatases, one encoded a component of dynein, four
were uncharacterized genes though to be involved in protein folding or
trafficking, and one encoded a transcription factor. Abbreviation key: (all
from [49] unless noted otherwise). aprs_mutation = apicoplast ribosomal
protein S10 (PF3D7_1460900.1) mutation [14]; fd_mutation = ferredoxin
(PF3D7_1318100) mutation [14]; Field_site = location at which blood
sample was collected; mdr_mutation = multidrug resistance protein 2
(PF3D7_1447900) mutation; partner_drug = Partner drug (Artemisinin
based combination treatment) administered from day 3 onwards;
crt_mutation2 = second CRT (PF3D7_0709000) [14] mutation measured;
crt_mutation1 = first CRT (PF3D7_0709000) [14] mutation measured;
Patient_age_yr = patient age in years; pRBC_sampling_vol_uL = Volume
of packed RBC collected (uL); RNA_yield_ug = Amount of Total RNA
isolated for each sample (ug); Patient_temp_c = patient temperature at
time of admission in Celsius; ART_drug = Type and dosage of artemisinin
drug given once a day on days 0, 1 and 2; asexual_parasite_

count = Total asexual parasite densities per uL on admission;
total_parasite_1000 = total number of parasites in whole sample of
infected RBC collected (pRBC collection vol. * total parasite count per ul)
divided by 1000; SRCC_asexual_stage = Spearman rank correlation coefficient
of the gene expression for the isolate sample to the projected hpi;
Kmeans_Grp = expression group (see [49]); Asexual_stage_hpi = Projected
hours post invasion (hpi) of the parasite asexual stage; Gender = Patient
gender; gam_count = Total gametocyte parasite densities per uL on
admission; Hct_percent = patient hematocrit (%) on admission;
Sampling_Time_24_hr = Time of sample collection in 24 h format. (PDF 38 kb)

Additional file 3: Table S1. Modifications and reaction additions in
iPfal17 curation. Table S2. Reactions deleted from Plata et al. model
(iTH366) in generating iPfal17. Table S3. Predicted lethal reactions in
wild-type blood-stage Plasmodium falciparum. Table S4: Predicted lethal
genes in wild-type blood-stage Plasmodium falciparum. Table S5.
Consensus predicted lethal reactions across 4 expression-constrained
models. Table S6. PlasmoGem orthologous results. Table S7: Extended
Table 4. Table S8. Microarray platform blast results. Table S9: Metabolites
in the in silico extracellular environment. (XLSX 1104 kb)

Additional file 4: Figure S3. Functional differences in data-driven
sensitive and resistant models. Gene states from four condition-specific
models, the results of MADE integration, cluster by sensitivity not by location.
Active genes in red/blue, with genes removed from expression-constrained
models in white. (TIFF 1795 kb)

Additional file 5: Figure S4. Artemisinin sensitive and resistant
parasites utilize different metabolic genes and pathways. Enrichment
analysis of gene utilization in sensitive and resistant parasite models
demonstrates functional differences in expression data integration.
Consensus gene utilization from resistant and sensitive models (both
Cambodian and Vietnamese datasets) were used and compared to
unconstrained model. Black = p < 0.001, grey = p < 0.01, light

grey = p < 0.05, white = non significant. Abbreviation key:
Aminosugars = amino sugar metabolism; ArgPro = arginine and proline
metabolism; AsnAsp = asparagine and aspartate metabolism;
BiosynthesisCytochrome = biosynthesis of cytochromes;
CoABiosynthesis = coenzyme-A biosynthesis; Dolichol = dolichol
metabolism; Exchange = exchange reactions; FattyAcidSynthesis = fatty
acid synthesis; FolateBiosynthesis = folate biosynthesis; Glu = glutamate
metabolism; Glycolysis = glycolysis; GlySer = glycine and serine
metabolism; GPIAnchorBiosynthesis = GPI anchor biosynthesis;
Hemoglobin = hemoglobin degradation (including hemozoin formation);
InositolPhosphate = inositol phosphate metabolism;

Isoprenoids = isoprenoid metabolism; LeulleVal = leucine, isoleucine, and
valine metabolism; Lys = lysine metabolism;

MannoseFructose = mannose and fructose metabolism;

MetPolyamine = methionine and polyamine metabolism;
MitochondrialElectronFlow = mitochondrial electron transport chain;
MitochondrialTCACycle = mitochondrial tricarboxylic acid cycle;
NicotinateNicotinamide = nicotinate and nicotinamide metabolism;
Nitrogen = nitrogen metabolism; PentosePhosphateCycle = pentose
phosphate cycle; PheTyr = phenylalanine and tyrosine metabolism;
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Phosphatidylcholine = phosphatidylcholine metabolism;
PhosphatidyletanolaminePhosphatidylserine = phosphatidyletanolamine
and phosphatidylserine metabolism; Porphyrin = porphyrin metabolism;
Propionate = propionate metabolism; Purine = purine metabolism;
Pyrimidine = pyrimidine metabolism; Pyruvate = pyruvate metabolism;
Redox = redox metabolism; RedoxMitochondrialAntioxidantSystem =
mitochondrial redox metabolism; Riboflavin = riboflavin (vitamin B2)
metabolism; Selenocysteine = selenocysteine metabolism;
ShikimateBiosynthesis = shikimate biosynthesis; SphingomyelinCeramide
= sphingomyelin and ceramide metabolism; Terpenoid = terpenoid
metabolism; Thiamine = thiamine biosynthesis; Transport = transport
reactions; tRNA = tRNA and protein synthesis; Trp = tryptophan metabolism;
Ubiquinone = ubiquinone metabolism; UtilizationPhospholipids = utilization
of phospholipids; VitB6 = pyridoxal (vitamin B6) metabolism. (PDF 6 kb)

Additional file 6: iPfal17 in SBML format. (XML 2000 kb)

Abbreviations

FBA: Flux balance analysis; FVA: Flux variability analysis; MADE: Metabolic
Adjustment for Differential Expression algorithm; SHMT: serine
hydroxymethyltransferase; TCA: tricarboxylic acid cycle
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